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1. Introduction

Efficiency of addition of binary codes is greatly depen-
dent on the adder design and the methodology of computa-
tion of the sum and carry signals.

Binary addition is the main arithmetic operation in the 
systems of very large-scale integration (VLSI) circuits. Bi-
nary adder is one of the most important elements in proces-
sor chips, ALU, counters, memory addressing methods or as 
a part of filters, e. g. DSP grid filter, etc. The adder structure 
with series carry is one of the first and most fundamental 
structures for performing binary addition operations. Its 
speed depends on the number of input operands, hence, sig-

nal delay increases with increase in their number. Parallel 
prefix adders (PPA) [1–4] provide better performance com-
pared to the adders with a series carry. Besides, any reduc-
tion in delay directly concerns the increase in bandwidth [5].

In the nanometer range, development of an addition 
algorithm with a small area occupied by the chip, low power 
consumption and high productivity in its realization is ur-
gent for today.

The mathematical apparatus of directed acyclic graphs 
(Fig. 1, 2) makes it possible to unambiguously obtain values 
of the sum and carry signals in one stage of digital signal 
processing [6], so it is capable of effectively replacement of 
the three-stage prefix model of computation.
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Проведеними дослiдженнями встановлена перспектива збiль-
шення продуктивностi обчислювальних компонентiв, зокрема 
комбiнацiйних суматорiв, на основi використання принципiв обчис-
лення цифрових сигналiв ациклiчної моделi.

Застосування ациклiчної моделi розраховано на:
– процес послiдовного (для молодших розрядiв схеми суматора) 

та паралельного (для решти розрядiв) обчислення сигналiв суми i 
перенесення. Завдяки зазначеному пiдходу стає можливим, у пiд-
сумку, зменшити складнiсть апаратної частини пристрою та не 
збiльшити глибину схеми;

– встановлення оптимального числа обчислювальних крокiв.
Експериментально доведено припущення про те, що число 

обчислювальних крокiв орiєнтованого ациклiчного графа з двома 
логiчними операцiями AND i XOR визначає оптимальне число 
перенесень у схемi n-bit паралельного суматора бiнарних кодiв. 
Зокрема, це пiдтверджується наявнiстю 8-bit паралельного аци-
клiчного суматора з глибиною схеми 8 типових 2-входових логiч-
них елементiв. Зв’язок мiж числом обчислювальних крокiв аци-
клiчного графа i числом перенесень одиницi до старшого розряду 
спричиняє процес спiвставлення структури суматора з вiдпо-
вiдним ациклiчним графом. Метою зазначеного спiвставлення є 
встановлення мiнiмально достатнього числа перенесень для опе-
рацiї додавання бiнарних кодiв у схемi паралельного суматора з 
паралельним способом перенесення. 

Використання ациклiчної моделi вигiднiше у порiвняннi з анало-
гами за такими чинниками:

– меншою вартiстю розробки, оскiльки ациклiчна модель визна-
чає простiшу структуру суматора;

– наявнiстю критерiю оптимiзацiї – число обчислювальних 
крокiв ациклiчного графа вказує на мiнiмально достатнє число 
перенесень одиницi до старшого розряду.

Завдяки цьому забезпечується можливiсть отримання опти-
мальних значень показникiв складностi структури та глибини 
схеми суматора. У порiвняннi з аналогами вiдомих структур 8-bit 
префiксних суматорiв це забезпечує збiльшення показника якостi 
8-bit ациклiчних суматорiв, наприклад, за енергоспоживанням, 
площею чипа, у залежностi вiд обраної структури, на 14–31 %.

Є пiдстави стверджувати про можливiсть збiльшення продук-
тивностi обчислювальних компонентiв, зокрема суматорiв бiнар-
них кодiв, шляхом використання принципiв обчислення цифрових 
сигналiв ациклiчної моделi

Ключовi слова: ациклiчна модель додавання бiнарних кодiв, 
префiксна модель, Ling Adder, Kogge-Stone Adder, Han-Carlson Adder
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Fig. 1. Directed acyclic graph. Model of a computing circuit of 
a 4-bit parallel acyclic adder using the parallel carry method

Fig. 2. Directed acyclic graph. Model of a computing circuit 
of a parallel 4-bit acyclic adder with OR logic elements in  

the last digit

Arithmetic operations are realized by means of gate 
circuits with functional elements in the bases consisting of 
the logical algebra functions. Speed of digital devices, their 
reliability and power consumption depend on the adder 
structure. In this connection, minimization of complexity 
and depth of the logic circuits is one of the central and 
practically important problems in this theory arising when 
digital devices are designed.

Processor evolution is the result of tireless optimization, 
so the studies directed, in particular, at improvement of the 
following factors are still urgent:

– manufacturing technologies;
– structural implementation;
– speed and power consumption;
– cost of digital devices.

2. Literature review and problem statement

Configuration of computing structures in the field 
programmable gate arrays (FPGA) in which parallel-prefix 
adders have better performance was presented in [7]. Par-
allel expansion of the computing process is a fundamental 
operation in modern digital circuits and is vital in most 
computer technologies including ALU units, microchips 
and in DSP development. In this regard, the Kogge-Stone 
Adder (KSA) study as well as additional studies of Ripple 
Carrier Adder, Carry Look Adder and Carry Select Adder 
were conducted [7]. It is noted that the Kogge-Stone adder 
is the fastest among the parallel-prefix adders, however, 
this adder has a high complexity and a huge number of 
connecting wires. Study [7] has demonstrated signs of 
improvement of the computational process by means of re-
verse logiс gates (RLG). Reverse circuits that control data 
through bit splitting in contrast to bit drop will soon offer 
a physically possible basic approach to continue computing 
productivity buildup.

Models of parallel prefix adders developed with the 
Tanner tool for 130 nm technology were presented in [9]. In 
a nanometer range, it is important to develop addition al-
gorithms ensuring small chip area, low power consumption 
and high performance. Parallel prefix adders are suitable 
for VLSI realization due to their simple logical structure 
and regular connections between the groups of logic ele-
ments. Each prefix can be defined in terms of logical level 
of sweeping and connection of tracks. Comparative analy-
sis of 8-bit Kogge-Stone and Han-Carlson parallel adders 
has shown that in terms of cost or area and power, the 
Han-Carlson adder is better choice between these PPAs. 
The Kogge-Stone adder is better in terms of signal lag. 
Thus, the Kogge-Stone adder is better for quick addition 
than the Han-Carlson adder. However, it is advisable to use 
the Han-Carlson structure for better use of space and lower 
power consumption. A similar benchmarking can also be 
done for 16-, 24- and 32-bit PPAs.

Problems of implementation of the high-speed VLSI style 
in nanoscale technologies where working voltages of transis-
tors are potentially subject to changes under the influence of 
environment are discussed in [10]. In particular, to augment 
performance of the DSP processor, a high-speed Kogge-Stone 
parallel prefix was developed with the help of Xilinx ISE. KSA 
is a parallel prefix adder, a form of a tracking management 
unit. This is the fastest adder used in the digital industry for 
high-performance arithmetic circuits. Fast computing process 
in the KSA is realized in parallel due to the bigger chip area. 
To reduce power supply voltage, the author’s methods were 
used. Study [10] has presented a new architectural system for 
reducing signal delays and occurrence of computational errors 
through testing the already processed signals.

In order to reduce complexity of the Kogge-Stone ad-
der, so-called almost true adder (variable-delay adder) was 
proposed in [11]. The variable-delay adder based on the 
Han-Carlson parallel-prefix topology uses speculation: the 
true arithmetic function is replaced by approximated values. 
It is faster and gives correct results for most cases, however, 
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not always. An error detection net is used. Approximated 
adder is complemented by an error detection net which 
confirms an error signal when speculation fails. Specula-
tive variable-delay adders reduce average delay compared 
to the conventional architectures. A number of speculative 
variable-delay adders were synthesized with the help of 
Xilinx 14.3 for various lengths of operands using topology 
of Han-Carlson and Kogge-Stone. The results obtained in-
dicate that the proposed variable delay in the Han-Carlson 
adder is used in high-speed applications.

Despite the fact that the Kogger-Stone and Han-Carlson 
adders are more or less effective, they cannot be used for 
inputs with higher bit numbers. As it is said, they use more 
space when the number of input bits increases. Besides, power 
consumption increases. Thereupon, a parallel prefix procedure 
applied in development of effective adders in which compu-
tation results are determined by one cycle of a synchronous 
pulse was presented in [12]. The overall chip area and overall 
delay are reduced without compromising parameters such as 
performance and power consumption. The developed adders 
use the Quantum-dot Cellular Automata (QCA) techniques 
intensively applied for further improvement. Various synchro-
nization circuits are used to observe the adder operation.

Two different approaches to the choice of the adder struc-
ture to achieve a minimum delay and reduce chip area were 
considered in [13]. The study method involved comparison 
of parameters of the built-in Carry Skip Adder and the Kog-
ge-Stone adder with and without a multiplexer. Removal of 
the multiplexer reduces area and power consumption. The 
presented adders were developed with the help of Verilog 
HDL in VIVADO IDE software environment and imple-
mented on the Zynq board.

A stage circuit as a computation mechanism being a part 
of the prefix model of the adder using logical structure of 
three-stage computation of the sum and carry signals was 
presented in [14]. Note that the acyclic model of computation 
of the sum and carry signals (Fig. 1, 2) was meant for the 
logical structure of the adder with series-parallel method 
of prefix computation and uses the structure of one-stage 
computation. Thus, prefix and acyclic models are different 
objects as they have different principles of computation and 
therefore different capabilities in terms of computing speed, 
chip area and power consumption.

Design of the adders implemented with the use of 
memristors was presented in [15] where designs based on 
memristors for standard adder architectures (ripple carry 
adder, carry lookahead adder and parallel prefix adder) were 
explained and chip areas and delays compared. It was noted 
that the carry lookahead adder has complexity similar to 
the parallel prefix adders. It was also shown that the Kog-
ge-Stone design has better (among the parallel prefix adders) 
metric in terms of delays and area.

A new methodology for designing fuzzy adders meant 
for image processing accelerators was considered in [16]. In 
particular, the proposed methodology uses the parallel prefix 
architecture and methods for ensuring low power consump-
tion due to fuzzy adders. Two examples for evaluating the 
proposed methodology were considered:

1) image blurring filter which uses normal Gaussian 
distribution;

2) Sobel’s operator.
The results were demonstrated on the 45 nm technology 

where reduction of power consumption varied from 7.7 % to 
73.2 % for several image quality levels.

Development and analysis of various types of adders 
using CMOS technology and transistor logic (DPL) were 
presented in [17]. Computation of a conditional adder was 
developed using CMOS, CPL and Dual Transistor Logic 
(DTL). 16-bit and 32-bit adders, their speed, area and power 
consumption were compared.

A single-bit adder as a high-speed component of multi-bit 
adders, matrix multipliers, arithmetic-logical units of micro-
processors and components of problem-directed processors 
of data encryption was presented in the patent [18]. The 
technical novelty of the patent is an additional introduction 
of inverse inputs, outputs and AND-NOT logic elements 
with a multiplex connection by outputs. This makes it pos-
sible to maintain high-speed performance when used as a 
component of structurally more complex multi-bit matrix 
and multistage computing devices in which operations of 
adding binary numbers in the number-theoretical basis of 
Rademacher are provided.

References [7, 9–18] show that the models of parallel 
prefix computation, in particular, the Kogge-Stone and 
Han-Carlson architecture are basically output objects for 
increasing efficiency of processing signals in digital devices. 
These architectures use parallel computations of the digital 
signal prefix starting from the low-order bits. This is the 
actual path (method) of the prefix. However, such a principle 
of computing the sum and carry signals ultimately results in 
piling and the digital device complication.

The acyclic model (Fig. 1, 2) is designed for the logic 
structure of adders with a series-parallel method of digital 
signal computation. The series carry method is the most 
fundamental in terms of minimum costs of the hardware 
part of digital components. Thus, prefix and acyclic mod-
els are different objects as they have different principles of 
computation and therefore different capabilities in terms of 
performance, chip area and power consumption.

Therefore, there are reasons to believe that the parallel 
prefix structure, in particular, the model of the Kogge-Stone 
and Han-Carlson adders is not optimal enough which ne-
cessitates studies with the acyclic model of digital signal 
processing.

3. The aim and objectives of the study

The study objective is to synthesize optimal structures of 
4- and 8-bit parallel binary adders with OR and XOR logic 
elements in the last digit using the acyclic model of digital 
signal processing. This will make it possible to increase 
speed, reduce power consumed by the adder compared with 
counterparts and extend the principle of synthesis to a larger 
bit size of acyclic adders utilizing the series-parallel carry 
method.

To achieve this objective, the following tasks have to be 
addressed:

– set the range of numbers of acyclic adders with OR and 
XOR logical elements in the last digit, compare their speed 
and power consumption;

– evaluate speed and power consumption of the acyclic 
adder structure with OR logical element in the last digit for 
processing modified codes of input arguments;

– conduct comparative analysis of speed and complex-
ity of the 8-bit acyclic adder structures with XOR logical 
elements in the last digit and the 8-bit adders of the prefix 
model of computation of the sum and carry signals.
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4. The scale of measurement of the combinational circuit 
of the adder

Combinational circuit of the adder as a theoretical object 
will be measured with the help of parameters of depth and 
complexity of the device logical structure by recounting the 
number of corresponding logical elements. The following 
measurement units are taken: logical elements 2-In AND, 
2-In OR, Inventor: one logical element; 2-In XOR: four 
elements (Fig. 3, a). To establish complexity of the adder 
circuit, assume that the conventional graphical designation 
of 2-In XOR in Fig. 3, b, also consists of four elements.

а 

b
 

Fig. 3. Logical element 2-In XOR: a variant of the open 
structure of 2-In XOR (a); conditional graphic designation of 

2-In XOR (b)

Circuit complexity is the number of functional ele-
ments in the circuit. This notion is very close to the notion 
of bit complexity of computation and the notion of the 
circuit proper is close to the notion of a program without 
branching.

The circuit depth is the number of functional elements 
in the longest chain that connects inputs of the circuit with 
its outputs. Assume that the signal at the output of the ele-
ment does not appear immediately after the signal injection 
to the inputs but with some delay, then the circuit depth 
determines overall delay. For the circuit of adding n-bit 
numbers, the circuit depth is proportional to the number 
of bits, n.

Speed of the combinational circuit is assessed by the max-
imum delay of the signal when it passes from the input of the 
circuit to its output, i. e. it is determined by the time interval 
from the moment of arriving of input signals to the moment 
of detecting corresponding values at the output. The signal 
delay is proportional to the number of elements through 
which the signal passes from the input to the output of the 
circuit. Therefore, speed of the circuit is characterized by the 
value r t where t is the time of signal delay in one element. 
The value of r is determined by the number of levels of the 
combinational circuit (CC) which is calculated as follows. 
Zero level is assigned to the CC inputs. The logical elements 
related only to the inputs of the circuit belong to the first 
level. An element refers to the level k if it is associated with 
elements of levels k-1, k-2, etc. The maximum level of ele-
ments, r, is determined by the number of CC levels which is 
called the circuit rank [19]. An example of determining the 
rank r of the circuit is shown in Fig. 4.

Fig. 4. Determination of the circuit rank 

The method of computation of the circuit rank is, in 
fact, a technology for unambiguous establishment of the 
circuit depth.

The circuit rank computation is analogous to the steps of 
computation of the sum and carry signals in the combinational 
circuit. Taking into account the computation steps, speed of 
the circuit is characterized by the value kt where t is the time of 
signal delay in one element. The value of k is defined as follows. 
A zero step is assigned to the CC inputs. Logical elements relat-
ed only to the circuit inputs relate to the first step. An element 
refers to step k if it is related to the elements of steps k-1, k-2, etc. 
The maximum step k is determined by the number of computa-
tion steps in the circuit. Each step is numbered. An example of 
computational steps of the circuit is shown in Fig. 5.

Fig. 5. Determination of computational steps of the circuit

The signal delay time for each of the elements 2-In AND, 
2-In OR, Inventor is taken the same. Fig. 3 presents one 
of options of the open structure of the logical element 2-In 
XOR which consists of four logical elements including In-
ventor. Series connection of the logical elements 2-In AND, 
Inventor, 2-In AND forms the longest chain of the 2-In XOR 
structure. Therefore, the 2-In XOR depth is three compu-
tational steps (three logical elements). To establish depth 
of the adder circuit, take depth of three computation steps 
(three logical elements) for the open structure of the 2-In 
XOR (Fig. 3, a) as well as for conditional graphical designa-
tion of the 2-In XOR (Fig. 3, b).

The adder circuit is optimized either at the level of logical 
elements (for example, using the fastest elements in the car-
ry chain, in particular, logical element AND-OR-NO has a 
smaller delay time compared to the logical element AND-OR 
if the latter is realized by the structure of AND-OR-NO-NO) 
or at the circuit level (for example, using structural methods 
for accelerating passage of the carry signal). The method of 
minimizing the logic function is a procedure for optimizing 
the circuit of computer logic, however, in the general case, for 
the majority of Boolean functions with n variables, minimal 
DNFs have size exponential from n. Quite often, the task of 
optimizing the logic circuit for the entire time of computer 
existence was solved empirically. At present, circuit optimi-
zation is solved to some extent by software, for example, the 
Logic Friday program optimizes circuits in several bases from 
the range of available elements [20].

5. The results of application of the acyclic model to reduce 
complexity and boost speed of the binary code adders

5. 1. The number range of the acyclic model
The result of the adding operation with bits ai and bi in 

the i-th bit of the binary code is expressed by two parame-
ters: ci is the result of operation of adding bits of the current 
digit of the binary code and the result of pi+1 by carrying a 
unit to the high-order digit. The results of the digit-by-digit 
execution of operations ci and carry pi+1 are formed accord-
ing to the following rules:

 
 

 
 

 
 

 
 

 

 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/4 ( 97 ) 2019

44

,  at ;

,  at .
i i i i

i
i i i i

a b a b q
c

a b q a b q

+ + <
=  + − + >

	 (1)

1

0,  at ;

1,  at .
i i

i
i i

a b q
p

a b q+

+ <
=  + >

For the acyclic model in Fig. 1 (with XOR logical ele-
ments in the last digit) rules (1) should be executed. This 
provides a range of numbers in the binary code for n-bit grid 
in the range from 0 to 2 1.n −  For example, for an 8-bit grid, 
the number range in the binary code of the acyclic model 
(Fig. 1) will be from 0 to 255.

Note that the number of all n-bit pairs of N arguments 
that can take part in the addition operation is

22 2 2 .n n nN = × =

For example, the number of pairs N=256 for 4-bit argu-
ments. Of these, 136 pairs provide a range of adding numbers 
in the binary code for a 4-bit grid in the range from 0 to 

42 1.−  The rest of the pairs will give overflow of the digital 
grid of the adder circuit (Fig. 6).

Fig. 6. The 4-bit acyclic adder with XOR elements in  
the last digit

Logical equations of the 4-bit acyclic adder in Fig. 6 are 
as follows:

0 0 0 0 0;S a b a b= +  

1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1;S a b a b a a b a a b a b a b b a b b a b= + + + + +

2 0 1 2 2 0 1 2 2 0 1 2 2 0 1 2

0 1 2 2 0 1 2 2 0 1 2 2 0 1 2 2

0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2;

S a b a b a a a b a b a b a a a b

b b a b b a a b b b a b b a a b

a b b a b a b a a b a b b a b a b a a b

a b a b a b a b a b a b a b a b

= + + + +

+ + + + +

+ + + + +

+ + + +

3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3

0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3

0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3

0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3

1 1 2 3 3 1 1 2

S a b b a b a a b a b a b a a b a a a a b

a b b a b a a b a b a b a a b a a a a b

b b b a b b a b a b b b a a b b a a a b

b b b a b b a b a b b b a a b b a a a b

a b b a b a b a

= + + + +

+ + + + +

+ + + + +

+ + + + +

+ + 3 3 1 1 2 3 3 1 1 2 3 3

0 0 1 2 3 3 0 0 1 2 3 3 0 0 1 2 3 3 0 0 1 2 3 3

0 0 1 2 3 3 0 0 1 2 3 3 0 0 1 2 3 3 0 0 1 2 3 3

1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3

2 2 3 3 2 2 3 3 2

a b a b b a b a b a a b

a b b b a b a b a b a b a b b a a b a b a a a b

a b b b a b a b a b a b a b b a a b a b a a a b

a b b a b a b a a b a b b a b a b a a b

a b a b a b a b a b

+ + +

+ + + + +
+ + + + +

+ + + + +

+ + + 2 3 3 2 2 3 3;a b a b a b+

0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3

0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3

1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3

2 2 3 2 2 3 3 3.

P a b b b b a b a b b a b b a b a b a a b

a b b b a a b a b a a b b a a a b a a a

a b b b a b a b a b b a a b a a

a b b a b a a b

= + + + +
+ + + + +
+ + + + +
+ + +

For the acyclic model in Fig. 2 (with logical OR elements 
in the last digit), rules (1) are not executed in the last digit 
of adding binary codes. However, when the rule (1) is not 
executed in the last digit, logic of the acyclic adder (Fig. 7) 
gives overflow of the grid of the adder circuit. Thus, non-ex-
ecution of rule (1) in the last digit of the acyclic model of the 
adder is registered by the signal of overflow of the digital 
grid. In this case, 136 pairs of 4-bit arguments provide a 
range of adding numbers of the acyclic adder with the OR 
logical elements in the last digit in the range from 0 to 24–1,  
and in a general case, from 0 to 2 1.n −  The rest of the pairs 
will give overflow in the binary code for the n-bit digital grid 
of the adder circuit.

Fig. 7. 4-bit acyclic adder with OR elements in  
the last digit

Logical equations of the 4-bit acyclic adder in Fig. 7 are 
as follows:

0 0 0 0 0;S a b a b= +

1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1;S a b a b a a b a a b b a b b a b a b a b= + + + + +

2 0 1 2 2 0 1 2 2 0 1 2 2 0 1 2 0 1 2 2

0 1 2 2 0 1 2 2 0 1 2 2 0 0 1 2 2

0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 1 1 2 2 1 1 2 2;

S a b a b a a a b a b a b a a a b b b a b

b a a b b b a b b a a b a b b a b

a b a a b a b b a b a b a a b a b a b a b a b

= + + + + +

+ + + +

+ + + + +

3 0 0 1 2 0 0 1 2 0 0 1 2

0 0 1 2 1 1 2 1 1 2 2 2 3 3

+

+ ;

S a b b b a b a b a b b a

a b a a a b b a b a a b a b

= + + +
+ + + + +

0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3

0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3

1 1 2 3 1 1 2 3 1 1 2 3

1 1 2 3 2 2 3 2 2 3 3 3.

P a b b b b a b a b b a b b a b a b a a b

a b b b a a b a b a a b b a a a b a a a

a b b b a b a b a b b a

a b a a a b b a b a a b

= + + + +
+ + + + +
+ + + +
+ + + +

It can be seen from Table 1 that both 4-bit adders 
with OR and XOR logical elements provide the same 
range of number addition in the range from 0 to 42 1.−  
However, the adder with OR logical elements in the last 
digit is faster (the circuit depth of 6 elements) and has a 
simpler structure (the circuit complexity is 29 elements) 
compared to the adder circuit with XOR logical elements 
in the last digit.
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Table 1

Comparative table of parameters of the 4-bit acyclic adder 
with OR and XOR elements in the last digit

Parameters 

4-bit adder with 
OR logical ele-

ments in the last 
digit

4-bit adder with 
XOR logical 

elements in the 
last digit

Circuit complexity 29 33

Circuit depth 6 7

Range of digit adding 42 1− 42 1−
Number of all pairs of 
4-bit arguments which 

can take part in the 
adding operation

256 256

Number of pairs of 4-bit 
arguments ensuring the 
adder operation with no 

overfill

136 136

Percentage of pairs of 
4-bit arguments ensur-
ing the adder operation 

with no overfill 

53.13 % 53.13 %

5. 2. Processing of modified codes by acyclic adders 
with OR elements in sign digits of the input arguments

As an example of using the acyclic model of the adder 
with OR logical elements in the last digit, arithmetic opera-
tions with modified codes at different signs of numbers can 
be considered.

Two digits are used in the modified codes for assigning 
sign to the number (Table 2).

Table 2

Coding of the number sign in modified codes

Bits of the sign digits Comments

00 Sign «+»

11 Sign «–»

01 Positive overflow digit

10 Negative overflow digit

Modified codes have turned out to be convenient (in 
terms of constructing arithmetical-logical transducers (ALT) 
to detect overflow of the digital grid. If the sign digits of the 
result take the value of 00 or 11, then there was no overflow of 
the digital grid and if 01 or 10, overflow took place.

In algebraic addition, sign digits are considered as the 
high-order digits of the number. If there is a carry from a 
high-order digit during the addition operation, the carry 
bit is added to the low-order digit of the sum in the case of 
applying a modified inverse code or rejected when applying 
a modified complement code.

The shortcoming inherent in the reverse code passes 
into the modified inverse code. The modified direct code 
retains all shortcomings of the direct code [21]. Therefore, 
we will focus on considering only the modified complement 
code (MCC).

The MCC is obtained from the complement code by 
simple duplication of the sign digit of the number. Moreover, 
numbers can be stored in the computer memory in the com-
plement code and converted into the modified code when 
they are forwarded to an executing device.

Performance of arithmetic operations in MCC looks as 
follows.

Example 1. Add the numbers given in MCC: A=0010101 
(2110) and B=0010010 (1810). A>0, B>0.

+ 0010101
0010010
0100111

Positive overflow takes place.
Example 2. Add numbers given in MCC: A=0010101 (2110) 

and B=0001010 (1010). A>0, B>0.

+ 0010101
0001010
0011111

Positive sum was obtained in MCC.
Example 3. Add the numbers given in the MCC: A= 

=0010101 (2110) and B=1110011 (–1310). A>0, B<0. .A B>

+ 0010101
1110011
0001000

Positive sum was obtained in MCC.
Example 4. Add numbers given in MCC: A=0010101 (2110) 

and B=1100110 (–2610). A>0, B<0 .A B<

+ 0010101
1100110
1111011

Negative sum was obtained in MCC.
Example 5. Add numbers given in MCC: A=1101011 (-2110) 

and B=1101110 (–1810). A<0, B<0.

+ 1101011
1101110
1011001

Negative overflow takes place.
Example 6. Add numbers given in the MCC: A=1101011 

(–2110) and B=1110110 (-1010). A<0, B<0.

+ 1101011
1110110
1100001

Negative sum was obtained in MCC.
Example 7. Add fractional numbers 1.010100 and 1.110000 

given in the supplement code using the MCC.
Solution:

x = 1.010100 (comp.) -> 11.010100 (mod. comp.)
y = 1.110000 (comp.) -> 11.110000 (mod. comp.)

s=x+y=11.000100 (mod. comp.) (discard carry from the 
high-order digit) 

⇒  1.000100 (comp.)

Thus, s = 1.000100 (comp.) = -(0.111011 + 1 low-order digit) =  
=-0.111100 = 1.111100 (direct).
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Check:
s = 1.000100 (comp.) = -(0.111011 + 1 low-order digit) =  

=-0.111100 = -15/16

x = 1.010100 (comp.) = -(0.101011 + 1 low-order digit) =  
=-0.101100 = -11/16

y = 1.110000 (comp.) = -(0.001111 + 1 low-order digit) =  
=-0.010000 = -4/16

-11/16 + (-4/16) = -15/16 – the result of addition is 
correct.

Modified codes are used to obtain algebraic addition 
which, in the end, greatly simplifies the hardware part 
of digital components. Algebraic addition in the adder’s 
circuit is provided by comparing the sign digits of the mod-
ified code with the high-order digits of the device circuit. 
Since the sign digits of the modified codes of the two input 
arguments with different signs always have structure 00 
and 11 or 11 and 00, carry in the two high-order digits of 
the adder circuit can only be transitive. In another way, 
structure 00 and 11 or 11 and 00 of two sign digits creates 
condition for a transitive carry and does not generate its 
own carry signal.

The condition for transitive carry is determined by the 
logical function (2).

i i ip a b= ∨  or .i i ip a b= + 			   (2)

If 1,ip =  then transitive carry to the next digits is 
possible, in a case when 0,ip =  transitive carry to the next 
digits is impossible. Arguments 0ia =  and 1ib =  or 1ia =  
and 0ib =  of the logical function (2) always give the value of 

1.ip =  Therefore, to provide logic of setting sign of the sum 
code at different signs of the input arguments and fixation of 
the overflow signal, it is sufficient to use one input element 
OR (Fig. 8) in each of the two high-order digits of the adder 
circuit. It simplifies logical structure of the adder and opti-
mizes the circuit depth.

Fig. 8. The 4-bit acyclic adder with OR elements at the inputs 
of the last two digits to add 2-bit numbers with different 

signs in the modified code

Logical equations of the 4-bit acyclic adder in Fig. 8 are 
as follows:

0 0 0 0 0;S a b a b= +

1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1;S a a b a b a b a b a b a a b b a b b a b= + + + + +

2 0 0 1 2 2 0 0 1 2 2 1 1 2 2

1 1 2 0 1 2 1 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2;

S a b a a b a b b a b a b a b

a b b a a b a b a a a a b a b

b a a a b b a b a b b b b b a

= + + +

+ + + + + +

+ + + + +

3 0 0 1 3 3 0 0 1 3 3 1 1 3 3

1 1 3 0 1 3 1 1 3 0 1 3 0 1 3

0 1 3 0 1 3 0 1 3 0 1 3 0 1 3.

S a b a a b a b b a b a b a b

a b b a a b a b a a a a b a b

b a a a b b a b a b b b b b a

= + + + +

+ + + + + +

+ + + + +

The range of numbers of the adder circuit with logical 
elements OR in the last digit when processing the modified 
code remains within 0 to 2 1,n −  and for the 2-bit grid of the 
adder shown in Fig. 8, the range of numbers in the modified 
code is from 0 to 3.

Table 3

Codes providing representation of a number sign for  
a range from 0 to 3

Codes for positive numbers

Decimal Direct Inverse Complement МCC

0 0.00 0.00 0.00 00.00

+1 0.01 0.01 0.01 00.01

+2 0.10 0.10 0.10 00.10

+3 0.11 0.11 0.11 00.11

Codes for negative numbers

Decimal Direct Inverse Complement МCC

–1 1.01 1.10 1.11 11.11

–2 1.10 1.01 1.10 11.10

–3 1.11 1.00 1.01 11.01

Table 4

Incomplete table of validity of the adder in Fig. 8 for adding 
codes with different signs in MCC

No. Sign 1a 0a Sign 1b 0b Sign 1s 0s

1
+ 010 + 010 + 010

0 0 0 0 0 0 0 0 0 0 0 0

2
+ 010 – 110 – 110

0 0 0 0 1 1 0 1 1 1 0 1

3
+ 010 – 210 – 210

0 0 0 0 1 1 1 0 1 1 1 0

4
+ 010 – 310 – 310

0 0 0 0 1 1 1 1 1 1 1 1

5
+ 110 – 110 + 010

0 0 0 1 1 1 1 1 0 0 0 0

6
+ 110 – 210 – 110

0 0 0 1 1 1 1 0 1 1 1 1

7
+ 110 – 310 – 210

0 0 0 1 1 1 0 1 1 1 1 0

8
+ 210 – 110 + 110

0 0 1 0 1 1 1 1 0 0 0 1

9
+ 210 – 210 + 010

0 0 1 0 1 1 1 0 0 0 0 0

10
+ 210 – 310 – 110

0 0 0 1 1 1 0 1 1 1 1 1

5. 3. The 8-bit acyclic adder with the circuit depth of 
8 elements

In order to provide same conditions of comparison, we 
shall present circuits of prefix (PPA) and acyclic (PAA) 
8-bit adders with XOR logical elements in the last digit.

Fig. 9 presents an acyclic 8-bit PAA with XOR logical 
elements in the last digit and the circuit depth of 8 standard 
2-input elements. Given that XOR consists of four elements 
(Fig. 3, a), the circuit complexity (Fig. 9) is 95 2-input elements.
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Fig. 9. Acyclic 8-bit PAA with circuit depth of 8 standard 
2-input elements

Circuit of the acyclic adder in Fig. 9 confirms validity 
of assertion that the number of computational steps of an 
directed acyclic graph determines optimal number of car-
ry operations in the circuit of an n-bit parallel adder [22]. 
The specified ratio is executed only for 4- and 8-bit adders. 
With the increase in bit size of the acyclic adder (16-, 32-,  
64-bit ...), the number of computational steps will be deter-
mined by the logarithmic law (Fig. 10).

Fig. 10. Dynamics of increase in depth of  
the acyclic adder (PAA) circuit

Dynamics of growth of the PAA circuit depth is deter-
mined by logarithmic dependence: doubling of the adder bit 
size, n, increases the circuit depth by a constant value: two 
logical elements.

5. 4. The 8-bit acyclic adder with the circuit depth of 
9 elements

Since Fig. 9 demonstrates the 8-bit PAA with XOR 
logical elements in the last digit and the circuit depth of  
8 standard 2-input elements, then to construct an 8-bit PAA 
with the circuit depth of 9 standard 2-input elements, it is 
enough to use serial (for the low-order digits of the device 
circuit) and a not complex method for parallel computation 
of the sum and carry signals (for the rest of digits). The 

series carry method enables reduction of complexity of the 
hardware part of the device and does not increase the circuit 
depth in the acyclic model.

Fig. 11 presents an acyclic 8-bit PAA with XOR logical 
elements in the last digit and the circuit depth of 9 standard 
2-input elements. Complexity of the circuit in Fig. 11 is 88 
2-entry elements.

Fig. 11. Acyclic 8-bit PAA with circuit depth of 9 standard 
2-input elements

The 8-bit Ling prefix adder [23–25] with XOR logical 
elements in the last digit and the circuit depth of 9 standard 
2-input logic elements, with the adder logical structure 
updated to reduce complexity of the circuit is presented in  
Fig. 12. As XOR consists of four elements (Fig. 3, a), com-
plexity of the circuit is 115 2-input elements.

Computational process of the 8-bit Ling PPA (Fig. 12) 
uses the following logical operations: 7 XOR, 44 AND,  
28 OR, 15 Inventor. The 8-bit PAA (Fig. 11) uses 5 XOR, 
34 AND, 25 OR, 9 Inventor. Given that logic of the XOR 
element uses four logical elements including Inventor, one 
can estimate indicator S of the 8-bit PAA adder operation 
quality (for example, power consumption), Fig. 11, compared 
to the adder shown in Fig. 12:

1

2

115
1,3068 30,68 %,

88
T

S
T

= = = =

where T1, T2 is the number of 2-input logic elements in the 
8-bit Ling PPA (Fig. 12) and the 8-bit PAA (Fig. 11), re-
spectively.

The prefix 8-bit Kogge-Stone PPA [3, 8] and the 8-bit 
Knowles PPA [26, 27] with XOR logic elements in the last 
digit are shown in Fig. 13. Given the depth of XOR is three 
elements and complexity four elements, depth of the 8-bit 
Kogge-Stone PPA and the 8-bit Knowles PPA (Fig. 13) will 
be 9 standard 2-input logical elements and the circuit com-
plexity of 106 elements.
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Fig. 12. The 8-bit Ling prefix PPA [23–25]

Fig. 13. The 8-bit Kogge-Stone prefix PPA [3, 8] and  
the 8-bit Knowles PPA [26, 27]

Computational process of the 8-bit Kogge-Stone PPA 
and the 8-bit Knowles PPA (Fig. 13) includes the following 
logical operations: 7 XOR, 44 AND, 26 OR, 8 Inventor. The 

8-bit PAA adder (Fig. 11) uses 5 XOR, 34 AND, 25 OR, 
9 Inventor. Given that logic of the XOR element uses four 
logical elements, quality indicator S (for example, in terms of 
power consumption) of the 8-bit PAA (Fig. 11) compared to 
the adder shown in Fig. 13 is as follows:

1

2

106
1,2045 20,45 %,

88
T

S
T

= = = =

where T1, T2 is the number of 2-input logic elements of 
the 8-bit Kogge-Stone PPA and the 8-bit Knowles PPA  
(Fig. 13) and the 8-bit PAA (Fig. 11), respectively.

5. 5. The 8-bit acyclic adder with circuit depth of  
10 elements

Fig. 14 represent the 8-bit acyclic PAA with XOR 
logical elements in the last digit and the circuit depth of 
10 standard 2-input elements. The circuit complexity is  
77 elements (Fig. 14).

Fig. 14. The 8-bit acyclic PAA with the circuit depth of 10 
standard 2-input elements

The 8-bit Sklansky prefix PPA [26, 28] with XOR 
logical elements in the last digit is presented in Fig. 15. 
Given the depth of XOR is three elements and complexity 
four elements, depth of the 8-bit Sklansky PPA (Fig. 15) is  
10 standard 2-input logical elements, the circuit complexity 
of 89 elements.

Computational process of the 8-bit Sklansky PPA ad-
der (Fig. 15) uses the following logical operations: 7 XOR, 
33 AND, 20 OR, 8 Inventor. Computational process of the 
8-bit PAA adder (Fig. 14) uses 2 XOR, 33 AND, 27 OR,  
9 Inventor. The indicator S of the 8-bit PAA adder (Fig. 14) 
operation quality, for example, in terms of power consump-
tion compared to the adder shown in Fig. 15 is as follows:

1

2

89
1,1558 15,58 %,

77
T

S
T

= = = =

where T1, T2 is the number of 2-input logic elements of the 
8-bit Sklansky PPA (Fig. 15) and the 8-bit PAA (Fig. 14), 
respectively.
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Fig. 15. The 8-bit Sklansky prefix PPA [26, 28]

The 8-bit Ladner-Fisher prefix PPA [4, 26] with XOR 
logical elements in the last digit is presented in Fig. 16. Giv-
en the XOR depth of three elements and complexity of four 
elements, depth of the 8-bit Ladner-Fisher PPA (Fig. 16) will 
be 10 standard 2-input logical elements, circuit complexity 
of 89 elements.

Fig. 16. The 8-bit Ladner-Fisher prefix PPA [4, 26]

Computational process of the 8-bit Ladner-Fisher PPA 
adder (Fig. 16) uses the following logical operations: 7 XOR, 
33 AND, 20 OR, 8 Inventor, 9 Inventor. The 8-bit PAA  
(Fig. 14) uses 2 XOR, 33 AND, 27 OR, 9 Inventor. Indicator 
S of the 8-bit PAA adder operation quality (for example, in 
terms of power consumption), Fig. 14, compared to the adder 
shown in Fig. 16 is as follows:

1

2

89
1,1558 15,58 %,

77
T

S
T

= = = =

where T1, T2 is the number of 2-input logic elements of the 8-bit 
Ladner-Fisher PPA (Fig. 16) and the 8-bit PAA (Fig. 14),  
respectively.

5. 6. The 8-bit acyclic adder with the circuit depth of 
11 elements

Fig. 17 represents the 8-bit acyclic PAA with XOR 
logical elements in the last digit and the circuit depth of  
11 standard 2-input elements. Complexity of the circuit in 
Fig. 17 is 78 elements.

Fig. 17. The 8-bit acyclic PAA with the circuit depth of  
11 standard 2-input elements

The 8-bit Han-Carlson prefix PPA [2, 26] with XOR logical 
elements in the last digit is presented in Fig. 18. Given the XOR 
depth is three elements and complexity four elements, depth 
of the 8-bit Han-Carlson PPA (Fig. 18) will be 11 standard 
2-input logical elements, the circuit complexity is 89 elements.

Computational process of the 8-bit Han-Carlson PPA 
adder (Fig. 18) uses the following logical operations: 7 XOR, 
33 AND, 20 OR, 8 Inventor. The 8-bit PAA adder (Fig. 17) 
uses 3 XOR, 32 AND, 25 OR, 9 Inventor. The indicator S 
of the 8-bit PAA adder operation quality (for example, in 
terms of power consumption), Fig. 17, compared to the adder 
shown in Fig. 18 is as follows:

1

2

89
1,141 14,1 %,

78
T

S
T

= = = =

where T1, T2 is the number of 2-input logic elements in the 
8-bit Han-Carlson PPA (Fig. 18) and the 8-bit PAA (Fig. 17), 
respectively.

Steps
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Fig. 18. The 8-bit Han-Carlson prefix PPA [2, 26]

5. 7. The 8-bit acyclic adder with the circuit depth of 
12 elements

Fig. 19 shows the 8-bit acyclic PAA with XOR logical 
elements in the last digit and the circuit depth of 12 stan-
dard 2-input elements. Complexity of the circuit in Fig. 19 is  
75 elements.

Fig. 19. The 8-bit acyclic PAA with the circuit depth of  
12 standard 2-input elements

The 8-bit Brent-Kung prefix PPA [1, 8] with XOR logical 
elements in the last digit is presented in Fig. 20. Given the 
XOR depth is three elements, and complexity four elements, 
depth of the 8-bit Brent-Kung PPA (Fig. 20) will consist 
of 12 standard 2-input logical elements, complexity of the 
circuit is 86 elements.

Computational process of the 8-bit Brent-Kung PPA 
(Fig. 20) uses the following logical operations: 7 XOR, 31 
AND, 19 OR, 8 Inventor. The 8-bit PAA (Fig. 19) uses  

2 XOR, 32 AND, 26 OR, 9 Inventor. The indicator S (for 
example, in terms of power consumption) of the 8-bit PAA 
adder operation quality (Fig. 19) compared to the adder 
shown in Fig. 20 is as follows:

1

2

86
1,1467 14,67 %,

75
T

S
T

= = = =

where T1, T2 is the number of 2-input logic elements of the 
8-bit Brent-Kung PPA (Fig. 20) and the 8-bit PAA (Fig. 19), 
respectively.

Fig. 20. The 8-bit Brent-Kung prefix PPA [1, 8]

5. 8. Comparative analysis of the 8-bit acyclic and 
prefix adders of binary codes

Parameters of synthesized circuits of the 8-bit acyclic 
and prefix adders are presented in comparative Table 5.

Table 5

Comparative table of parameters of the 8-bit acyclic and 
prefix adders

Parallel adder of binary codes with 
parallel carry

Circuit 
depth

Circuit 
complexity

PAA Fig. 9 8 95

PAA Fig. 11 9 88

Ling Adder Fig. 12 9 115

Kogge-Stone and Knowles Fig. 13 9 106

PAA Fig. 14 10 77

Sklansky Fig. 15 10 89

Ladner-Fisher Fig. 16 10 89

PAA Fig. 17 11 78

Han-Carlson Fig. 18 11 89

PAA Fig. 19 12 75

Brent-Kung Fig. 20 12 86
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It is seen from Table 5 that complexity of circuits of 
acyclic adders is smaller with the chosen value of the cir-
cuit depth.

Quality indicators of acyclic adders in comparison with 
prefix adders in terms of power consumption are presented 
in Table 6.

Table 6

Indicators of quality of acyclic adders in terms of power 
consumption 

Parallel adder of binary codes with 
parallel carry

Quality indicator in 
terms of power consump-
tion by the acyclic adder

PAA Fig. 9 
PPA unavailable for  

quality assessment PAA

PAA Fig. 11 
30.68 %

Ling Adder Fig. 12 

PAA Fig. 11 
20.45 %

Kogge-Stone and Knowles Fig. 13 

PAA Fig. 14 
15.58 %

Sklansky Fig. 15 

PAA Fig. 14 
15.58 %

Ladner-Fisher Fig. 16 

PAA Fig. 17 
14.1 %

Han-Carlson Fig. 18 

PAA Fig. 19 
14.67 %

Brent-Kung Fig. 20 

Fig. 21 shows dynamics of the circuit depth growth for 
five acyclic adders with the XOR logic elements in the last 
digit (Fig. 9, 11, 14, 17, 19) with an increase in the circuit 
bit size.

Fig. 21. Dynamics of the circuit depth growth in  
acyclic adders

Dynamics of growth of the PAA circuit depth is deter-
mined by the logarithmic dependence: doubling of the adder 
bit size, n, increases the circuit depth by a constant value: 
two logic elements.

6. Discussion of the results obtained in application of  
the acyclic signal processing model for synthesis of  

binary adders

Main drawbacks of the prefix model of computation of 
the sum and carry signals are as follows:

– organization of the process of parallel prefix compu-
tation involves computation beginning from the low-order 
digits of the adder circuit (this is the actual path (method) of 
the prefix) which results in excessive piling and complication 
of the hardware part of the device;

– the three-stage organization of computation of the 
prefix model signals in conditions of tireless optimization 
loses the prospect of continuing build-up of productivity of 
the digital signal processing. For example, speed of the 8-bit 
Ling prefix adder [23–25] (Fig. 12), Kogge-Stone prefix ad-
der [3, 8] and Knowles prefix adder [26, 27] (Fig. 13) accord-
ing to the chosen scale of the combinational circuit of the 
adder (as discussed in 4.1) is determined by the depth of the 
circuit of 9 standard 2-input logic elements. No information 
on further 8-bit PPA depth decrease was found.

In turn, application of the acyclic model is designed for:
– the process of series (for the low-order digits of the 

adder circuit) and parallel (for the rest of the digits) compu-
tation of the sum and carry signals which, in the end, reduces 
complexity of the hardware part of the device and does not 
increase the circuit depth;

– setting of an optimal number of computation steps.
The number of computation steps of an directed acyclic 

graph with two logical operations, AND and XOR, deter-
mines optimal carry operation number in the circuit of the 
n-bit parallel adder of binary codes. This indicates that the 
computational steps of the directed acyclic graph and carry 
of a unit to the high-order digit of the adder represent one 
object. Thus, the eight computational steps of an directed 
acyclic graph determine eight carry operations in the 8-bit 
PAA circuit. The mentioned ratio is executed only for 4- and 
8-bit adders. With an increase in bit size of the acyclic adder 
(16-, 32-, 64-bit ...), the number of computational steps is de-
termined by logarithmic law (Fig. 10). Beside the mentioned 
PAA, the Ling Adder, as compared to KSA, Knowles Adder, 
has less circuit complexity and length of the connecting 
wires (paths).

Thus, the use of the acyclic model, in comparison with 
the prefix model, for synthesizing circuits of adders of binary 
codes makes it possible to increase computing productivity 
by means of digital components. In particular, the series-par-
allel principle of computation of the acyclic model provides 
synthesis of a combinational 8-bit parallel adder with a cir-
cuit depth of 8 standard 2-input logic elements (Fig. 9), the 
counterpart of which is absent in the case of synthesis of the 
circuit using a prefix model. 

Relationship between the number of computational steps 
of the directed acyclic graph and the number of operations of 
unit carry to the high-order digit causes the process of com-
parison of the adder structure with the respective directed 
acyclic graph. The purpose of this comparison is to establish 
the minimum sufficient number of carry operations for the 
operation of adding binary codes in the circuit of the parallel 
adder utilizing the parallel carry method. In the case when 
the synthesized adder received more carries compared to the 
number of computational steps of a corresponding directed 
acyclic graph, such an adder should be considered nonopti-
mal in terms of the number of computational operations.

Expediency of using structure of the adder with OR log-
ical elements in the last digit consists in the fact that logic 
of the acyclic adder (Fig. 7) in case of non-compliance with  
rule (1) in the last digit provides overflow of the digital grid 
of the adder circuit. Thus, non-compliance with rule (1) in 
the last digit of the acyclic model of the adder is registered by 

Adder bit size (n)

PAA, Fig. 19 
PAA, Fig. 17 
PAA, Fig. 14 
PAA, Fig. 11 
PAA, Fig. 9 
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the signal of overflow of the digital grid, and, consequently, 
the sum code will not be written into computer memory. 
In this case, structure of the acyclic adder with OR logical 
elements in the last digit provides a range of adding binary 
codes in the range from 0 to 2 1.n −

A promising point for application of the structure of the 
acyclic adder with OR logical elements in the last digit is 
arithmetic operations with modified codes having different 
number signs. Modified codes are used to obtain properties 
of algebraic addition which is provided in the adder circuit 
by comparing the sign digits of the modified code with the 
high-order digits of the adder circuit. Since sign digits of the 
modified codes of the two input arguments with different 
signs always have structure 00 and 11 or 11 and 00, carry 
in the two high-order digits of the adder circuit can only be 
transitive. Therefore, in order to provide the logic of setting 
sign of the sum code at different signs of the input arguments 
and registering the overflow signal, it is sufficient to use one 
input element OR in each of the two high-order digits of the 
adder circuit. This measure simplifies logical structure of the 
adder and optimizes the circuit depth.

The range of numbers of the adder circuit with OR logi-
cal elements in the last digit remains within 0 to 2 1,n −  when 
processing the modified code.

Use of the acyclic model is more advantageous in com-
parison with the counterparts due to the following factors:

– lower cost of development and implementation, since 
the acyclic model ensures a relatively simpler adder structure;

– presence of an optimization criterion: the number of 
computational steps of the acyclic graph indicates the min-
imum sufficient number of operations of unit carry to the 
high-order digit.

Since the acyclic model demonstrates the 8-bit PAA with 
the circuit depth of 8 standard 2-input logic elements (Fig. 9) 
the counterpart of which was not found for the PPA structure, 
the principle of improving computation of digital components 
moves from prefix model to acyclic one. Hence, the prospects 
of further studies of digital circuits may consist in reappraisal 
of the method of parallel expansion of the computing process 
in modern digital devices, reappraisal of addition algorithms 
in the nanometer range, reappraisal of the adder designs im-
plemented with the use of memristors, etc.

8. Conclusions

1. Adders with OR and XOR logical elements provide the 
same range of addition of numbers from 0 to 2 1,n −  which 
was experimentally proved by examples of the adders in  
Fig. 7, 8. However, the adder with OR logical elements in 
the last digit (Fig. 8) is faster (the circuit complexity is  
6 elements) and has a simpler structure (the circuit com-
plexity is 29 elements) compared with the adder circuit with 
XOR logical elements in the last digit (Fig. 7).

Therefore, structure of the adder with OR logical ele-
ments in the last digit gives grounds to assert expediency 
of its application in the processes of synthesis of arithmetic 

devices for processing digital data since the mentioned adder 
circuit is capable of:

– speed increase in comparison with counterparts;
– reduction of power consumption and heat emitted by 

digital devices in integrated circuits.
2. To obtain properties of an algebraic addition opera-

tion, sign digits of the modified codes are compared with 
high-order digits of the adder circuit. Since sign digits of the 
modified codes of two input arguments with different signs 
always have structure 00 and 11 or 11 and 00, carry in two 
high-order digits of the adder circuit can only be transitive. 
Therefore, in order to provide logic of defining sign of the 
sum code at different signs of the input arguments and reg-
istering the overflow signal, it is sufficient to use one input 
element OR in each of two high-order digits of the adder 
circuit. This measure simplifies logical structure of the adder 
and optimizes the circuit depth. The range of numbers of 
the adder circuit with OR logical elements in the last digit 
remains in the range from 0 to 2 1.n − , when processing the 
modified code. 

3. Effectiveness of the acyclic model with XOR logical 
elements in the last digit was demonstrated by examples of 
synthesis of the 8-bit parallel adders borrowed from works of 
other authors for comparison purposes:

– there is no PPA counterpart for the circuit of the acy-
clic 8-bit parallel adder with the circuit depth of 8 elements 
(Fig. 9);

– circuits of the Ling prefix adder (Fig. 12) [23–25], 
Kogge-Stone PPA [3, 8], Knowles [26, 27] PPA (Fig. 13) 
and the circuit of 8-bit parallel acyclic adder with the circuit 
depth of 9 elements (Fig. 11). Power consumption of the 8-bit 
PAA adder (Fig. 11) decreases by 30.68 % compared to the 
Ling adder (Fig. 12) and by 20.45 % compared to the Kog-
ge-Stone PPA and Knowles PPA (Fig. 13).

– circuits of the Sklansky prefix adder (Fig. 15) [26, 28], 
Ladner-Fisher adder (Fig. 16) [4, 26] and the circuit of the 
acyclic 8-bit parallel adder with the circuit depth of 10 ele-
ments (Fig. 14). Power consumption of the 8-bit PAA adder 
(Fig. 14) decreases by 15.58 % compared to the Sklansky 
PPA (Fig. 15) and Ladner-Fisher PPA (Fig. 16);

– circuit of the Han-Carlson prefix adder (Fig. 18) [2, 26] 
and circuit of the acyclic 8-bit parallel adder with the circuit 
depth of 11 elements (Fig. 17). Power consumption of the 
8-bit PAA adder (Fig. 17) decreases by 14.1 % as compared 
to the Han-Carlson PPA adder (Fig. 18);

– circuit of the Brent-Kung prefix adder (Fig. 20) [1, 8] 
and circuit of the acyclic 8-bit parallel adder with the circuit 
depth of 12 elements (Fig. 19). Power consumption of the 
8-bit PAA adder (Fig. 19) decreases by 14.67 % as compared 
to the Brent-Kung PPA adder (Fig. 20).

Proceeding from the examples of the parallel adders, the 
acyclic model gives grounds to assert expediency of its ap-
plication in the processes of synthesis of arithmetic devices 
for digital data processing since these circuits are capable of:

– speed increase;
– decreasing power consumption and heat emission from 

digital devices of integrated circuits.
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