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1. Introduction

Many problems of control, prediction, and pattern rec-
ognition, etc. relate to the construction of a model of the
following type:

yn+1 = e*T‘an + énﬂ’ (1)

where y,., is the observed output signal;

_ T
xn+1 - (x1,n+1’x2,n+17"xN,n+1)

is the vector of input signals Nx1; 8°=(8;,0;,.0)" is the
vector of sought-for parameters Nx1; &, ., is the interfer-

n+l

ence and it is reduced to minimization of a certain functional
of quality, chosen in advance (identification criterion). The
most widely used in practice quadratic functional leads to
different identification algorithms, which make it possible
to obtain the estimates of sought-for vector 6 at normal
interference distributions, that is §,., ~ N(0,6}).

It should be noted that the problem of constructing a
model (1) (identification problem) is of interest not only in
itself, but as a part of a general optimization problem.

It should be noted that the effectiveness of application
of this or that algorithm depends on availability of infor-
mation about a drift. At minimal or no information, it is
necessary to apply adaptive algorithms that make it possible
to refine the estimates as soon as new information becomes




available. These algorithms include gradient algorithms,
the algorithm by Kaczmarz and Nagumo-Noda. Unlike the
gradient algorithms, these algorithms, though they use only
current information about x and y, are more responsive. This
demonstrates the feasibility of their application for identi-
fication of non-stationary parameters. Existing estimates,
characterizing the properties of these algorithms are quite
rough. Apparently, this is caused by the difficulty of the the-
oretical studies of the properties of these algorithms under
non-stationary conditions. That is why the analytical study
on convergence and getting more accurate estimates at exis-
tence of measurement interferences is relevant.

However, the identification problem becomes essentially
more complicated if parameters © change (drift) over time,
that is 0"(k)=var.

2. Literature review and problem statement

The effectiveness of application of this or that algorithm
for estimating the drifting parameters essentially depends
on the volume of a priori information about the nature of a
drift. In accordance with this, adaptive algorithms of iden-
tification of non-stationary parameters can be divided into
two classes:

1) algorithms for the estimation of parameters at known
law of their drift;

2) algorithms for the estimation of parameters at un-
known law of drift.

The first direction originates in [1]. In this paper, the
generalization of the stochastic approximation was proposed
in case the drift of the regression equation root is close to
linear. Most further papers [2—4] deal with the case where
a drift is either on average close to linear, or fades. Paper [2]
considered the case where the drift was parameterized and
the identification problem was reduced to the estimation of
the unknown parameter 0°(%k) using the multidimensional
method of stochastic approximation.

Lack of information about the nature of a drift requires
the development of identification algorithms, using the min-
imum amount of information 8°(k) and maintaining perfor-
mance in a wide range of variation 0"(k).

The algorithms of the second direction, first of all,
include the recurrent least-squares-method with the expo-
nential weighting of information [3, 4]. It should be noted
that the problem of choosing this parameter has not yet
been resolved. The only compensation for the lack of a priori
information about the nature of the parameters drift is the
lag in the evaluation of a change of parameters and, conse-
quently, lower observation accuracy due to the inertia of the
algorithms.

Among the simplest in computing single-step identi-
fication algorithms, the most effective are algorithms by
Kaczmarz and Nagumo-Noda [5, 6]. The Kaczmarz al-
gorithm was proposed in paper [5] for the solution of the
systems of linear algebraic equations, and subsequently was
applied successfully to solve the identification problem when
constructing the model of type (1).

The estimates of convergence rate of this algorithm at
the identification of stationary objects were first obtained
in [7-10]. While papers [7-9] considered a regular case,
the estimates that take into consideration the statistical
properties of signals and interferences were obtained in
paper [10].

To improve computational sustainability of the Kaczmarz
algorithm, V. M. Chadeev [7, 8] proposed its modification —
a regularized algorithm.

Algorithm by Nagumo-Noda, considered in [6], con-
tained non-linearity, representing the operation of using the
sign of an input signal and possessed the lower convergence
than that of the Kaczmarz algorithm. In this work, the rate
of the algorithm was proved, and the convergence rate was
determined in [10]. The algorithm by Nagumo-Noda is
known in problems of filtering as a signed-regressor NLMS
(SR-NMLS) [11-14]. In paper [15], non-asymptotic and
asymptotic estimates of convergence rate, in particular, of
the regularized algorithms by Kaczmarz and Nagumo—Noda
were obtained, which showed that the introduction of the
regularizing addition, improving stability of algorithms,
leads to slow down of their convergence rate.

However, the performance of these algorithms often
turns out to be insufficient when assessing non-stationary
parameters. Knowledge (or approximation) of the law of
drift makes it possible to receive effective algorithms of
tracking non-stationary parameters. Paper [16] considered
the algorithm called dynamic algorithm by Kaczmarz, which
uses some a priori model of a drift. It should be noted, howev-
er, that errors in assigning the law of changes in parameters
may cause the loss of properties of algorithm convergence.

The possibility of accelerating the Kaczmarz algorithm
by using not one but a series of measurements was consid-
ered in [17-19]. In these articles, the modifications of the
given algorithm at the identification of stationary objects
were considered. A slightly different modification of algo-
rithm by Kaczmarz, which turned out to be quite effective
in evaluating non-stationary parameters, was proposed and
studied in [20].

Articles [17, 18] have become the impetus for the creation
of multi-step projection algorithms [19, 21, 22]. In [19], a
recurrent form of these algorithms was proposed, and in
[21, 22], the properties of random pseudo-inverse matrices
and projection matrices were established. This enabled
determining the rate of convergence of these algorithms.
It was concluded that accounting of information about L
previous steps in these algorithms (L) is equivalent in terms
of convergence to reducing the dimensionality of the origi-
nal space N by L. Thus, application of multi-step projection
algorithms makes it possible to accelerate significantly the
identification process and is quite effective when assessing
non-stationary parameters.

The algorithm by Kaczmarz, better known as NLMS —
normalized least-mean-square algorithm, is widely used not
only in the systems of identification of stationary [23] and
non-stationary [24—26] system. In [27-29], its application
to solving problems of filtration was described. It should be
noted that in papers [19, 24—26], to describe the non-station-
ary parameters, the first-order Markovian model was used,
while papers [30, 31] used the modified first-order Marko-
vian model (this model received fairly wide use in training
artificial neural networks [31]). It should be noted that the
use of such a model is very convenient, because it allows
receiving the analytical estimates of the dynamic properties
of specific algorithms quite easily. This makes it possible to
determine the suitability of these algorithms for solving the
problem of identification of non-stationary objects.

In paper [32], a comparative analysis of the operation of
the NLMS algorithm and the affine projection algorithm
was performed. In studies [33-35], different variants of



affine projection algorithms with respect to the problem of
signals processing were described.

A rather large body of research into the algorithms by
Kaczmarz and Nagumo-Noda was predetermined by their
wide applicability due to computational simplicity and ef-
ficiency. Despite this, the study of the properties of these
algorithms under non-stationary conditions in the presence
of measurement interferences is a very important problem.
Although some estimates of the properties of these algo-
rithms were obtained in the above papers, they are quite
rough due to the use of all kinds of assumptions about the
statistical properties of signals and interferences. The recent
research from authors of [15] presents new theoretical re-
sults, enabling obtaining more accurate estimates compared
to the known estimates during solving the problem of identi-
fication of a stationary object. In this regard, it is of interest
to apply the results of this research to the problem of identi-
fication of a non-stationary object, that is, to generalize the
results obtained in [15] for a non-stationary case.

3. The aim and objectives of the study

The aim of this research is to study the problems of
convergence of single-step algorithms for the identification
of non-stationary parameters described by the Markovian
first-order model in the presence of measurement interfer-
ences and to determine parameters for the algorithms that
ensure their maximum convergence rate.

To accomplish the aim, the following tasks have been set:

— to obtain more accurate analytical estimates of con-
vergence in mean and root-mean-square of the algorithm by
Kaczmarz in comparison with the existing ones;

— determine the optimal values of the algorithm relax-
ation parameter ensuring its maximum convergence rate
under considered conditions;

— to obtain more accurate analytic estimates of conver-
gence in mean and root-mean-square of the algorithm by
Nagumo-Noda in comparison with the existing ones;

— to determine the optimal values of the algorithm re-
laxation parameter ensuring its maximum convergence rate
under considered conditions.

4. Studying the convergence of
the Kaczmarz regularized algorithm

A regularized Kaczmarz algorithm takes the form

A A

en+1 = en +Y

en+1 xn+1 ( 2)

[, +3°
where

e(h+1)=y(k+1)— f(k+1)=
= y(k+1)—0" (k)x(k+1),
y(k+1) is the output signal of the model;
8k = (B, (k).8,(k)..8, (k)"
is the vector of the estimated parameters N x1, vy is a

certain parameter (relaxation parameter), influencing the
convergence rate of the algorithm; 8> 0 is the regularization

parameter; ||| is the Euclidean norm, one of the most appli-
cable in both solving the identification problem, and in the
problems of signals processing (interference compensation,
echo removal, etc.).

To obtain analytical estimates in the non-stationary
case, it was supposed, like in papers [19, 24—26] that
non-stationary parameters of an object can be represented
by a Markovian first-order model

en-¢-1 = en + Sn+1’ (3)
where

— T
Sn+1 - (Sn+1,1 ’ 5n+1,2 "’Sn+1,N )

is the vector of random sequence Nx1; S, ~N(0,67).
Let us introduce into consideration the estimation error

) 1 =6 10, “)

Taking into consideration (3), expression for e,,, can be
written down as follows:

en+1 = éTx + ST 1xn+1 + E.m+1' (5)

nn+l n+

As it is assumed that &(k)~N(0,6;), we obtain

i ©)

where M is the symbol of mathematic expectation.

Taking into consideration the accepted kind of non-sta-
tionarity (3), the Kaczmarz algorithm regarding identifica-
tion errors can be written as follows:

0

n+l

M{ej+1 )} =0, + cf,M{

T

~ ~ X X ~
9 — 9 +S _ n+17" n+l _
n+l n n+l ’Y”xnﬂ H+8 n
-y xn+1x2+1 _ xn+1 EJ —
1 1
o0, 148 o, P48
X, X0 ~ x
= 1—7"“,”*1](6 +8 )-——m £ . 7)
( wa1 ”z +8 n ntl ” xn+1 ”z +8 n+l

It is assumed that the components of the vector of esti-
mation error , obey the normal law of distribution with
6, 2M{6,,} and dispersion o, [36], that is, all compo-
nents of estimation vector 8,, are distributed according to
the normal law 6,, ~ N(m,,,67,), with a probability density
function

0

0

(

)—’m,»v,l )2 (

2
in in )+”Li,n )

f(é,-,n)= L |, =, = U()
2no;,

where

mlnzei,n_éln’

ol M{6], }-M*{6,, };

. 0,6,, <0,
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The mean of this distribution is determined from formula
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where
erf(x) éij.e”zdt
NEE
is the interval of Gaussian probability
4.1. Analysis of convergence in the mean and root-
mean-square y
Let us calculate M<8,,,

It should be noted that in all the studies that address the
Kaczmarz algorithm it is assumed that
M{xnﬂ‘xnﬂ} .

M{ xn+1xn+1 }: ;
el 48] a . [ +5)

1 1
M = .
{ux |2+8} Vol 43 v

n+l |

®)

In papers [10, 15], other expressions for these ratios were
received. Taking into consideration statistical independence
of x,,, and &, ,, and that [10, 15]

M x"+1xn+1 — i[ _ M 82 I;
xn+1 + 8 N xn+1 + 8

o 12 _ 12 . 280? an
|l +8] (N=2)0. 48] (N -2)0" +5)

after regular transformations, we obtain

(10)

SN
1—— 9%
(N-2)c"+6

m{b,, }=1- y% [1_
(

(N-2)c* +8)

286>

X

] M{6,}. (12)

Here, 1 is the identity matrix N xN.

It follows from the obtained expression (12) that for the
algorithm convergence (2) in mean, it is necessary to meet
the inequality

1 SN 2862
1—y—|1- —| 1- L
NI (N=2)0, 48[ ((N-2)5”+3)

] <1, (13)

hence, it follows
O<y<
IN((N-2)0° +3)’

< - - . (14)
(N-2)62 +8) —8N((N-2)c” +3) +2Ndc

Therefore, by satisfying (14), the algorithm (2) converges
in the mean, that is

limM{8,,,}=0,

n—yeo

(15)

that is, the obtained estimate is non-shifted.
To investigate the convergence in the root-mean-square,
we multiply (7) on the left by 6

G

2_~ nn+1

Sl -2

[gnﬂ + enxnﬂ]

n+l n

n+l

2 n+1

2
n n+1:| .

n+1 n+1 [ E)
n+1

nt+l

n n+1:| + Y [E.mﬂ

X

n+l

(

+5)

Compute M{ 0,., 2}
M{I16,., 1P} =M {16, 17+ M{I1S,.. 17} -
T
_2,YM{enxn+1xn+1e }
2, 11+8
_ZYM Sn+1xn+1 n+1Sn+1 ” X, “2 +
(112,00 12 +8)
ey { 12 I }
(2, 11" +8)
In known papers, in the calculation of summands, includ-
ed in the right part M{ 0

n+l

2
}, the simplifications that are

similar to those in (8), (9) were used.
Taking into consideration (10), (11) and using the results
from paper [15], in which it was proved that

M (el n+1)
xn+1 +6

| L o (1

|t 2 ~ 2628 i M{
N© (N=2)0i+8| ((V-2)0” +3)

d
(
x 4
M n;1 5 —
{("xnﬂ + 8) }

1 (1_ 2629 ]_
W =20, +3| ((V-2)0” +9) _
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2
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2
X

n+l

X 2+8)
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2 | (N-2)c%0;
2 (N-2)0? +8)

(N -2)0" +8)-28((N ~2)0” +8) +48%
_ (N =202 +8)

After simple transformations, we obtain



M{|18,, 1’} =

2(y-1)(8(N-2)c* +8) +2578

T (e ee)
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o 0. .. (N-2)c’c?
y , y z(—xﬁ
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hence, it follows that in order to transform algorithm (2) into
the root-mean-square, it is necessary to meet the condition

2(y-1)(8(N-2)o? +3) +20%5
(N-2)c +8)’

(2-7v)-

X
N “{252

1- <1. (16)

2

(N-2)c2+3)

4.2. Determining the optimal value for relaxation
parameter y

It should be noted that in papers [7, 8], which proposed
the regularization of the algorithm by Kaczmarz, the case
v=1 was studied and the problem of selecting the optimal
value of parameter y was not stated. In articles [9, 19], it
was shown that this parameter that is called the relaxation
parameter must be selected from the condition y<(0,2). At
v=1, we obtain the algorithm of complete relaxation, while
at y#1 — of incomplete relaxation. It should be stressed
that these papers examined the problem of stationary object
identification.

Consider the problem of selecting the optimal value of
the relaxation parameter vy, ensuring a maximum rate of
algorithm convergence in the case of a non-stationary ob-
ject. Because convergence is characterized by magnitude
M{||§ﬂ+1 ||2}, the expression for optimal value y can be ob-
tained by solving equation

oM {ll6,..I'}

=0, 17)

Omitting simple transformations, we will obtain

OPT

[(V=2)0t +5)' +3((N -2} +3) +80? |8 {16, I +115,..1]}

0<y<2N.

(19)

Conditions for its convergence in root-mean-square for a
non-stationary case are derived from (16) at =0

. (N-2)' o (M{i8,17}+62) )
! ((N-2)0tM{le, I} +02)+ N (N -2) oot

-1 No, (20)
(N-2)o.M{6, [ +o%)’

and for a stationary case and absence of interference

OPT :1

Y (21

In the latter case, we have an algorithm for complete relax-
ation, in which estimation error || én |I* is projected on direction
x,,, (this ensures a maximum algorithm convergence rate).

Result (21) is known, starting from the work by
Kaczmarz [5]. Expression (20) makes it possible to re-evalu-
ate the choice of the optimum value of relaxation parameter
v in the identification of non-stationary objects.

Similarly to analyzing ratio (18), one can notice that the
expression y>*' contains a number of unknown magnitudes.
That is why in the practical application of the Kaczmarz
algorithm, it is possible to use the same recommendation as
above, that is to select the relaxation parameter that is small-
er than unity. This will ensure the algorithm convergence in
mean and root-mean-square.

5. Studying the convergence of the Nagumo-Noda
regularized algorithm

A regularized algorithm by Nagumo-Noda, known in
problems of filtering as signed-regressor NLMS (SR-NMLS)
[11-14] takes the form (here the same designations are ac-
cepted as in (2))
en+1Sign‘x

n+1, 22
+4 (22)

n+l

where y is a certain parameter (relaxation parameter) influ-
encing the rate of algorithm convergence.

v = 2 - .(18)
[((N—2)c§ +8) +28((N ~2)0” +8) +8((N -2)o? +5)]M{||en P 418,01} + N (N -2)0? (N -2)c? +3)

Expression (18) makes it possible to determine the opti- x,|=x" signx ;

mal value for parameter y that ensures a maximum rate of el e "

convergence of the algorithm by Kaczmarz when evaluating L at x>0

the non-stationary parameters described by the Markovian ) ' e

model. As it can be seen from (18), in order to use this value, signx, =410, at x,,=0,

the information about the statistical properties of signals and -1, at «x,,, <0.

interferences, degree of non-stationarity of an object and error
estimations are needed. That is why this result is rather of the-
oretical interest. In addressing the practical problems and in
the absence of such information, it can only be concluded that
the chosen relaxation parameter should be smaller than unity.

It should be noted that the obtained ratios generalize the
known results. For the classic algorithm by Kaczmarz with
8=0 from (14), known condition for convergence in the
mean follows [7-10]

n+l

When evaluating non-stationary parameters described
by model (3), and existence of interference, the algorithm
can be written down regarding identification errors (4) as
follows:

érﬁ-i = (1_

signx,, x.,

ol §n+1 °

+9

. T
Slgnxnﬂxm-l

+3 239

](én +8,.)-

n+l n+l



It should be noted that the statistical properties of esti-
mates obtained using the algorithm (22) have not been stud-
ied. In papers [11-14, 27], to approximate the expressions
containing modules, the Price’s theorem was used, which
made it possible to obtain quite rough estimates.

When studying the problems on the convergence of this
algorithm, we will use the results from paper [15].

5.1. Analysis of convergence in the mean and root-
mean-square

To analyze convergence in the mean, we calculate M {éw }

Taking into consideration statistical independence of
signals and interferences, as well as formulas [10, 15]

1 NTTm
M = ; 24
{xn+1+8} N + 8o @0
M Signxnﬁxr—fﬂ —
xn+1 +6
B DLIPSYS N S PO PN L OB VIO (25)
N X, |+8 N N+&J/no

where (D=(20i)71, we will obtain the ratios, from which
it follows that algorithm (22) will converge in mean when
meeting the condition

N+\/nm—N8\/nm|
0 <1

- N(N +Vno) |
or
0<y IN(N +vJro 26)

< )
N ++/nw — Név/nw

that is, if this condition is met, the assessment obtained by
this algorithm will be non-shifted (15).

It should be noted that the expression (26) does not
include the characteristic of non-stationarity S,,. It is
explained by the choice of the model of non-stationarity (3)
and its properties (S, ~ N(0,62)).

It should be noted that from (26), there follows the con-
dition of convergence in mean for the algorithm by Nagumo-
Noda 0<vy<2N, that coincides with known from [9, 15].

To establish convergence in root-mean-square, we will
act by analogy with the above. After multiplying both sides
of (23) on the left by 87, and the computation of mathemat-

n+l

ical expectation, given that [15]

27)

2
M [ - N 2+0(%),
(el +8) | 2(N+8vma) N
we will obtain

N

T Y _
M{”e"””}_1 N+6x/75l2 Y2(N+8\/%)

. TN wo}
xM{|16, I’} + o) +y ————

(N+8\/a)2.

It follows from these expressions that algorithm (22) will
converge in root-mean square when meeting the condition

N

v _
! N +8Jnw 2 Y2(N+8«/ﬁ)

<. (28)

When satisfying (28), the region of convergence of the
algorithm (22) (considering that ®= (2(5325) ) is determined
by the following expression

2
NG

(4(N+8x/%)2 —yrcN)of_ '

lim, . M{lI6,., I’} =

The known ratios for the Nagumo-Noda algorithm follow
from the obtained expressions at 8 =0.

5. 2. Determining the optimal value for relaxation
parameter y

Approach to determining the optimal value of parameter
y for the algorithm by Nagumo-Noda remains unchanged:
found from condition (17).

Omitting simple transformations, we will obtain the fol-
lowing expression for v :

sl )
v {[M{16, 17} + % |+ 200t |

(29)

Analysis of this expression is similar to the above analy-
sis of selection of relaxation parameter for the Kaczmarz al-
gorithm. It should be noted that expression (29) was derived
for the first time and it generalizes the known results. So, for
the classic algorithm by Nagumo-Noda for a non-stationary
case (6> #0 and §=0), it follows from (29) that

N[ M {16, I} +o% |
an:M{llén ||2}+c§]+2mo§ '

oPT _

Yn -

(30)

It should be noted that this result is derived for the
first time.

From this expression (29), it follows that for stationary
case G§ =0, absence of interference (52 =0 and 8=0

2
=2, 31
T

which coincides with known from [15].

6. Modelling

We solved the problem of identification of a non-sta-
tionary object described by equation (1) with the follow-
ing parameters N=10, and 4 out of 10 parameters were
non-stationary, represented by the Markovian model (3)
with 62=0,5 The other six parameters were accepted as
equal to

6,=0,8; 6,=0,4;, 6,=-0,2;
0,=0,55 0,=-0,67; 0,,=0,15.
The sequences of normally distributed magnitudes

X, ~N(0;1),E,., ~ N(0;3). were selected as input signal x,,,
and additive interference &

ntl*



As the criterion for comparison of the operation of algo-
rithms, we used magnitude

MSE:M{G

]

Fig. 1, a, b shows the diagrams of changing magnitude
MSE for the regularized algorithms by Kaczmarz (2) and
Nagumo-Noda (22), respectively, at different selection of
relaxation parameter y. Since value ||én+1J|) is known at the
simulation modeling, this makes it possible to compare the
limit (optimal) capabilities of the algorithms. That is why
the curves without markers in the figures correspond to the
theoretically optimal choice of parameters y**" in accor-
dance with (20) and (29), and the other correspond to the
practical selection of these parameters. Thus, curves with
circles correspond to the selection (task) of y=0,7 and =0,
and curved triangles correspond to the selection of y=0,7
and 8=0,01, curves with squares — to selection of y=0,7
and 8=0,02, and curves with thombs — to the selection of
v=0,6 and 8=0,02.

Fig. 1 shows the results compared with the analysis of
operation of the studied algorithms in the selection of appro-
priate y?" (curves without any markers) and task y=0,7
and 8=0,01 (curves with triangles).

Analyzing the simulation results, it can be concluded
that the introduction of regularization parameter &0
leads to a slowdown in the rate of convergence of the algo-
rithms. However, there arises no problem of dividing by zero,
that is, the stability of algorithms increases.

n+l

10?

strictly proved in [15], were used to identify non-stationary
objects.

As shown by the results of the research, the use of
regularizing addition in identification algorithms while
improving the stability of algorithms leads to a slowdown
in the process of model construction. The conditions of
convergence of the regularized algorithms by Kaczmarz
and Nagumo-Noda when evaluating non- stationary pa-
rameters and existence of measurement interference were
determined.

The resulting estimates are fairly general and depend
both on the degree of non-stationarity of an object, and on
the statistical characteristics of useful signals and inter-
ferences. In addition, the expressions for optimal values of
parameters of algorithms relaxation, ensuring their maximal
convergence rate, were determined. Because these expres-
sions contain a series of unknown parameters (estimation
error |10, |, degree of non-stationarity of object %),
the estimates of these parameters should be used for their
practical application. Thus, during identification in the on-
line mode, it is possible to apply any recurring evaluation
procedure and to use the resulting estimates to clarify the
parameters within the algorithms. At identification under
an off-line mode, it is necessary to adjust the result derived
after all computations.

It should be noted that the estimates obtained in this
paper are more accurate than the existing ones. Therefore,
in addressing practical problems, a researcher can prelimi-
narily assess with great certainty the capabilities of this or

that algorithm and the effectiveness of its

application.

8. Conclusions

1. More accurate, compared to known,

0 100 200 300 400 500 600 700 800 900 1000 0
Iteration

a b

10°
% 1 3
S 107,

102\

10°

0100 200 300 400 500 600 700 800 900 1000
Iteration

c

Fig. 1. Modeling results

7. Discussion of results of studying the convergence of
adaptive single-step algorithms for the identification of
non-stationary objects

Studies carried out in this work are the continuation
and development of earlier studies, described in [15].
The results, obtained when identifying stationary objects,

100 200 300 400 500 600 700 800 900 1000
Iteration

conditions for the convergence of the regu-
larized algorithm by Kaczmarz in the mean
and root-mean-square during the assessment
of non-stationary parameters and existence
of measurement interferences were obtained.

2. The expressions for the optimal
values of the relaxation parameter of the
Kaczmarz algorithm, ensuring its maxi-
mum rate of convergence in the identifica-
tion of non-stationary objects and measure-
ment interferences were determined.

3. More accurate, compared to the
known, conditions of convergence of the
regularized algorithm by Nagumo-Noda
in mean and root-mean-square during the
assessment of non-stationary parameters
were obtained.

4. The expressions for the optimal values of the relax-
ation parameter of the algorithm by Nagumo-Noda, ensur-
ing its maximum convergence rate in the identification of
non-stationary objects and existence of measurement inter-
ferences were determined.
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Pozsunymo 3acmocyeanus anzopummie memooy
0asucnux mampuup, AKi OCHAULEHT MeXHON02iEI0 006201
apupmemuxu 01 NOKPAUWEHHS MOUHOCHI BUKOHAHHS
0CHOBHUX onepauill npu 00Ci0NCeHHT no2ano 0dymose-
HUX JUHIUHUX cucmeM, 30Kpema cucmem JUHIHUX anze-
opaiunux pienano (CJIAP). Bcmanosaenns paxmy noza-
HOi 00yMo8IeHOCMI cucmemu € 00CUNts MPYOOMICMKOI0
00MUCTII06ATBIOI0 NPOUEOYPOI0. 3aKA0EHO NPOGEOeHI
KOHMPOTIO 6X00)CEHHA 00MUCTIEHb 8 CIAH HEKOPEKMHO-
Cmi ma YHeMOINCTUBIIEHHS HAKONUMEHHS NOXUOOK 00MuUC-
JleHb, W0 € 0aXNCcanolo 6aAcCmMueicmio mMemooie ma anzo-
pummie po3e’I3anns npaxmudHux 3alax.

B cyuacnux EOM, sax npaeuno, 6UKOPUCMOBYIOMbCS
cmanodapmi munu yiux wuce, po3mip AKUX ne nepeeu-
wye 64 6aima. Byao nodonano ye anapamue odbmexncen-
HA NPOZPAMHUM WTAXOM, A Came, PO3POOKOI0 6IACHO20
muny oanux y euznsoi cneuianvioi 6ioiomexu Longnum
Moeoto C++ 3 suxopucmannam cmanoapmuoi 6Gioniomexu
waononie STL(Standard Template Library). Ilpozpamna
peanizauia Gyna pozeunyma na npoeedents 00HUCIeHb
3a memodamu oOazuchux mampuuyvp (MBM) ma Ilayca,
mo6mo euxopucmano 0062y apupmemury oas mooenet
3 pauioHanvHUMU enemeHmamu. 3anponoHo8ano anzo-
pummu ma Komn'iomepny peanizauiro memooie muny
Tayca ma wmyunux 6asucnux mampuup (éapianm memo-
0y 6azucrux mampuus) 6 cepedosumwax Matlab ma Visual
C++ 3 BUKOPUCMAHHAM MEXHON02Ii MOUHUX 0OGUUCIeHD
enlemenmie memodis, 6 nepuy uepey, 0Jis no2ano 0oymoes-
Jlenux cucmem pisnoi posmiprocmi. Pospooneno 6ionio-
mexy Longnum 3 munamu doezux uinux wucen (longint3)
ma pauionanvrux wucea (longrat3) i3 wuceavnuxom ma
3namennuxom muny longint3. Apudmemuuni onepauii
Ha0 0062uMU UIMUMU MUCIAMU PEAi306AHO HA OCHOBL
cyuacHux memoois: 30kpema, memooy Illmpacena mno-
srcennst. Hasedeno pesymomamu 004uUcI108a1vH020 €Kc-
nepumenmy 3a 32a0aHuUMU MeMOOamu, 8 AKOMY Mecmo-
61 MoOeni cucmem z2eHepyeanucs, 30Kpema, Ha OCHOBI
mampuup TNnvbepma piznoi posmipnocmi, sxi xapaxme-
pusyromocs aK "He3pyuni”

Kmouogi cnosa: memod 6asuchux mampuup, mouni
o00uucnenns, noeano o0YMosaena cucmema JIHIUHUX
PpieHAHb
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In many cases, they are solved by the introduction of certain

simplifications in statements, transition, in particular, to

Mathematical modeling of processes of different nature  difference analogues (discrete variant) and eventually to the
is known to lead to the need to explore non-linear equations  systems of linear algebraic equations (SLAE) of different
and systems of varying complexity (mathematical models).  dimension, often with a square matrix of restrictions. The




