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IIposedenumu docnioxcennamu eécmamnosiiena nepcnekmuea 30i1o-
WeHHA NPOOYKMUBHOCMI 00UUCTIOBATLHUX KOMNOHEHMI8, 30Kpema
KOMOTHAUTHHUX CYMaAmopie, HA 0CHOBL BUKOPUCTAHHA NPUHUUNIE 00MUC-
JIeHHA UUPPoBUX cCuzHANiE AuUKITHHOT MOOei.

3acmocyeants auuUKIMHOT MOOeJli PO3PAX06AHO HA:

— npouec nocaido6Hno20 (011 MOOOWUX PO3PAI6 CXEMU CYMAMOPa)
ma napanenviozo (05 pewtmu po3psaoie) 00UMUCTICHHS CUZHANIE CYMU 1
nepenecenns. 3a60aKu 3a3HAUEHOMY NI0X00Y CMAE MONCIUCUM, Y Ni0-
CYMKY, 3MEHWUMU CKIAOHICMb Anapammoi 4 acmuHy npucmporo ma He
30ibWUMU 2aUOUNY CXeMU;

— 6CMAN0BAEHHA ONMUMATILHO20 HUCTA 0GHUCTIOBATILHUX KPOKIS.

Excnepumenmanvio 0068e0eHO NPUnyuieHus npo me, uy0 4UCIO0
00UUCTIOBANBHUX KPOKIE OPIEHMO6AH020 AUUKIIMHO20 2padda 3 06oMma
noziunumu onepauismu AND i XOR eusnauae onmumanvhe 4ucjio
nepenecens y cxemi n-bit napanenviozo cymamopa Ginapnux xoois.
3okpema, ye niomeeporcyemocs nasenicmio 8-bit napanenvrozo auu-
KJIMHO020 cymamopa 3 2aubunoro cxemu 8 munogux 2-6x0006uUx a0ziv-
HUX ejleMenmie. 36°430K MIjNC HUCIOM 0OUUCTIOBANLHUX KPOKI6 auu-
KATuH020 2paga i vucaom nepenecenv 00uHUUL 00 CMapuLozo po3paoy
CNPUMUHSAE NPOUEC CNiBCMAGJIEHHS CMPYKmMypu cymamopa 3 6iono-
8i0HuUM auuxivnum epadom. Memotro 3a3nanenozo Cni6CMasaeHHs €
8CMAHO0BIIEHHA MIHIMATILHO 00CMAMHBO20 YUCTA NEPEeHeCeHb 0l One-
pauii dodasanns Ginapuux Koodie y cxemi napanenvbHozo cymamopa 3
napaneavHuM cnocoGom nepenecenns.

Buxopucmanns ayuxaiunoi mooeni uzioniuie y nopieHAHHI 3 AHAL0-
2aMu 3a MaKuMu YUHHUKAMU:

— MEHWLO10 8apMiCMI0 PO3POOKU, OCKINLKY AUUKTIMHA MOOETb BU3HA-
uae npocmiwy cmpyKxmypy cymamopa;

— HAAGHICMIO KpUMepio ONMUMI3AUIT — HUCAO 00MUCTIOBATLHUX
KPOKi6 auuxaiuiozo zpada 6xa3ye Ha MIHIMATILHO 00CMAMHE UUCTO
nepenecens 00UHUYL 00 CIMAPULO20 PO3PAY.

3asosaKu ubomy 3a0e3neuyemocsa MONCAUBICMb OMPUMAHHA ONMU-
MANbHUX 3HAYMEHb NOKA3HUKIE CKIAOHOCMI CmpyKkmypu ma 2aubuHu
cxemu cymamopa. Y nopienanni 3 ananozamu 6i0omux cmpyxmyp 8-bit
npeixcruux cymamopis ue 3abesneuye 30ibUENNA NOKAZHUKA AKOCMI
8-bit auuxnivnux cymamopis, nanpuxaad, 3a eHepzOCNONCUBAHHAM,
naowero wuna, y 3auexcrnocmi 6io oopanoi cmpyxmypu, na 14-31 %.

€ nidcmaeu cmeepoicyeamu npo MoONCAUBICMY 30iTbULEHHA NPOOYK -
MUGHOCMI 06UUCTIOBATLHUX KOMNOHEHMIE, 30KpeMa cymamopis Oinap-
HUX K0016, WNAXOM BUKOPUCIAHHS NPUHUUNIE 00MUCTEHHA UUPPOBUX
cuzHaNie auuxaiunoi moodeJi

Kmouosi caoea: auuxniuna modenv dodasanmns 6Ginapnux xooie,

npedixcua modeaw, Ling Adder, Kogge-Stone Adder, Han-Carlson Adder
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1. Introduction

Efficiency of addition of binary codes is greatly depen-
dent on the adder design and the methodology of computa-
tion of the sum and carry signals.

Binary addition is the main arithmetic operation in the
systems of very large-scale integration (VLSI) circuits. Bi-
nary adder is one of the most important elements in proces-
sor chips, ALU, counters, memory addressing methods or as
a part of filters, e. g. DSP grid filter, etc. The adder structure
with series carry is one of the first and most fundamental
structures for performing binary addition operations. Its
speed depends on the number of input operands, hence, sig-

nal delay increases with increase in their number. Parallel
prefix adders (PPA) [1—4] provide better performance com-
pared to the adders with a series carry. Besides, any reduc-
tion in delay directly concerns the increase in bandwidth [5].

In the nanometer range, development of an addition
algorithm with a small area occupied by the chip, low power
consumption and high productivity in its realization is ur-
gent for today.

The mathematical apparatus of directed acyclic graphs
(Fig. 1, 2) makes it possible to unambiguously obtain values
of the sum and carry signals in one stage of digital signal
processing [6], so it is capable of effectively replacement of
the three-stage prefix model of computation.
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Fig. 1. Directed acyclic graph. Model of a computing circuit of
a 4-bit parallel acyclic adder using the parallel carry method
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Fig. 2. Directed acyclic graph. Model of a computing circuit
of a parallel 4-bit acyclic adder with OR logic elements in
the last digit

Arithmetic operations are realized by means of gate
circuits with functional elements in the bases consisting of
the logical algebra functions. Speed of digital devices, their
reliability and power consumption depend on the adder
structure. In this connection, minimization of complexity
and depth of the logic circuits is one of the central and
practically important problems in this theory arising when
digital devices are designed.

Processor evolution is the result of tireless optimization,
so the studies directed, in particular, at improvement of the
following factors are still urgent:

— manufacturing technologies;

— structural implementation;

— speed and power consumption;
— cost of digital devices.

2. Literature review and problem statement

Configuration of computing structures in the field
programmable gate arrays (FPGA) in which parallel-prefix
adders have better performance was presented in [7]. Par-
allel expansion of the computing process is a fundamental
operation in modern digital circuits and is vital in most
computer technologies including ALU units, microchips
and in DSP development. In this regard, the Kogge-Stone
Adder (KSA) study as well as additional studies of Ripple
Carrier Adder, Carry Look Adder and Carry Select Adder
were conducted [7]. It is noted that the Kogge-Stone adder
is the fastest among the parallel-prefix adders, however,
this adder has a high complexity and a huge number of
connecting wires. Study [7] has demonstrated signs of
improvement of the computational process by means of re-
verse logic gates (RLG). Reverse circuits that control data
through bit splitting in contrast to bit drop will soon offer
a physically possible basic approach to continue computing
productivity buildup.

Models of parallel prefix adders developed with the
Tanner tool for 130 nm technology were presented in [9]. In
a nanometer range, it is important to develop addition al-
gorithms ensuring small chip area, low power consumption
and high performance. Parallel prefix adders are suitable
for VLSI realization due to their simple logical structure
and regular connections between the groups of logic ele-
ments. Each prefix can be defined in terms of logical level
of sweeping and connection of tracks. Comparative analy-
sis of 8-bit Kogge-Stone and Han-Carlson parallel adders
has shown that in terms of cost or area and power, the
Han-Carlson adder is better choice between these PPAs.
The Kogge-Stone adder is better in terms of signal lag.
Thus, the Kogge-Stone adder is better for quick addition
than the Han-Carlson adder. However, it is advisable to use
the Han-Carlson structure for better use of space and lower
power consumption. A similar benchmarking can also be
done for 16-, 24- and 32-bit PPAs.

Problems of implementation of the high-speed VLSI style
in nanoscale technologies where working voltages of transis-
tors are potentially subject to changes under the influence of
environment are discussed in [10]. In particular, to augment
performance of the DSP processor, a high-speed Kogge-Stone
parallel prefix was developed with the help of Xilinx ISE. KSA
is a parallel prefix adder, a form of a tracking management
unit. This is the fastest adder used in the digital industry for
high-performance arithmetic circuits. Fast computing process
in the KSA is realized in parallel due to the bigger chip area.
To reduce power supply voltage, the author’s methods were
used. Study [10] has presented a new architectural system for
reducing signal delays and occurrence of computational errors
through testing the already processed signals.

In order to reduce complexity of the Kogge-Stone ad-
der, so-called almost true adder (variable-delay adder) was
proposed in [11]. The variable-delay adder based on the
Han-Carlson parallel-prefix topology uses speculation: the
true arithmetic function is replaced by approximated values.
It is faster and gives correct results for most cases, however,



not always. An error detection net is used. Approximated
adder is complemented by an error detection net which
confirms an error signal when speculation fails. Specula-
tive variable-delay adders reduce average delay compared
to the conventional architectures. A number of speculative
variable-delay adders were synthesized with the help of
Xilinx 14.3 for various lengths of operands using topology
of Han-Carlson and Kogge-Stone. The results obtained in-
dicate that the proposed variable delay in the Han-Carlson
adder is used in high-speed applications.

Despite the fact that the Kogger-Stone and Han-Carlson
adders are more or less effective, they cannot be used for
inputs with higher bit numbers. As it is said, they use more
space when the number of input bits increases. Besides, power
consumption increases. Thereupon, a parallel prefix procedure
applied in development of effective adders in which compu-
tation results are determined by one cycle of a synchronous
pulse was presented in [12]. The overall chip area and overall
delay are reduced without compromising parameters such as
performance and power consumption. The developed adders
use the Quantum-dot Cellular Automata (QCA) techniques
intensively applied for further improvement. Various synchro-
nization circuits are used to observe the adder operation.

Two different approaches to the choice of the adder struc-
ture to achieve a minimum delay and reduce chip area were
considered in [13]. The study method involved comparison
of parameters of the built-in Carry Skip Adder and the Kog-
ge-Stone adder with and without a multiplexer. Removal of
the multiplexer reduces area and power consumption. The
presented adders were developed with the help of Verilog
HDL in VIVADO IDE software environment and imple-
mented on the Zynq board.

A stage circuit as a computation mechanism being a part
of the prefix model of the adder using logical structure of
three-stage computation of the sum and carry signals was
presented in [14]. Note that the acyclic model of computation
of the sum and carry signals (Fig. 1, 2) was meant for the
logical structure of the adder with series-parallel method
of prefix computation and uses the structure of one-stage
computation. Thus, prefix and acyclic models are different
objects as they have different principles of computation and
therefore different capabilities in terms of computing speed,
chip area and power consumption.

Design of the adders implemented with the use of
memristors was presented in [15] where designs based on
memristors for standard adder architectures (ripple carry
adder, carry lookahead adder and parallel prefix adder) were
explained and chip areas and delays compared. It was noted
that the carry lookahead adder has complexity similar to
the parallel prefix adders. It was also shown that the Kog-
ge-Stone design has better (among the parallel prefix adders)
metric in terms of delays and area.

A new methodology for designing fuzzy adders meant
for image processing accelerators was considered in [16]. In
particular, the proposed methodology uses the parallel prefix
architecture and methods for ensuring low power consump-
tion due to fuzzy adders. Two examples for evaluating the
proposed methodology were considered:

1) image blurring filter which uses normal Gaussian
distribution;

2) Sobel’s operator.

The results were demonstrated on the 45 nm technology
where reduction of power consumption varied from 7.7 % to
73.2 % for several image quality levels.

Development and analysis of various types of adders
using CMOS technology and transistor logic (DPL) were
presented in [17]. Computation of a conditional adder was
developed using CMOS, CPL and Dual Transistor Logic
(DTL). 16-bit and 32-bit adders, their speed, area and power
consumption were compared.

A single-bit adder as a high-speed component of multi-bit
adders, matrix multipliers, arithmetic-logical units of micro-
processors and components of problem-directed processors
of data encryption was presented in the patent [18]. The
technical novelty of the patent is an additional introduction
of inverse inputs, outputs and AND-NOT logic elements
with a multiplex connection by outputs. This makes it pos-
sible to maintain high-speed performance when used as a
component of structurally more complex multi-bit matrix
and multistage computing devices in which operations of
adding binary numbers in the number-theoretical basis of
Rademacher are provided.

References [7, 9—18] show that the models of parallel
prefix computation, in particular, the Kogge-Stone and
Han-Carlson architecture are basically output objects for
increasing efficiency of processing signals in digital devices.
These architectures use parallel computations of the digital
signal prefix starting from the low-order bits. This is the
actual path (method) of the prefix. However, such a principle
of computing the sum and carry signals ultimately results in
piling and the digital device complication.

The acyclic model (Fig. 1, 2) is designed for the logic
structure of adders with a series-parallel method of digital
signal computation. The series carry method is the most
fundamental in terms of minimum costs of the hardware
part of digital components. Thus, prefix and acyclic mod-
els are different objects as they have different principles of
computation and therefore different capabilities in terms of
performance, chip area and power consumption.

Therefore, there are reasons to believe that the parallel
prefix structure, in particular, the model of the Kogge-Stone
and Han-Carlson adders is not optimal enough which ne-
cessitates studies with the acyclic model of digital signal
processing.

3. The aim and objectives of the study

The study objective is to synthesize optimal structures of
4- and 8-bit parallel binary adders with OR and XOR logic
elements in the last digit using the acyclic model of digital
signal processing. This will make it possible to increase
speed, reduce power consumed by the adder compared with
counterparts and extend the principle of synthesis to a larger
bit size of acyclic adders utilizing the series-parallel carry
method.

To achieve this objective, the following tasks have to be
addressed:

— set the range of numbers of acyclic adders with OR and
XOR logical elements in the last digit, compare their speed
and power consumption;

— evaluate speed and power consumption of the acyclic
adder structure with OR logical element in the last digit for
processing modified codes of input arguments;

— conduct comparative analysis of speed and complex-
ity of the 8-bit acyclic adder structures with XOR logical
elements in the last digit and the 8-bit adders of the prefix
model of computation of the sum and carry signals.



4. The scale of measurement of the combinational circuit
of the adder

Combinational circuit of the adder as a theoretical object
will be measured with the help of parameters of depth and
complexity of the device logical structure by recounting the
number of corresponding logical elements. The following
measurement units are taken: logical elements 2-In AND,
2-In OR, Inventor: one logical element; 2-In XOR: four
elements (Fig. 3, a). To establish complexity of the adder
circuit, assume that the conventional graphical designation
of 2-In XOR in Fig. 3, b, also consists of four elements.

T s

Fig. 3. Logical element 2-In XOR: a variant of the open
structure of 2-In XOR (a); conditional graphic designation of
2-In XOR (b)

Circuit complexity is the number of functional ele-
ments in the circuit. This notion is very close to the notion
of bit complexity of computation and the notion of the
circuit proper is close to the notion of a program without
branching.

The circuit depth is the number of functional elements
in the longest chain that connects inputs of the circuit with
its outputs. Assume that the signal at the output of the ele-
ment does not appear immediately after the signal injection
to the inputs but with some delay, then the circuit depth
determines overall delay. For the circuit of adding n-bit
numbers, the circuit depth is proportional to the number
of bits, n.

Speed of the combinational circuit is assessed by the max-
imum delay of the signal when it passes from the input of the
circuit to its output, i. e. it is determined by the time interval
from the moment of arriving of input signals to the moment
of detecting corresponding values at the output. The signal
delay is proportional to the number of elements through
which the signal passes from the input to the output of the
circuit. Therefore, speed of the circuit is characterized by the
value 7 ¢ where ¢ is the time of signal delay in one element.
The value of 7 is determined by the number of levels of the
combinational circuit (CC) which is calculated as follows.
Zero level is assigned to the CC inputs. The logical elements
related only to the inputs of the circuit belong to the first
level. An element refers to the level £ if it is associated with
elements of levels k-1, k-2, etc. The maximum level of ele-
ments, 7, is determined by the number of CC levels which is
called the circuit rank [19]. An example of determining the
rank 7 of the circuit is shown in Fig. 4.
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The method of computation of the circuit rank is, in
fact, a technology for unambiguous establishment of the
circuit depth.

The circuit rank computation is analogous to the steps of
computation of the sum and carry signals in the combinational
circuit. Taking into account the computation steps, speed of
the circuit is characterized by the value kt where ¢ is the time of
signal delay in one element. The value of £ is defined as follows.
A zero step is assigned to the CC inputs. Logical elements relat-
ed only to the circuit inputs relate to the first step. An element
refers to step kif it is related to the elements of steps &-1, &-2, etc.
The maximum step % is determined by the number of computa-
tion steps in the circuit. Each step is numbered. An example of
computational steps of the circuit is shown in Fig. 5.
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Fig. 5. Determination of computational steps of the circuit

The signal delay time for each of the elements 2-In AND,
2-In OR, Inventor is taken the same. Fig. 3 presents one
of options of the open structure of the logical element 2-In
XOR which consists of four logical elements including In-
ventor. Series connection of the logical elements 2-In AND,
Inventor, 2-In AND forms the longest chain of the 2-In XOR
structure. Therefore, the 2-In XOR depth is three compu-
tational steps (three logical elements). To establish depth
of the adder circuit, take depth of three computation steps
(three logical elements) for the open structure of the 2-In
XOR (Fig. 3, a) as well as for conditional graphical designa-
tion of the 2-In XOR (Fig. 3, b).

The adder circuit is optimized either at the level of logical
elements (for example, using the fastest elements in the car-
ry chain, in particular, logical element AND-OR-NO has a
smaller delay time compared to the logical element AND-OR
if the latter is realized by the structure of AND-OR-NO-NO)
or at the circuit level (for example, using structural methods
for accelerating passage of the carry signal). The method of
minimizing the logic function is a procedure for optimizing
the circuit of computer logic, however, in the general case, for
the majority of Boolean functions with n variables, minimal
DNFs have size exponential from 7. Quite often, the task of
optimizing the logic circuit for the entire time of computer
existence was solved empirically. At present, circuit optimi-
zation is solved to some extent by software, for example, the
Logic Friday program optimizes circuits in several bases from
the range of available elements [20].

5. The results of application of the acyclic model to reduce
complexity and boost speed of the binary code adders

5. 1. The number range of the acyclic model

The result of the adding operation with bits ¢; and b; in
the i-th bit of the binary code is expressed by two parame-
ters: ¢; is the result of operation of adding bits of the current
digit of the binary code and the result of p;+1 by carrying a
unit to the high-order digit. The results of the digit-by-digit
execution of operations ¢; and carry pj+ are formed accord-
ing to the following rules:



at a,+b,<q;

)

a;+b,
C. =
" la;+b—q, at a;+b,>q.

3 0, at a,+b,<g;
Pin= 1, at a,+b,>q.

For the acyclic model in Fig. 1 (with XOR logical ele-
ments in the last digit) rules (1) should be executed. This
provides a range of numbers in the binary code for n-bit grid
in the range from 0 to 2" —1. For example, for an 8-bit grid,
the number range in the binary code of the acyclic model
(Fig. 1) will be from 0 to 255.

Note that the number of all n-bit pairs of N arguments
that can take part in the addition operation is

N=2"x2"=2""

For example, the number of pairs N=256 for 4-bit argu-
ments. Of these, 136 pairs provide a range of adding numbers
in the binary code for a 4-bit grid in the range from 0 to
2% —1. The rest of the pairs will give overflow of the digital
grid of the adder circuit (Fig. 6).
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Fig. 6. The 4-bit acyclic adder with XOR elements in
the last digit

Logical equations of the 4-bit acyclic adder in Fig. 6 are
as follows:

Sy=a, bo + aob();

S, =a,bya.b, +a,a,b, +a,a,b +a,byab, +bya,b, +b,ab;

+a,b,b,a,b, +ayb,a,a,b, + ab,ba,b, + a,bya,a,b, +

+a,ba,b,+a,b a,b, +ab a,b,+aba,b,;

S, =a,b,b,a,b, +a,a,b,a,b, +a,b a,a,b, +a,a,a,a,b, +

+a,b,b,a.b, + aya,b,ab, + a,ba,ab, + a,a,a,a,b, +

+b,b, b2a3E+ bya, b2a3E+ byb, a2a3b73+ b,a, a2a3b:+

+b,b,b,a,b, + b,a,b,a,b, + b,b,a,a,b, + bya,a,a,b, +

+a,b,b,a,b, +a,b,a,a,b, +a,bb,ab, +a,ba,ab, +
+a0b0b1b2ﬁ+ a0b0a1b2@+ a0b0b1a2@+ aoboala2@+
+a,b,b,b,a.b, + ayb,a,b,a.b, + ab,ba,a.b, +a,bya,a,a,b, +
+a,bb,a,b, +aba,a,b, +abb,ab, +aba,ab, +

+a2 bza:s b!i + a2 b2 aiibii + azbz aS b(i + aZbZaiibB;

P =a,b bbb, + a,bya,b,b, + a,b,ba,b, + a,b,a,a,b, +
+a,b,b,ba, + a,byab,a, + ayb,ba,a, + a,byaa.a, +
+a,bb,b, +a,ba,b, +abb,a, +aba,a, +

+a,b,b, + a,b,a, + ab,.

For the acyclic model in Fig. 2 (with logical OR elements
in the last digit), rules (1) are not executed in the last digit
of adding binary codes. However, when the rule (1) is not
executed in the last digit, logic of the acyclic adder (Fig. 7)
gives overflow of the grid of the adder circuit. Thus, non-ex-
ecution of rule (1) in the last digit of the acyclic model of the
adder is registered by the signal of overflow of the digital
grid. In this case, 136 pairs of 4-bit arguments provide a
range of adding numbers of the acyclic adder with the OR
logical elements in the last digit in the range from 0 to 241,
and in a general case, from 0 to 2" —1. The rest of the pairs
will give overflow in the binary code for the n-bit digital grid
of the adder circuit.
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Fig. 7. 4-bit acyclic adder with OR elements in
the last digit

Logical equations of the 4-bit acyclic adder in Fig. 7 are
as follows:

S, =a,b, +ayby;

S, =a,b,a,b, +aya,b, +a,a,b, +bya,b, +byab, +a,bya,b;;

S, =a,ba,b, +a,a,a,b, + a,ba,b, + a,a,a,b+b,ba,b, +
b,a,a,b,+byb,a,b, + bya,a,b, + a,b,b,a,b, +

+a,bya,a,b, + a,byb,a,b, + a,b,a,a,b, + a,b,a,b, + aba,b,;

S, =+a,b,bb, + ayb,a,b,+a,bba, +
+a,bya,a, +abb,+aba, +a,b, +a, +b,;

P =a,b bbb, + a,bya,b,b, + a,b,ba,b, + ab,a,a,b, +
+a,b,b,b,a, + a,bya.b,a, + ab,ba,a, + a,bya.a.a, +
+a,b,b,b, +a,ba,b, +abb,a, +

+a,ba,a, +a,b,b, + a,b,a, + a,b,.

It can be seen from Table 1 that both 4-bit adders
with OR and XOR logical elements provide the same
range of number addition in the range from 0 to 2%-1.
However, the adder with OR logical elements in the last
digit is faster (the circuit depth of 6 elements) and has a
simpler structure (the circuit complexity is 29 elements)
compared to the adder circuit with XOR logical elements
in the last digit.



Table 1

Comparative table of parameters of the 4-bit acyclic adder
with OR and XOR elements in the last digit

4-bit adder with | 4-bit adder with
Parameters OR logical ele- XOR logical
; ments in the last elements in the
digit last digit
Circuit complexity 29 33
Circuit depth 6 7
Range of digit adding 24 _4 24 _4
Number of all pairs of
4-bit arguments which
can take part in the 256 256
adding operation
Number of pairs of 4-bit
arguments ensuring the
adder operation with no 136 136
overfill
Percentage of pairs of
4-bit arguments ensur- o o
ing the adder operation 38313 % 53.13 %
with no overfill

5. 2. Processing of modified codes by acyclic adders
with OR elements in sign digits of the input arguments

As an example of using the acyclic model of the adder
with OR logical elements in the last digit, arithmetic opera-
tions with modified codes at different signs of numbers can
be considered.

Two digits are used in the modified codes for assigning
sign to the number (Table 2).

Table 2
Coding of the number sign in modified codes
Bits of the sign digits Comments
00 Sign «+»
11 Sign «—»
01 Positive overflow digit
10 Negative overflow digit

Modified codes have turned out to be convenient (in
terms of constructing arithmetical-logical transducers (ALT)
to detect overflow of the digital grid. If the sign digits of the
result take the value of 00 or 11, then there was no overflow of
the digital grid and if 01 or 10, overflow took place.

In algebraic addition, sign digits are considered as the
high-order digits of the number. If there is a carry from a
high-order digit during the addition operation, the carry
bit is added to the low-order digit of the sum in the case of
applying a modified inverse code or rejected when applying
a modified complement code.

The shortcoming inherent in the reverse code passes
into the modified inverse code. The modified direct code
retains all shortcomings of the direct code [21]. Therefore,
we will focus on considering only the modified complement
code (MCCQC).

The MCC is obtained from the complement code by
simple duplication of the sign digit of the number. Moreover,
numbers can be stored in the computer memory in the com-
plement code and converted into the modified code when
they are forwarded to an executing device.

Performance of arithmetic operations in MCC looks as
follows.

Example 1. Add the numbers given in MCC: A=0010101
(2119) and B=0010010 (18,0). A>0, B>0.

+ 0010101
0010010

0100111

Positive overflow takes place.
Example 2. Add numbers given in MCC: A=0010101 (21¢)
and B=0001010 (1019). A>0, B>0.

+ 0010101
0001010

0011111

Positive sum was obtained in MCC.
Example 3. Add the numbers given in the MCC: A=
=0010101 (2159) and B=1110011 (~1349). A>0, B<0. A>|B].

. 0010101
1110011

0001000

Positive sum was obtained in MCC.
Example 4. Add numbers given in MCC: A=0010101 (211¢)
and B=1100110 (~26,9). A>0, B<0 A<|B].

4 0010101
1100110

1111011

Negative sum was obtained in MCC.
Example 5. Add numbers given in MCC: A=1101011 (-21¢)
and B=1101110 (-18p). A<0, B<0.

4 1101011
1101110

1011001

Negative overflow takes place.
Example 6. Add numbers given in the MCC: A=1101011
(~21;0) and B=1110110 (-1049). A<0, B<0.

1101011
1110110
1100001

+

Negative sum was obtained in MCC.

Example 7. Add fractional numbers 1.010100 and 1.110000
given in the supplement code using the MCC.

Solution:

x = 1.010100 (comp.) -> 11.010100 (mod. comp.)
y = 1.110000 (comp.) -> 11.110000 (mod. comp.)

s=x+y=11.000100 (mod. comp.) (discard carry from the
high-order digit)
= 1.000100 (comp.)

Thus, s =1.000100 (comp.) =-(0.111011 + 1 low-order digit) =
=-0.111100 = 1.111100 (direct).



Check:
s=1.000100 (comp.) = -(0.111011 + 1 low-order digit) =
=-0.111100 = -15/16

x=1.010100 (comp.) = -(0.101011 + 1 low-order digit) =
=-0.101100 = -11/16

y =1.110000 (comp.) = -(0.001111 + 1 low-order digit) =
=-0.010000 =-4/16

-11/16 + (-4/16) = -15/16 — the result of addition is
correct.

Modified codes are used to obtain algebraic addition
which, in the end, greatly simplifies the hardware part
of digital components. Algebraic addition in the adder’s
circuit is provided by comparing the sign digits of the mod-
ified code with the high-order digits of the device circuit.
Since the sign digits of the modified codes of the two input
arguments with different signs always have structure 00
and 11 or 11 and 00, carry in the two high-order digits of
the adder circuit can only be transitive. In another way,
structure 00 and 11 or 11 and 00 of two sign digits creates
condition for a transitive carry and does not generate its
own carry signal.

The condition for transitive carry is determined by the
logical function (2).

pi=a;vb or p;=a,+b. (2)

If p,=1, then transitive carry to the next digits is
possible, in a case when p, =0, transitive carry to the next
digits is impossible. Arguments ;=0 and b,=1 or a,=1
and b, =0 of the logical function (2) always give the value of
p; =1. Therefore, to provide logic of setting sign of the sum
code at different signs of the input arguments and fixation of
the overflow signal, it is sufficient to use one input element
OR (Fig. 8) in each of the two high-order digits of the adder
circuit. It simplifies logical structure of the adder and opti-
mizes the circuit depth.

a0
"
al
b1

a2
b2—1
a3—
b3 |
Fig. 8. The 4-bit acyclic adder with OR elements at the inputs
of the last two digits to add 2-bit numbers with different
signs in the modified code
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Logical equations of the 4-bit acyclic adder in Fig. 8 are
as follows:

S, =a,b, +a,by;
Sl = a(]a1 bl + a()b()a1b1 + a()b() a1 b1 + a(] a1b1 + b()al bl + b() alb1;

S, =aybya,a,b, +abba,b, +aba,b,+
+a,bb, +ayab, +aba,+a,a,a,+b,ab, +

+b,a.a, +a,bb, +a,ba,+b,bb,+b,ba,;

S, =+a,bya,a,by +abyba,b, +ab a,b, +
+a1 b1b3 + a‘) a1b3 + al b1a3 + a() a1a3 + b() albfi +

+Mas + @b.% + @as + ﬁbs + @%

The range of numbers of the adder circuit with logical
elements OR in the last digit when processing the modified
code remains within 0 to 2" —1, and for the 2-bit grid of the
adder shown in Fig. 8, the range of numbers in the modified
code is from 0 to 3.

Table 3

Codes providing representation of a number sign for
arange from 0 to 3

Codes for positive numbers
Decimal Direct Inverse | Complement MCC
0 0.00 0.00 0.00 00.00
+1 0.01 0.01 0.01 00.01
+2 0.10 0.10 0.10 00.10
+3 0.11 0.11 0.11 00.11
Codes for negative numbers
Decimal Direct Inverse | Complement MCC
-1 1.01 1.10 1.1 11.11
-2 1.10 1.01 1.10 11.10
-3 1.11 1.00 1.01 11.01
Table 4

Incomplete table of validity of the adder in Fig. 8 for adding
codes with different signs in MCC

No.| Sign | ¢ | a, | Sign b, | b, Sign s | So

T R . O | L . O | R . O |
olololoflololololo]olo]o
+ 019 - 149 - 1yg

2 ..........................................................................
ofololol e tlol 1] 1]o]1

P S O _ . B 2o | B 20|
oJoloJolt ]t tJolt[t]1]o
+ 019 - 310 - 310

4 ..........................................................................
oJoloo e a1

R S LY I LY R - O |
ofolol ettt [tlo]olo]o

P L LY B 2o | B o |
oJolol it et ot 11T

P L LY . B 3o | B 20|
oJolol i tlol a1t ]t]1]o

g fi ] 2o | B . LY R o |
ofolt ottt o]olo]t1

g fd ] 2o | B 2o | R O |
ofol 1ottt lolo]olo]o

10 bt 2o | B 3o | B - o |
ololol it lol et 1]1]1

5. 3. The 8-bit acyclic adder with the circuit depth of
8 elements

In order to provide same conditions of comparison, we
shall present circuits of prefix (PPA) and acyclic (PAA)
8-bit adders with XOR logical elements in the last digit.

Fig. 9 presents an acyclic 8-bit PAA with XOR logical
elements in the last digit and the circuit depth of 8 standard
2-input elements. Given that XOR consists of four elements
(Fig. 3, a), the circuit complexity (Fig. 9) is 95 2-input elements.
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Fig. 9. Acyclic 8-bit PAA with circuit depth of 8 standard
2-input elements

Circuit of the acyclic adder in Fig. 9 confirms validity
of assertion that the number of computational steps of an
directed acyclic graph determines optimal number of car-
ry operations in the circuit of an n-bit parallel adder [22].
The specified ratio is executed only for 4- and 8-bit adders.
With the increase in bit size of the acyclic adder (16-, 32-,
64-bit ...), the number of computational steps will be deter-
mined by the logarithmic law (Fig. 10).
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L e o i 1
9T % | 16 | 32 | e | 128 | 25 | 512 1024 | 2048
——PAA 8 10 12 14 16 | 18 20 22 | 24

Bit size (n)

Fig. 10. Dynamics of increase in depth of
the acyclic adder (PAA) circuit

Dynamics of growth of the PAA circuit depth is deter-
mined by logarithmic dependence: doubling of the adder bit
size, n, increases the circuit depth by a constant value: two
logical elements.

5. 4. The 8-bit acyclic adder with the circuit depth of
9 elements

Since Fig. 9 demonstrates the 8-bit PAA with XOR
logical elements in the last digit and the circuit depth of
8 standard 2-input elements, then to construct an 8-bit PAA
with the circuit depth of 9 standard 2-input elements, it is
enough to use serial (for the low-order digits of the device
circuit) and a not complex method for parallel computation
of the sum and carry signals (for the rest of digits). The

series carry method enables reduction of complexity of the
hardware part of the device and does not increase the circuit
depth in the acyclic model.

Fig. 11 presents an acyclic 8-bit PAA with XOR logical
elements in the last digit and the circuit depth of 9 standard
2-input elements. Complexity of the circuit in Fig. 11 is 88
2-entry elements.
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Fig. 11. Acyclic 8-bit PAA with circuit depth of 9 standard
2-input elements

The 8-bit Ling prefix adder [23-25] with XOR logical
elements in the last digit and the circuit depth of 9 standard
2-input logic elements, with the adder logical structure
updated to reduce complexity of the circuit is presented in
Fig. 12. As XOR consists of four elements (Fig. 3, @), com-
plexity of the circuit is 115 2-input elements.

Computational process of the 8-bit Ling PPA (Fig. 12)
uses the following logical operations: 7 XOR, 44 AND,
28 OR, 15 Inventor. The 8-bit PAA (Fig. 11) uses 5 XOR,
34 AND, 25 OR, 9 Inventor. Given that logic of the XOR
element uses four logical elements including Inventor, one
can estimate indicator S of the 8-bit PAA adder operation
quality (for example, power consumption), Fig. 11, compared
to the adder shown in Fig. 12:

s=T 1154 5065 30,68 %,
T, 88

where Ti, T» is the number of 2-input logic elements in the
8-bit Ling PPA (Fig. 12) and the 8-bit PAA (Fig. 11), re-
spectively.

The prefix 8-bit Kogge-Stone PPA [3, 8] and the 8-bit
Knowles PPA [26, 27] with XOR logic elements in the last
digit are shown in Fig. 13. Given the depth of XOR is three
elements and complexity four elements, depth of the 8-bit
Kogge-Stone PPA and the 8-bit Knowles PPA (Fig. 13) will
be 9 standard 2-input logical elements and the circuit com-
plexity of 106 elements.
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Fig. 13. The 8-bit Kogge-Stone prefix PPA [3, 8] and
the 8-bit Knowles PPA [26, 27]

Computational process of the 8-bit Kogge-Stone PPA
and the 8-bit Knowles PPA (Fig. 13) includes the following
logical operations: 7 XOR, 44 AND, 26 OR, 8 Inventor. The

8-bit PAA adder (Fig. 11) uses 5 XOR, 34 AND, 25 OR,
9 Inventor. Given that logic of the XOR element uses four
logical elements, quality indicator S (for example, in terms of
power consumption) of the 8-bit PAA (Fig. 11) compared to
the adder shown in Fig. 13 is as follows:

g —%: 1,2045=20,45 %,

T,

where Tj, T, is the number of 2-input logic elements of
the 8-bit Kogge-Stone PPA and the 8-bit Knowles PPA
(Fig. 13) and the 8-bit PAA (Fig. 11), respectively.

5. 5. The 8-bit acyclic adder with circuit depth of
10 elements

Fig. 14 represent the 8-bit acyclic PAA with XOR
logical elements in the last digit and the circuit depth of
10 standard 2-input elements. The circuit complexity is
77 clements (Fig. 14).

o
)}
| ([

Fig. 14. The 8-bit acyclic PAA with the circuit depth of 10
standard 2-input elements

The 8-bit Sklansky prefix PPA [26, 28] with XOR
logical elements in the last digit is presented in Fig. 15.
Given the depth of XOR is three elements and complexity
four elements, depth of the 8-bit Sklansky PPA (Fig. 15) is
10 standard 2-input logical elements, the circuit complexity
of 89 elements.

Computational process of the 8-bit Sklansky PPA ad-
der (Fig. 15) uses the following logical operations: 7 XOR,
33 AND, 20 OR, 8 Inventor. Computational process of the
8-bit PAA adder (Fig. 14) uses 2 XOR, 33 AND, 27 OR,
9 Inventor. The indicator S of the 8-bit PAA adder (Fig. 14)
operation quality, for example, in terms of power consump-
tion compared to the adder shown in Fig. 15 is as follows:

=L 894 i558-1558 %,
77

2

where Ti, T, is the number of 2-input logic elements of the
8-bit Sklansky PPA (Fig. 15) and the 8-bit PAA (Fig. 14),
respectively.
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Fig. 15. The 8-bit Sklansky prefix PPA [26, 28]

The 8-bit Ladner-Fisher prefix PPA [4, 26] with XOR
logical elements in the last digit is presented in Fig. 16. Giv-
en the XOR depth of three elements and complexity of four
elements, depth of the 8-bit Ladner-Fisher PPA (Fig. 16) will
be 10 standard 2-input logical elements, circuit complexity
of 89 elements.
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Fig. 16. The 8-bit Ladner-Fisher prefix PPA [4, 26]

Computational process of the 8-bit Ladner-Fisher PPA
adder (Fig. 16) uses the following logical operations: 7 XOR,
33 AND, 20 OR, 8 Inventor, 9 Inventor. The 8-bit PAA
(Fig. 14) uses 2 XOR, 33 AND, 27 OR, 9 Inventor. Indicator
S of the 8-bit PAA adder operation quality (for example, in
terms of power consumption), Fig. 14, compared to the adder
shown in Fig. 16 is as follows:

=L 894 i558-1558 %,
77

2

where Ti, Ty is the number of 2-input logic elements of the 8-bit
Ladner-Fisher PPA (Fig. 16) and the 8-bit PAA (Fig. 14),
respectively.

5. 6. The 8-bit acyclic adder with the circuit depth of
11 elements

Fig. 17 represents the 8-bit acyclic PAA with XOR
logical elements in the last digit and the circuit depth of
11 standard 2-input elements. Complexity of the circuit in
Fig. 17 is 78 elements.

a0

bs ﬂg [oH& =15
&

Steps

Fig. 17. The 8-bit acyclic PAA with the circuit depth of
11 standard 2-input elements

The 8-bit Han-Carlson prefix PPA [2, 26] with XOR logical
elements in the last digit is presented in Fig. 18. Given the XOR
depth is three elements and complexity four elements, depth
of the 8-bit Han-Carlson PPA (Fig. 18) will be 11 standard
2-input logical elements, the circuit complexity is 89 elements.

Computational process of the 8-bit Han-Carlson PPA
adder (Fig. 18) uses the following logical operations: 7 XOR,
33 AND, 20 OR, 8 Inventor. The 8-bit PAA adder (Fig. 17)
uses 3 XOR, 32 AND, 25 OR, 9 Inventor. The indicator .S
of the 8-bit PAA adder operation quality (for example, in
terms of power consumption), Fig. 17, compared to the adder
shown in Fig. 18 is as follows:

s=h_89
T, 78

2

=1141=14,1 %,

where Ti, T5 is the number of 2-input logic elements in the
8-bit Han-Carlson PPA (Fig. 18) and the 8-bit PAA (Fig. 17),
respectively.
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Fig. 18. The 8-bit Han-Carlson prefix PPA [2, 26]

5. 7. The 8-bit acyclic adder with the circuit depth of
12 elements

Fig. 19 shows the 8-bit acyclic PAA with XOR logical
elements in the last digit and the circuit depth of 12 stan-
dard 2-input elements. Complexity of the circuit in Fig. 19 is
75 elements.

Fig. 19. The 8-bit acyclic PAA with the circuit depth of
12 standard 2-input elements

The 8-bit Brent-Kung prefix PPA [1, 8] with XOR logical
elements in the last digit is presented in Fig. 20. Given the
XOR depth is three elements, and complexity four elements,
depth of the 8-bit Brent-Kung PPA (Fig. 20) will consist
of 12 standard 2-input logical elements, complexity of the
circuit is 86 elements.

Computational process of the 8-bit Brent-Kung PPA
(Fig. 20) uses the following logical operations: 7 XOR, 31
AND, 19 OR, 8 Inventor. The 8-bit PAA (Fig. 19) uses

2 XOR, 32 AND, 26 OR, 9 Inventor. The indicator .S (for
example, in terms of power consumption) of the 8-bit PAA
adder operation quality (Fig. 19) compared to the adder
shown in Fig. 20 is as follows:

S=£=§=L1467=14,67 %,
T, 75

2

where Ti, T is the number of 2-input logic elements of the
8-bit Brent-Kung PPA (Fig. 20) and the 8-bit PAA (Fig. 19),
respectively.
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Fig. 20. The 8-bit Brent-Kung prefix PPA [1, 8]

5. 8. Comparative analysis of the 8-bit acyclic and
prefix adders of binary codes

Parameters of synthesized circuits of the 8-bit acyclic
and prefix adders are presented in comparative Table 5.

Table 5

Comparative table of parameters of the 8-bit acyclic and
prefix adders

Parallel adder of binary codes with Circuit Circuit

parallel carry depth complexity
PAA Fig. 9 8 95
PAA Fig. 11 9 88
Ling Adder Fig. 12 9 115
Kogge-Stone and Knowles |  Fig. 13 9 106
PAA Fig. 14 10 77
Sklansky Fig. 15 10 89
Ladner-Fisher Fig. 16 10 89
PAA Fig. 17 11 78
Han-Carlson Fig. 18 1 89
PAA Fig. 19 12 75
Brent-Kung Fig. 20 12 86




It is seen from Table 5 that complexity of circuits of
acyclic adders is smaller with the chosen value of the cir-
cuit depth.

Quality indicators of acyclic adders in comparison with
prefix adders in terms of power consumption are presented
in Table 6.

Table 6

Indicators of quality of acyclic adders in terms of power
consumption

Parallel adder of binary codes with Qual%ty indicator in
arallel carry terms of power consump-
P tion by the acyclic adder
. PPA unavailable for
PAA Fig. 9 quality assessment PAA
PAA Fig. 11
30.68 %
Ling Adder Fig. 12 v
PAA Fig. 11
' 20.45 %
Kogge-Stone and Knowles | Fig. 13
PAA Fig. 14
15.58 %
Sklansky Fig. 15 &
PAA Fig. 14
15.58 %
Ladner-Fisher Fig. 16 &
PAA Fig.
ig. 17 14.1 %
Han-Carlson Fig. 18
PAA Fig. 19
& 14.67 %
Brent-Kung Fig. 20

Fig. 21 shows dynamics of the circuit depth growth for
five acyclic adders with the XOR logic elements in the last
digit (Fig. 9, 11, 14, 17, 19) with an increase in the circuit
bit size.
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Fig. 21. Dynamics of the circuit depth growth in
acyclic adders

Dynamics of growth of the PAA circuit depth is deter-
mined by the logarithmic dependence: doubling of the adder
bit size, n, increases the circuit depth by a constant value:
two logic elements.

6. Discussion of the results obtained in application of
the acyclic signal processing model for synthesis of
binary adders

Main drawbacks of the prefix model of computation of
the sum and carry signals are as follows:

— organization of the process of parallel prefix compu-
tation involves computation beginning from the low-order
digits of the adder circuit (this is the actual path (method) of
the prefix) which results in excessive piling and complication
of the hardware part of the device;

—the three-stage organization of computation of the
prefix model signals in conditions of tireless optimization
loses the prospect of continuing build-up of productivity of
the digital signal processing. For example, speed of the 8-bit
Ling prefix adder [23—-25] (Fig. 12), Kogge-Stone prefix ad-
der [3, 8] and Knowles prefix adder [26, 27] (Fig. 13) accord-
ing to the chosen scale of the combinational circuit of the
adder (as discussed in 4.1) is determined by the depth of the
circuit of 9 standard 2-input logic elements. No information
on further 8-bit PPA depth decrease was found.

In turn, application of the acyclic model is designed for:

—the process of series (for the low-order digits of the
adder circuit) and parallel (for the rest of the digits) compu-
tation of the sum and carry signals which, in the end, reduces
complexity of the hardware part of the device and does not
increase the circuit depth;

— setting of an optimal number of computation steps.

The number of computation steps of an directed acyclic
graph with two logical operations, AND and XOR, deter-
mines optimal carry operation number in the circuit of the
n-bit parallel adder of binary codes. This indicates that the
computational steps of the directed acyclic graph and carry
of a unit to the high-order digit of the adder represent one
object. Thus, the eight computational steps of an directed
acyclic graph determine eight carry operations in the 8-bit
PAA circuit. The mentioned ratio is executed only for 4- and
8-bit adders. With an increase in bit size of the acyclic adder
(16-, 32-, 64-bit ...), the number of computational steps is de-
termined by logarithmic law (Fig. 10). Beside the mentioned
PAA, the Ling Adder, as compared to KSA, Knowles Adder,
has less circuit complexity and length of the connecting
wires (paths).

Thus, the use of the acyclic model, in comparison with
the prefix model, for synthesizing circuits of adders of binary
codes makes it possible to increase computing productivity
by means of digital components. In particular, the series-par-
allel principle of computation of the acyclic model provides
synthesis of a combinational 8-bit parallel adder with a cir-
cuit depth of 8 standard 2-input logic elements (Fig. 9), the
counterpart of which is absent in the case of synthesis of the
circuit using a prefix model.

Relationship between the number of computational steps
of the directed acyclic graph and the number of operations of
unit carry to the high-order digit causes the process of com-
parison of the adder structure with the respective directed
acyclic graph. The purpose of this comparison is to establish
the minimum sufficient number of carry operations for the
operation of adding binary codes in the circuit of the parallel
adder utilizing the parallel carry method. In the case when
the synthesized adder received more carries compared to the
number of computational steps of a corresponding directed
acyclic graph, such an adder should be considered nonopti-
mal in terms of the number of computational operations.

Expediency of using structure of the adder with OR log-
ical elements in the last digit consists in the fact that logic
of the acyclic adder (Fig. 7) in case of non-compliance with
rule (1) in the last digit provides overflow of the digital grid
of the adder circuit. Thus, non-compliance with rule (1) in
the last digit of the acyclic model of the adder is registered by



the signal of overflow of the digital grid, and, consequently,
the sum code will not be written into computer memory.
In this case, structure of the acyclic adder with OR logical
elements in the last digit provides a range of adding binary
codes in the range from 0 to 2" —1.

A promising point for application of the structure of the
acyclic adder with OR logical elements in the last digit is
arithmetic operations with modified codes having different
number signs. Modified codes are used to obtain properties
of algebraic addition which is provided in the adder circuit
by comparing the sign digits of the modified code with the
high-order digits of the adder circuit. Since sign digits of the
modified codes of the two input arguments with different
signs always have structure 00 and 11 or 11 and 00, carry
in the two high-order digits of the adder circuit can only be
transitive. Therefore, in order to provide the logic of setting
sign of the sum code at different signs of the input arguments
and registering the overflow signal, it is sufficient to use one
input element OR in each of the two high-order digits of the
adder circuit. This measure simplifies logical structure of the
adder and optimizes the circuit depth.

The range of numbers of the adder circuit with OR logi-
cal elements in the last digit remains within 0 to 2" —1, when
processing the modified code.

Use of the acyclic model is more advantageous in com-
parison with the counterparts due to the following factors:

—lower cost of development and implementation, since
the acyclic model ensures a relatively simpler adder structure;

— presence of an optimization criterion: the number of
computational steps of the acyclic graph indicates the min-
imum sufficient number of operations of unit carry to the
high-order digit.

Since the acyclic model demonstrates the 8-bit PAA with
the circuit depth of 8 standard 2-input logic elements (Fig. 9)
the counterpart of which was not found for the PPA structure,
the principle of improving computation of digital components
moves from prefix model to acyclic one. Hence, the prospects
of further studies of digital circuits may consist in reappraisal
of the method of parallel expansion of the computing process
in modern digital devices, reappraisal of addition algorithms
in the nanometer range, reappraisal of the adder designs im-
plemented with the use of memristors, etc.

8. Conclusions

1. Adders with OR and XOR logical elements provide the
same range of addition of numbers from 0 to 2" -1, which
was experimentally proved by examples of the adders in
Fig. 7, 8. However, the adder with OR logical elements in
the last digit (Fig. 8) is faster (the circuit complexity is
6 elements) and has a simpler structure (the circuit com-
plexity is 29 elements) compared with the adder circuit with
XOR logical elements in the last digit (Fig. 7).

Therefore, structure of the adder with OR logical ele-
ments in the last digit gives grounds to assert expediency
of its application in the processes of synthesis of arithmetic

devices for processing digital data since the mentioned adder
circuit is capable of:

— speed increase in comparison with counterparts;

— reduction of power consumption and heat emitted by
digital devices in integrated circuits.

2. To obtain properties of an algebraic addition opera-
tion, sign digits of the modified codes are compared with
high-order digits of the adder circuit. Since sign digits of the
modified codes of two input arguments with different signs
always have structure 00 and 11 or 11 and 00, carry in two
high-order digits of the adder circuit can only be transitive.
Therefore, in order to provide logic of defining sign of the
sum code at different signs of the input arguments and reg-
istering the overflow signal, it is sufficient to use one input
element OR in each of two high-order digits of the adder
circuit. This measure simplifies logical structure of the adder
and optimizes the circuit depth. The range of numbers of
the adder circuit with OR logical elements in the last digit
remains in the range from 0 to 2" —1, when processing the
modified code.

3. Effectiveness of the acyclic model with XOR logical
elements in the last digit was demonstrated by examples of
synthesis of the 8-bit parallel adders borrowed from works of
other authors for comparison purposes:

— there is no PPA counterpart for the circuit of the acy-
clic 8-bit parallel adder with the circuit depth of 8 elements
(Fig. 9);

— circuits of the Ling prefix adder (Fig. 12) [23-25],
Kogge-Stone PPA [3, 8], Knowles [26, 27] PPA (Fig. 13)
and the circuit of 8-bit parallel acyclic adder with the circuit
depth of 9 elements (Fig. 11). Power consumption of the 8-bit
PAA adder (Fig. 11) decreases by 30.68 % compared to the
Ling adder (Fig. 12) and by 20.45 % compared to the Kog-
ge-Stone PPA and Knowles PPA (Fig. 13).

— circuits of the Sklansky prefix adder (Fig. 15) [26, 28],
Ladner-Fisher adder (Fig. 16) [4, 26] and the circuit of the
acyclic 8-bit parallel adder with the circuit depth of 10 ele-
ments (Fig. 14). Power consumption of the 8-bit PAA adder
(Fig. 14) decreases by 15.58 % compared to the Sklansky
PPA (Fig. 15) and Ladner-Fisher PPA (Fig. 16);

— circuit of the Han-Carlson prefix adder (Fig. 18) [2, 26]
and circuit of the acyclic 8-bit parallel adder with the circuit
depth of 11 elements (Fig. 17). Power consumption of the
8-bit PAA adder (Fig. 17) decreases by 14.1 % as compared
to the Han-Carlson PPA adder (Fig. 18);

— circuit of the Brent-Kung prefix adder (Fig. 20) [1, 8]
and circuit of the acyclic 8-bit parallel adder with the circuit
depth of 12 elements (Fig. 19). Power consumption of the
8-bit PAA adder (Fig. 19) decreases by 14.67 % as compared
to the Brent-Kung PPA adder (Fig. 20).

Proceeding from the examples of the parallel adders, the
acyclic model gives grounds to assert expediency of its ap-
plication in the processes of synthesis of arithmetic devices
for digital data processing since these circuits are capable of:

— speed increase;

— decreasing power consumption and heat emission from
digital devices of integrated circuits.
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