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3anpononosaro ananimuunuil Memoo 00MeNceHHs CKAa0-
HoCmi Hellpo-Hevimiux mooeneil, wo 3adesnewyomos 2apan-
moeany mounicmo ix peanizauii npu anpoxcumauii pynxuii,
aKi maromo 086i i Ginvue noxionux. Memoo 00360ss€ 6usHa-
uamu HeooxXione MiHiMAIbHE MUCTIO nNapamempie 05 cucmem
13 3ACMOCYBAHHAM HeuimKoi J102iKu ma HeupoHHux modeJell.

IIposedena ouinka neobxionozo wucna neiiponie (mep-
Mig) modei, wo 3ade3neuyroms HeodXioHYy mounicmv HadIU-
JHCeHHSL NAOWE MOOeabHOT Kpueoi 0o cucmemnoi na Oinsan-
Kax anpoxcumauii Qyuxuii. Ouinky noxudxu anpoxcumauii
OMPUMAHO NO 3ATUMKOBUM UIIEHAM PO3KAAOAHHA 8 Popmi
Jdaepansica nnow, anpoxcumosanoi cucmemnoi Qynxuii
6 psa0 Maxnopena. Ompumani pesyaromamu 003607510Mb
susnauamu HeoOXiOHe UUCNO OINIAHOK anpoxcumMauii ma
KinbKicmb Heliponie (mepmie) 0nsa 3abesneuenns 3aoanoi
8i0nocHol i abcoromioi noxudbxu anpoxcumauii.

IIposeoena ouinxa neobxionozo wucaa netiponie (mep-
Mig), w0 3abe3newyromov HeoOXiIOHY mounicmov peanizauii
MOOeN N0 MAKCUMATLHOMY GIOXUTIEHHIO MiNC cucmem-
HO10 1 MO0eNbHOI Kpueumu Ha Oiranyi anpoxcumauii. Ile
dozeonse obupamu, 6 3anexcnocmi 6i0 3a0anoi Heodxio-
HOL MOUHOCMI, HUCIO0 MEPMIE HeUIMKUX 3MIHHUX, 6XIOHUX
1 BUXIOHUX 3MIHHUX, JIIH2BICMUMHUX NPABUT, KOOPOUHAM
MOOANBHUX 3HAMEHb HA 0CAX 6XIOHUX i 6UXTOHUX 3MIHHUX.

ns nepesipxu npasunvHocmi 3anpononosanux piwers
nposedeno Mo0ea06aHH CUCMEMHUX KPUBUX 6 CepedosuU-
wi Matlab/Simulink, sixe niomeepouno zapanmosany mou-
Hicmb ix peanizauii y 6i0noeionocmi 00 npueedenux paniue
AHATIIMUMHUX PO3PAXYHKIE.

Ompumani pesyrvmamu Moxcymo OGymu 3acmocos8ami
8 CYHaCHUX IHMeNeKmyatoHUX MEXHIMHUX CUCeMAX KepYy-
8aHHSA, KOHMPOI0, 0iAZHOCMUKYU MA NPUUHAMMSA PilleH-
na. Buxopucmanns 3anpononosanux memodie no euéopy
1 BUKOPUCMAHHIO MIHIMANLHOT KibKOCMI mepmie (Helpo-
Hi6) cnpusmume 3MeHUEeNHI0 3ampedy8anoi 00MUCI08aNb-
HOT NOMYNCHOCMI 8 HETITHIUHUX cCucmemMax

Kmouosi cnoea: anpoxcumauisn, eapanmosana mou-
Hicmb, HewimKa J02iKa, HEeUPOHHI Mepedci, imimauiine
MoOeno6anus
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It is known that movable technical objects with nonlinear
and variable parameters (for example, vehicles, robots, drones)
functioning under the influence of disturbances, depending on
weight, wind, trajectory, and profile, the obstacles of varying
intensity [1]. To execute control over them, it is necessary to
nonlinearly correct the parameters in the settings of control
system, to form the assigned motion trajectories, to limit the
required motion speed in a speed control setpoint, etc. [2].

The use of conventional digital PID-controllers in this
case turns out to be not effective enough, given a significant
number of random, chaotic, non-linear and fuzzy variable pa-
rameters in the characteristic equations of a closed system [3].

To set the desired nonlinear motion trajectories of mo-
vable objects and to nonlinearly correct the parameters for

setting the controllers in control systems, a guaranteed ac-
curacy in the implementation of their models is needed [4].

In cases when the application of conventional methods to
control the system proves to be not efficient enough due to
a lack of precise knowledge about the object of control, spe-
cialized methods of calculation and decision making are used.
These algorithms include adaptive technologies, fuzzy logic,
artificial neural networks, genetic algorithms.

2. Literature review and problem statement

In [5], authors derived a simplified analytical assessment
of the minimally required number of approximation sections
in the curve of motion trajectory of second order by the trape-
zoidal method with guaranteed accuracy. Such an estimate is




missing for curves of higher orders [6]. In order for the law
of control to account for all variables that affect the process
of control, the adaptive [7], situational [8], fuzzy [9], neural
and neural-fuzzy model and regulators [10], as well as genetic
algorithms [11] are used. The specified algorithms can im-
prove the properties of control and decision-making systems;
however, the efficiency of their functioning is defined by the
optimal structure capable of solving the predefined class of
tasks. The effectiveness of methods for neural-fuzzy model-
ling and control improves if they are used in combination
with methods based on intelligent machines [12].

An analysis of papers in this field [13—15] has revealed
a lack of analytical dependences for determining the com-
plexity of models depending on the assigned accuracy of their
implementation.

Paper [13], for example, is based on the research from
psychology on that a person with average capabilities can
simultaneously keep in memory from 5 to 9 information
granules (terms). Thus, when implementing a fuzzy produc-
tion model, the number of terms for the input and output
variables should be chosen from 5 to 7. The number 7 in pro-
duction rules is proposed to be derived from formula:

r=z°

where z is the number of fuzzy sets, ® is the number of inputs
of x; model.

The number of parameters p for assigning the member-
ship functions is recommended to choose from formula:

p=r+m-z=z"+0-z

and when implementing a model using ANN, the initial
number of neurons m in the intermediate layer of ANN is
recommended to choose from formula:

m=\pl,

where p and [ are the numbers of input and output neurons,
respectively.

However, a given recommendation does not make it pos-
sible to minimize the number of terms for fuzzy variables or
the number of neurons in the intermediate layer of ANN de-
pending on the required accuracy for model implementation.

n [14], the number of neurons m in the intermediate
layer of ANN is recommended to be adjusted until achieving
the desired accuracy of approximation. For genetic algo-
rithms [15], in the process of ANN learning, achieving the
required accuracy of simulation in search procedures also
requires the knowledge of the required number of chromo-
somes, mutations, distances between them, etc.

Thus, as noted, existing methods for determining the
minimally required number of terms or neurons fail to pro-
vide for a guaranteed accuracy of model implementation.

The solution to a given problem can be obtained based on
estimating the area of a model curve approaching the system
one or from the maximum deviation between the system and
model curves at the section of function approximation.

3. The aim and objectives of the study

The aim of this study is to develop an analytical me-
thod for limiting the complexity of neural-fuzzy models that

provide for a guaranteed accuracy of their implementation
during approximation of functions. This must ensure a de-
crease in redundancy, as well as the rational selection of the
number of terms for fuzzy variables or neurons depending on
the assigned required accuracy.

To accomplish the aim, the following tasks have been set:

— to devise a procedure for estimating the required num-
ber of neurons (terms) in a model that provide for the nec-
essary precision in approximating the area of a model curve
to the system one at the sections of function approximation;

—to devise a procedure for estimating the required
number of neurons (terms), which provide for the necessary
accuracy of model implementation based on the maximum
deviation between the system and model curves at the sec-
tion of approximation;

—to consider practical implementation of constructing
a fuzzy model and a model that uses ANN for a system with
the assigned dependence.

4. Model of the system and the development
of a method for limiting the complexity of neural-fuzzy
models with guaranteed accuracy

Consider a model of the system that is described by a func-
tion of high order in the form:

Y, :fc(x)za,xr” +a,_1xz"1 +...+a1x1 +a,, )

that has 2/ derivatives, for instance, for 2/>2:

1+1

yc:“‘ ‘x(’ yc:“‘xc ’ x2+y22727

y, =Asin(ux) etc. 2)
An example of the chart y.=f.(x) for system curve y, = \/xT

and the model curves implemented by the method of rectan-
gles (1) and the trapezoidal method (2) is shown in Fig. 1.
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Fig. 1. Dependence charts of approximated curve
and approximating curves

4. 1. Estimation of the number of neurons (terms) such
that a model curve approaches the system curve

To assess the required number of neurons (terms) in
a model that provide for the necessary precision of approxi-
mating the area of a model curve to the system curve at the
sections of function approximation, we estimated an error of



approximation. An estimate of the approximation error can
be obtained based on the residual terms of decomposition, in
the Lagrange form, of the areas of system function f,.(x) into
a Maclaurin series. The abscissa coordinate of the modeled
system function x, and the dimensionless relative abscissa
coordinate of model function x are related via interrelation:

(x=0)_(x,-a)
-0y (b-a)’ @
hence:
L _nx.—a)_ A,
nA, =nh= - (- a) (4

To calculate the area under curve f.(x) at the assigned
accuracy at segment (—A,, A.), that is the determined in-
tegral — the primary function F.(x), using the interpolation
polynomial by Taylor or Maclaurin.

Given the fact that the primary function F.(x) has
three derivatives at segment (-A,, A,.), we decompose this
function into a Maclaurin series with a residual term in the
Lagrange form:

E(x)= f‘ J(@)dr=E(8, )~ F(-A, )=

A

F(0)+F(“(0)+F(2>(O) (%)

3
+F“) e
(Xy)— 6

—Ay,

Considering (5):

EL(0)=£.(0), EP(0)=/(0), EP(ay)= 17 (ay),

T rede=2f (e, + 20 C)
Xyp—h ‘ Ax(. 3
(b-a)

=2/ (x)A, + Sy

3 = 2]i(x2k)Ax‘. +A. (6)

Thus, the absolute error of approximation A, is:

A (xy) (b=a)’ _
c AQ‘ 3 3

(b—a)
3n

A = = A"/ (xy)

)
We obtain from (7) the number n of approximation
sections (8) at curve f,(x) of a neural or fuzzy model at sec-
tion (a, b) with the assigned error A, approximated based on
the formula of rectangles (9) or a trapezoidal formula (10):

n= 8t ) ®

c

b
E(x)=[f(x)dx=

= b;a[f(x0)+f(x2)+...+f(x2n_2)]+AC, 9
S+ [ (x,,)
F(x)= Jf(x)dx—b_ Ty +A,.(10)
) f(,0)

Similarly, given the absolute error A along segment (—#, k),
at a=0 and b=1, we compute area F(x) under curve f(x)
by using a decomposition of the primary function F(x) into
a Maclaurin series with a residual term in the Lagrange form:

F(x)=_ff(x)dx=F(h)—F(—h), (11)
h

where

—h=%y, =Xy, h=2y,— Xy,

h

| f(0)dxc = F(h)y=F(~h) =

—h

=[F(0)+f(0)h+f( O+ ><x2k>6]—

Oy gm0 - ) -

d’f(xy) (2h)°

d(x,)” 24 a2

=2 O+ () = 021+

where xy;, is some point along segment(—#, /).
Since:

zf(ka) Azf(ka) (h)

= (13)
d(ka) M;k 3

szzk:h:if
n

Azf(ka) = [ (29) =2/ (20 )+ [ (X55), (14)

then

J e 2o e SLED g p i, 15)

~h

where the absolute approximation error A is equal to:

ANk s 1
A= 3 ‘ _Af(ka)Bn'

(16)

We obtain from (16) the number 7z of approximation
sections (17) at curve f(x) of a neural or fuzzy model [7]
at section (0, 1) with the assigned absolute approximation
error A, using the formula of rectangles (18) or a trapezoidal
formula (19):

Zf(xzk) 1_ 1
3A A

17)

FG)= [ fGo)dr = [ ()4 S0+t [, )]+ ACIS)

F(x)= [ f(o)dr=
1 [f<xo>+f<x2n>
2

- +f<x2>+f<x4>+...+f<x2n,2>]+A.<19>
n



Denote the relative error of approximation:

3A

0=—— 20
Azf(xzk) 0

hence:

5 5A2f(x2k).
3

For example, for function y=px®, A*f(x,,)=0.02u for
n=10, =0.1, and for any two adjacent sections:

d*f(xy) _ A*f(xy) -9
d(xy,)’ h? ,

2
A fg(xzk) =5 0'032“ =0.000678u.

We obtain from (17):

1 1 1
=—=— = 21
h Xy —xy, 38

We obtain from expression (21) coordinates for the
abscissa of modal values for the next point xg;+1 in a model
curve based on the coordinate for the preceding point xo 4
and the assigned value for error &:

Xy, =Xy, 0. (22)

Table 1 gives, for =1, Xnin=0, the dependence of num-
ber n of the required sections of approximation and the num-
ber of neurons or terms m for fuzzy variables x, y depending
on the preset values for approximation errors 8 or A.

Table 1

Dependences of approximation error on the number of
sections, neurons, or terms

d 0.5 0.2 0.1 0.05 0.02 0.01

A 000335 | 000134 [0.0006711 | 0.0003351{0.000134p| 0.0000671

n 2 5 10 20 50 100

m 3 6 1 21 51 101

4. 2. Estimation of the number of neurons (terms) to
ensure the accuracy of model implementation

At the next stage of research, we estimated the required
number of neurons (terms), which provide for the necessary
accuracy of model implementation based on the maximum
deviation between the system and model curves at the sec-
tion of approximation. The model of this system y will be
searched for in the form of sections along straight lines that
pass through points with coordinates x1, y1 and x, y», located
along the approximated curve with the assigned maximum
error of deviation Ap... Write down the equation of the
straight line passing through two points of the curve with
coordinates xy, y1 and xs, yo:

X h (23)

Xy =X

Y-y
Y~ Y,

Considering (1), substitute in (12):

y_f(x1) X=X
Fe ey x-x, (24)
We obtain as a result:

= SR @) = SO+ (), (25)

X, — X,

Approximation error A will be determined as the maxi-
mum deviation between the system f.(x) and model f(x)
curves along the approximation section from correlation (26):

A=y-y, =
X

- '_’jg [/ ()= f )]+ f(x) = [.(0).

Xy

(26)

The maximum of error A,y is determined from condition:

M _ fr)= () ) _,

ox X, — X, ox

: (27)

we obtain the dependence of coordinate of the next point xy
based on the coordinate for the preceding point of curve xy
and the assigned value for maximum error Ap,y.

An example of the implementation of the modeled system
of guaranteed accuracy, described relative to the coordinate
origin 0 (0, 0) by the equation of a non-central curve of
second order in the form:

a,x” +2a,x +a, +2byy =0, (28)
was considered by authors in [5]. Transform of equation (28)
is a curve (parabola), shifted relative to the coordinate origin:

The transformation of a parabola equation (28) and the
transfer of coordinate origin to point O” with coordinates:

2
4 4

+4 +
X, =X+—;, Y. =Yy :
‘ ne 2ba,’

a, 2a,

N
a2y2b0a2 2b,a,

produces the modeled system, described by the equation of
parabola (29).

Yy, =’ (29)
where p=1/2p=—-a,/2b,, p is the distance from the focus to
the directrices of parabola.

The model of this system in [5] was found in the form of
sections along straight lines that pass through points with co-
ordinates x1, y1 and xy, yo of parabola (29) with the assigned
maximum error Ay, of deviation between curve (29) and
straight line (25). Write down the equation of the straight
line passing through two points with coordinates xy, y; and
X9, yo. Considering (29), substitute in (25):

Y=/, and y, = ;.



The obtained result is:

2
yopxy o x-x xtx (R )
2 2
M, —2x7) X=X X+ X

2 2 )
Xy — X,

hence:

y_pr =M =) (2, +2p) = (XX, + 20 — X, _xf)

or
y:u[(x1+x2)x_x1x2]’ (30)
Error of approximation A is determined as a difference:
A=y—yr=u[(x1+x2)x—x1x2—x2]. (31)
The maximum of error is determined from condition:
oA
a—xzu[x1+x2 —2x]=0,

hence:
x=Bth (32)

2
Substitute (32) into (31) and obtain the dependence of
coordinates of the next point x5 along the curve on the coor-

dinate for the preceding point x4 and the assigned value for
maximum error Apax:

X, 4 2,)(x, + X X, +x,)
AW=H[(1 2)2(1 ) x1x2_(142) ,

47, = H[(’Q +2,)” —4x1x2:|,

4A, = u[(xf +200,%, + X, —4x1x2:| =

o~ 2, 22 = =) ]

In a general case:

A
X =x, 12 [
\ u

Considering the notation:

(33)

b-a
=b-a, x,,—x,=h, h= p_—

X —X

max min

the required number of approximation sections n and the
number of neurons or terms m for fuzzy variables x, along the
section of the curve from xpin=a=0 to Xy =b=1 was derived
from expressions:

nz === : (34)
h
2 Amax 2 Amax
i u
m=n+1, (35)
1 1
n2 > A = g, (36)
u
1
82, (37)
A, > i (38)

Table 2 gives, depending on the number of approximation
sections 7 and the number of terms m for fuzzy variables x
and y, the values derived for a relative error of approximation &
and the absolute error of approximation Ap,y. By choosing the
required values for 8 or A,.x, we obtain values for z or m, which
warrant the required accuracy of model implementation.

Table 2

Dependences of errors on the number of approximation
sections, terms, and fuzzy variables

n 1 2 3 4 5 10 20

m 2 3 4 5 6 1 21

1 0.25 0.11 ]0.0625| 0.04 | 0.01 0.0025

Amax [0.2511| 0062511 [0.0275p | 0.016 | 001y |0.00251| 0000625

3. Practical implementation of construction
of a fuzzy model and a model using ANN

Consider an example of building a fuzzy model for the
system with the assigned dependence y, =px”. The mem-
bership functions of values for the input and output para-
meters of the model take the form, shown in Fig. 2, with the
assigned system of rules:

Ri.' IF Xi= Tm THEN Yyi= Tyi.

Fig. 2, a shows a dependence chart y, =px* (curve 1). Tt
is obvious that at uniform location along the XY axes of coor-
dinates for modal values of terms for the input variable x and
the output variable y, the model (approximating) curve 2 will
be a straight line. In this case, the nodal points of the model
curve will be at the points of intersection of coordinates for
their modal values. That would lead to a large error in fuzzy
model 2.

We suggest that the coordinates of modal values for the
terms of the output variable in the approximating curve of
fuzzy model y;=f(x;) (T,0, Ty, Ty2, Ty3) should be chosen
from condition (Fig. 2, b):

Y, = ;. (39)

In this case, the nodal points of model curve 2 would be
located along curve 1 unevenly, which would provide for the
assigned accuracy of modeling.

Fig. 3 shows the implementation of the model using ANN.
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Fig. 2. Values for triangular terms of input variable x (7., 721, 7x2, Tx3) and the output
variable y (7,0, 7,1, T,2, T;3), whose modal values are located along the XV coordinate axes: @ — evenly; b — unevenly

v

Fig. 3. A neural model of guaranteed accuracy

Fig. 4 shows the dependence
charts of the modelled curve (cur-
ve 1) and model curve 2 of the
neural model, representing a sum
of triangular functions of activating
all neurons, shifted by the magni-
tude x;.

Choose coordinates of the modal
values for functions of the activation
of neurons from condition (39), de-
termining k; from coefficients that
are selected from k =y, /x’, and
Yo — from modal values for the
modeled curve at approximation
nodes x; (Fig. 4).

In a given case, the nodal points
of model curve 2 will be located
along curve 1, which would provide
for the assigned accuracy of mo-
deling.

To test validity of the proposed
solutions, we simulated different ap-
proximation algorithms in the envi-
ronment Matlab/Simulink.

The results of simulation at ap-
proximation by fuzzy logic are shown
in Fig. 5, by artificial neural net-
works — in Fig. 6.

The imitation simulation results
indicate that the approximation er-
ror corresponds to values derived
from analytical calculations.
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Fig. 4. Dependence charts for the modelled
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curve y.=ux? (curve 1) and model curve 2 of the neural model
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Fig. 5. Results of simulating the approximation by fuzzy logic:
a — terms of input variable x; b — terms of output variable y; ¢ — shape of

the approximated curve
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implementation in order to limit the
complexity of fuzzy and neural models
of systems, described by functions that
have 2/ derivatives.

The factors that remain unaddressed
in this study include the uncertainty of
the impact of noise and disturbances on
the accuracy of a system curve approxi-
mation and their comparison to existing
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methods.

The further advancement of research
. could be accounting for the dynamics of
work of neural-fuzzy models’ elements
over time.

8. Conclusions

1. We have devised a procedure for es-
timating the required number of neurons

0 01 02 03 04 05 06 0.7 0.8 09 1
b

Fig. 6. Results of simulating the approximation by artificial neural networks (left)
and an approximation error (right): a — for the curve assigned by 3 points;

b — for the curve assigned by 10 points

6. Discussion of results of studying the analytical method
for limiting the complexity of neural-fuzzy models of
guaranteed accuracy

Therefore, we have proposed a solution on the choice of
coordinates for the modal values of terms in fuzzy models,
the number 7 of approximation sections and the number m of
membership functions T; of terms in a fuzzy model, the num-
ber of activation functions of neurons N;. Computation of the
specified parameters is possible in line with formulae (21)
to (22) and (33) to (39), depending on the assigned accuracy
of model implementation.

In contrast to methods, examined in chapter 2, which
imply the selection of values (settings) for parameters of
neural-fuzzy models, the developed method solves this task
analytically while assigning guaranteed accuracy. The ad-
vantage of the proposed method is the universality of its

0 0.10.203 04050607 0.8 09 1

(terms) in a model that would provide
for the necessary accuracy such that the
area of a model curve approaches the
system one. Evaluation of approximation
error is performed based on the residual
terms from decomposition of areas of the
system function into a Maclaurin series.

2. We have devised a procedure for estimating the re-
quired number of neurons (terms), which provide for the
required accuracy of model implementation based on the
maximum deviation between the system and model curves at
the approximation section. The derived dependences of error
on the number of approximation sections and the number
of terms for fuzzy variables make it possible to assign a pre-
defined level of guaranteed accuracy for the implementation
of models.

3. We have considered the solution to the applied task
on constructing a fuzzy model and a model using ANN
for a system with the assigned dependence y, =px’. The
reported results from imitation simulation indicate exact
match between the results and the estimated analytical
values.

That testifies to the validity of the devised approach and
the possibilities for its use in applied problems.
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ORGANIZING
MAPS
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IIposedeno ananiz cnocoéie onmumizauii anzopummie Qynxuionyean-
Ha neuponnux mepesic Koxonena — xapm camoopeanizauii (Self-organizing
map — SOM) 3a weuoKicmio Ha6UaAHHA MA YACMKOI0 KOPEKMHOi Kaacme-
pusauii. Busnaueno epexmueny onmumizauiro xapm camoopzauizauii 3a
opyeum xpumepiem — Enhanced Self-Organizing Incremental Neural Net-
work (ESOINN). Busnaueno, wo y eunaoky nenoénozo 6xionozo cuznany,
moomo cuznany 3 Bmpamamu é Hesi0oMi MOMEHMU UACY, YACMKA KOPEKMHOT
KJacmepusayii Henpunycmumo Hu3vka na 0yov-axux anzopummax SOM, sax
6a3oeux, max i onmumizoeanux.

Henognuii cuznan npedcmaenieno sx 6xioHuil 6eKmop HelponHoi mepe-
JHCl, 3HAMEHHSA AK020 NOOAHT COUHUM MACUGOM MOOMO Oe3 Ypaxyeanus 6io-
noeioHOCMI MOMEHMI6 emMpam NOMOUHUM 3HAUEHHAM i Ge3 Moxcaueocmi
BUSHAMEHHS. UUX MOMEHMIE. 3anponoHo6aHo ma NPoPAMHO Peaizo8ano
Cnocio eusnauens 6i0N0GIOHOCHI HEN0BH020 6Xi0H020 6eKmopa 00 6xi0H020
wapy Hetiponie 0 ni0BUWEHHA HACMKU KOpeKmHozo posnisnasanns. Cnocio
3aCH06AH0 HA NOWYKY MIHIMATLHOT BI0CMAN] MIJC ROMOUHUM 6XIOHUM BeK-
MOPOM MA 6eKMOPOM-6a2 KOIHCHOZ0 3 HellpoHie. J[nsa 3meHuenns wacy poéomu
anzopummy 3anponoHO8aAHO ONEPYeamu He OKPEeMUMU 3HAUEHHIMU 6XIOHO-
20 cuenamy, a ix HenoOiILHUMU HACMUHAMU MA GIONOBIOHUMU 2PYNAMU 8Xi0-
HUx Heliponie. 3anpononosanuii cnocié peanizosano ons SOM ma ESOINN.
lns dosedenns edpexmusrnocmi peanizauii 6aso6020 anzopummy SOM npo-
6edeno 11020 eéepudixauito 3 iCHYIOMUMU AHAJI02AMU THUMUX PO3POOHUKIE.

Po3spooneno mamemamuuny mooens 045 Popmysanns npuxaadie noe-
HUX CUZHANIE HAGUATLHOT 6UBIPKU HA OCHOGI eMANOHHUX KPUBUX OpPY2020
nop:aoxy ma cpopmosarno naeuanviy eubipxy. 3a uiero Ha6uAILHOIO GUOID-
K010 0YI0 NPoGedeHo HABUAHHA 6CIX HEUPOHHUX Mepedic, Peaniz08anux
3 BUKOPUCMAHHAM 3ANPONOHOBAH020 CROCOGY ma 6e3 Hvozo. Po3pobneno
cxemy iMimayii empam ma 3z2eHeposano mecmosi eubipku 0L 06uucHo-
BAILHUX EKCNEPUMEHNIE HA HENOBHUX CUZHATIAX.

Ha ocnosi excnepumenmis dosedeno epexmuenicmo 3anpononoeano-
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20 cnocoby oOna kaacuixauii 3a HenoGHUM GXIOHUM CUZHANIOM HA OC-
HO61 Kapm camoopeanizauii ax 01s peanizauii 6a306020 anzopummy SOM,
max i onss ESOINN

Kmouosi cnosa: xapma camoopeanizauii, SOM, ESOINN, wneiiponni
mepesci Koxonena (Kohonen), cuenan 3 empamamu, smpamu 6 4acoeomy
PA0i, kaacuikauin 3a xapaxmepucmutHum CuzHaI0M
u| 0

1. Introduction

One of the basic problems in systems of object control
in terms of input signal of their characteristics is classifi-

Postgraduate student

E-mail: yuramuv@gmail.com

*Department of Automation of Designing
of Energy Processes and Systems
National Technical University of Ukraine
«lgor Sikorsky Kyiv Polytechnic Institute»
Peremohy ave., 37, Kyiv, Ukraine, 03056

cation problem. If the signal is represented as a time series,
it is expedient to use neural networks to ensure high level
of recognition accuracy. When a part of a signal or some of
its values are lost at unknown time points, it is impossible






