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IIpoodosaicero docnioxcennn mocausocmeii 2eo-
MempuuH020 MOOEN0EAHH HEXAOMUMHUX NePiodun-
HUX MPAEKMOPI pYXy 6AHMAINHCY XUMHOI NPYHCUHU
ma ii piznoeudie. B nimepamypi xumnoro npyscuroro
(swinging spring) Haszueaiomv pizHo6ud mamema-
MUUHO20 MASIMHUKA, AKUH CKAA0AEMbCS 3 MOUKO-
6020 8aHMadHCy, NPUEOHAH020 00 HE6AZOMOT NPYIHCU-
Hu. /Ipyeuil Kineup npyHcunu QPiKcyemocs Hepyxomo.
Pozznsdatomovcs MAAMHUKO6T KOJUBAHHSA NPYIHCU-
HU Y GepmuKaNbHIl NIOWUNL 3a YMOBU 30epedcenns
npamoninitinocmi ii oci. lllyxana mpaexmopis eamu-
mMancy XumHoi NPYHCUHU M00eNI0EMbC 3 BUKOPUC-
mannam piensns Jlazpansica opyeo20 pooy.

Axmyanvnicmo memu 6uU3HAMAEMbCA HEOOXIOHI-
Ccm10 00CAL0NHCEHHA YMOB BIOMEINCYBAHHA 810 XAOMUY -
HUX KONIUBAHL eleMEHMI6 MEeXAHIMHUX KOHCMPYK-
uiti, 00 CKA0Y AKUX 6X00AMb NPYIHCUHU, A4 CAME
BU3HAUEHHS PAUIOHATLHUX 3HAUEHD NAPAMEemPie 0
3abe3neuenns nepioouunux mpaexmopii ix xKoau-
eéanv. Xumni npyscunu MoxcHa 6uKopucmamu sK
Mexaniuni imocmpauii npu 00CHIONCEHHT CKAAOHUX
MEXHON0IMHUX NPOUECIE OUHAMIMHUX CUCEM, KOTIU
HeNNIUNO 36’°A3aN] KONUBATILHI KOMNOHEHMU CUCme-
Mu 00MiNI0I0OMBCA enepeieto mixc 00010,

Oodeporcani pesyaomamu 00360a810Mb 00TYHUMU
00 nepeniky YUCNOBUX NAPAMEMPI8 XUMHOT NPYIHCU-
Hu we U nepioduuti Kpuei K <napamempus> 6 epa-
Qiuniit popmi. Toomo eusnamumu wuUCL06i 3HaAUEHNA
napamempis, axi 0 3abesnewunu icnyeanns mane-
peo 3adanoi popmu nepioduunoi mpackmopii pyxy
eanmascy xumnoi npyxcunu. Pozensnymo npuxaao
00UUCTIEHHS MACU BAHMAIHCY 3A 6I00MUMU HCOPCHL-
Kicmio npyscunu, ii 006xcunot0 6e3 nasanmacicen-
HS, NOUAMKOBUMU YMOBAMU THIUIANIZAUTT KOUBAHD,
a maxooic (yeaza) Qopmoto nepioouuoi mpaexmopii
uvo20 eanmaoicy. Qdepicano nepioduuni mpaexkmopii
PYXy eanmadcy 0Ons mooudixauiii xummoi npysrcu-
HU — maxux AK nidsiwenoi 00 pYxomozo 6izka i 6ico
aKoi 30izaemvbca 3 MameMamuvMHuM MASMHUKOM.
A maxosc 080X XUMHUX NPYHCUH 31 CRITLHUM PYXO-
MUM 8AHMANCEM | 3 PI3HUMU MOUKAMU KPINTEHHA.

Ooepoicani pesyromamu npoiioCcmpo8ano Komn’to-
MmepHUMU AHIMAUIAMU KOAUBAHL 6IONOBIOHUX XUm-
HUX NPYscun ma ix pizHoeuois.

Pe3ynvmamu moxcna eéuxopucmamu sK napa-
Ouemy 0N BUBHEHHA HETHIUHUX 36°A3AHUX CUCMEM,
a maxodxc npu po3paxyHKax 6apiaHmis MexaHitHux
npucmpois, 0e npyicuHU 6NIUBAIOMb HA KONUBAHHS
ix enemenmis. A maxodic y 6unaoxax, Koau 6 mexHo-
J102iAX GUKOPUCMAHHA MEXAHTUHUX NPUCMPOie HeoD-
Xi0HO 8i0Medcysamucs 6i0 XaoMuuHux nepemiujets
eanmascie i 3abesnemumu nepioouuni mpaexmopii
ix pyxy

Kntouo6i cnosa: masmnuuxosi KoOIu8anHs, mpaex-
mopis pyxy, xumna npysxcuna, pieuauns Jlaepanxca
0pyzo20 pody
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nonlinearly coupled oscillating components. Besides, within
the framework of a dynamic system, its components can ex-

change energy with each other. An approach to solving the
class of problems associated with the phenomenon of energy

In the present-day sense, a complex technological pro-
cess can be interpreted as a dynamic system consisting of




exchange between components is considered in [1-3]. The
issues of dependence of this action on the system control
parameters are studied. The method consists in determining
total system energy and correct estimation of energy values
in time as well as their connection with each component.

To illustrate this approach, a two-dimensional spring pen-
dulum is used as a mechanical model of studying several
non-linearly connected systems. Such kind of spring pendu-
lum in an idealized form consists of a «point» load of mass m
attached to the end of a massless spring with stiffness % and
length % in non-loaded state. The other end of the spring is
motionlessly fixed. The oscillating system thus formed should
move only in a vertical plane while keeping the spring axis
straight. The point load simultaneously performs two types
of oscillations: similar to the spring (when moved along the
straight axis of the spring) and similar to the pendulum (when
oscillated together with its axis). This kind of oscillatory
system is called in literature a swinging spring [4]. In practice,
swinging springs can perform role of mechanical illustrations
where transverse (pendulum) oscillations and longitudinal
(spring) oscillations are analyzed. In a case when ratio of fre-
quencies of above oscillations will differ approximately twice,
then the swinging spring will be in a state of resonance.

A large number of possible implementations of the idea
of oscillation of a swinging spring are given in [1-3]. For
example, oscillations of swinging springs are directly related
to many mechanical dynamic systems. Effects of violation
of stability and controllability of high-speed ships were
revealed in the process of calculation of their dynamics in
conditions of unfavorable waves. At a ratio of 1:2 between
frequencies of quartering and athwart sea, loss of dynamic
stability takes place [5]. Also, oscillation of swinging springs
helps to study dynamics of supersonic planes when effects
of violation of their stability and controllability manifest
themselves. It turned out that the most intense oscillation
of a swing occurs when oscillations at the angle of attack
occur with a frequency twice the frequency of lateral oscilla-
tions [4]. These examples explain when it is expedient to take
into account energy exchange between its components (lon-
gitudinal and transverse oscillations) within the framework
of a dynamic system (ship or aircraft).

Modified model of the swinging spring (the model of
flexible thread) plays an important role in building me-
chanics. Flexible thread is a peculiar spring that works only
for stretching. In a typical two-dimensional model, flexible
thread can simultaneously perform transverse oscillations
in its plane (analogous to angular oscillations of the loaded
swinging spring) and pendulum oscillations which connect
support attachments (analogous to vertical oscillations) [6],
for example, wires of high-voltage lines whose state is in-
fluenced by wind gusts. Loss of dynamic stability occurs
at a ratio of 1:2 of frequencies of the indicated oscillations
and then transverse oscillations of the thread appear with
amplitude reaching rather large values. The possibility of
occurrence of such phenomena must be taken into account in
calculation of various structures of building mechanics (sus-
pension bridges, cable and girder systems, cable-ways, power
lines, various antennas, cable systems for holding various
objects, flexible hoses, etc.) [4].

It is clear that the state of resonance of the swinging
spring occurs at a certain combination of values of the swin-
ging spring parameters, namely, when the period of vertical
oscillations will be approximately two times smaller than
that of horizontal oscillations [7]:

2T =T
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where m is the load mass, & is the spring stiffness, % is the
spring length in non-loaded state, g is acceleration of gravity.

Beside conditions of resonance, there is another possibi-
lity to characterize the swinging spring, namely, distinguish
periodic paths from possible motions during oscillation of
a swinging spring load [8, 9]. To do this, it is necessary to
elicit regularities of formation of periodic paths depending on
parameters of the swinging spring and also classify obtained
periodic paths according to the type of schemes of mecha-
nical devices making up them. It is also desirable to bring
to conformity a certain number that would characterize its
geometric form for each periodic path. In addition, it would
be important to study the variety of structures which include
swinging springs.

Therefore, it would be advisable to conduct studies aimed
at geometric modeling of periodic paths of motion of the
swinging spring load as well as varieties of swinging spring
designs.

2. Literature review and problem statement

As usual, the methods of dynamic system solution based
on ideas of a swinging spring use coordinates that determine
spring and pendulum motion [1-3]. In this case, possibility
of representing a Hamiltonian in the form of sum of three
members corresponding to the energies associated with
motions of the spring, the pendulum and the component of
their connection are foreseen. As a result, it becomes possible
to find out how energy is distributed between above three
energy quantities. It is also possible to find out how energy
distribution varies according to the total energy and the con-
trol parameter which is the ratio of frequencies of a simple
pendulum and the spring mass. Energy exchange for indivi-
dual paths is analyzed with the help of the obtained analyti-
cal expressions. Also, global characteristics of distribution of
the swinging spring energy are obtained by calculating spa-
tial and time-average components of energy for a large num-
ber of paths (periodic, quasiperiodic and chaotic) throughout
the phase space.

In [8], changes are studied in behavior of a swinging
spring when one response becomes unstable and is replaced
by another under the parameter control. Poincare sampling
is used to reduce the problem of determining stability of the
boundary cycle to a simpler problem of determining stability
of a fixed point by Poincaré’s mapping. Influence of ampli-
tude and frequency of the basic motion on periodic reaction
of the system is investigated and bifurcation characteristics
of periodic solution are analyzed in [9]. It has been estab-
lished that Hopf bifurcation can occur in a periodic response
of a system that corresponds to some base frequencies and
amplitudes. In [10], dynamics of a spring pendulum is inves-
tigated using asymptotic methods. Methods of the theory of
nonlinear normal oscillation forms have made it possible to
study pendulum dynamics not only for small oscillation am-
plitudes but for significant ones as well. In [11], experimen-
tal observations were made and simple explanations of the



spring load motion given including a well-known case where
frequency of oscillations in vertical direction is twice as high
as for the pendulum motion. Theoretical study of small plane
nonlinear oscillations of a swinging spring with a nonlinear
dependence of the spring tension on its extension is con-
sidered in [12, 13]. The method of the Hamiltonian normal
form is used. Solutions of Hamiltonian equations of normal
form have shown that periodic reorganization of oscillations
between vertical and horizontal modes occurs only in the
case of resonances 1:1 and 2:1. In all other cases, both in the
presence of resonance and in its absence, oscillations occur
with two constant frequencies. In [14], energy crossflow bet-
ween longitudinal and pendulum oscillations is considered
as pulsation. Pulsation and stepped precession are charac-
teristic features of the swinging spring dynamics. Hamilto-
nian reduction was used to find complete analytical solution.
Oscillations of a swinging spring with a moving point of
suspension are investigated in [15]. Swinging pendulum is
described in [16] as a mechanical system with two degrees of
freedom. To do this, a scalar differential equation was formed
and numerically solved using Jacobi-Levi-Civita equations.
Periodic process of pumping the swinging spring energy
from one mode to another is investigated in [17]. The found
analytical description reflects with high accuracy the process
at any initial deviations of the pendulum. Comparison of this
algorithm with algorithms of the classical method of normal
form is made. It is shown in [18] that integral approximation
of a spatial swinging spring adjusted to the resonance 1:1:2
has a monochromium and the stepwise angle of precession
of the plane of oscillation of the resonant spring pendulum
is the rotation number of integral approximations. Swinging
spring oscillation is analyzed in [19] from the standpoint of
energy exchange within the framework of the parametric
mechanism. In particular, swinging spring with two degrees
of freedom is an auto-parametric system which is the basis
for studying nonlinear intertwined systems. An invariant
normal form used in [20] has made it possible not to divide
oscillations of the swinging spring into autonomous — not
autonomous, or resonant — non-resonant cases in the frame-
work of a single approach. Connection of a possible path of
aswinging spring load with Lissajou’s figures is studied in [21].

However, these profound theoretical works often do not
provide clear algorithms of constructing non-chaotic perio-
dic paths of the swinging spring load. Besides theoretical
studies, methods for constructing real non-chaotic periodic
paths of the swinging spring loads are needed for engineering
practice. Some of them are described in [22] where examples
of periodic paths are given as well as in [23] where conditions
for construction of periodic paths were studied. Examples of
periodic swinging spring paths are given in [24]. An example
of constructing paths of motion of a spring load is given
in [25]. The swinging spring dynamics is described in [26]
in two different ways: by means of Lagrange equations and
with application of Newton’s second law. A large number of
periodic paths of the swinging spring load are shown in [27].
In this case, motions of the spring pendulum are studied de-
pending on its two control parameters (the ratio of the spring
and the pendulum frequencies). It was shown that within the
limits of very small and very large values of parameters, path
of the spring pendulum load predominantly can be regulated
and changes in parameters of most initial conditions lead
to chaotic paths. A maple program for constructing path
of a swinging spring load is presented in [28]. It is shown
in [29] how to construct these paths. Based on a composite

program, parametric resonance of the swinging spring is
illustrated in [30]. It manifests itself in energy transfer from
vertical load oscillations to horizontal and vice versa. It was
shown that velocity and amplitude of energy transfer depend
essentially on initial conditions.

A method of projection focusing for construction of pe-
riodic paths of loads of a variety of mathematical pendulums
is considered in [31, 32]. Examples of implementation of this
method are given in[33]. A method for finding values of
a set of parameters to provide a non-chaotic periodic path of
a point load of a swinging spring is given in [34]. Computer
animations of corresponding swinging spring oscillations
which illustrate the results obtained are shown in [35].

As a result of review of published sources [1-30], issues
that have not yet been investigated by other authors were
identified, in particular, with regard to development of a uni-
versal method for constructing periodic paths of motion of
a swinging spring load and classification of these paths de-
pending on basic parameters of the swinging spring.

3. The aim and objectives of the study

The study objective is classification and synthesis of pe-
riodic paths of motion of the swinging spring load and some
of its varieties.

To achieve this objective, the following tasks should be
solved:

— make a table of geometric forms of periodic paths of
motion of the swinging spring load which correspond to the
specified value of stiffness, £, and mass, m;

— using the ratio of horizontal and vertical periods of
load oscillations, determine numbers that will characterize
the resulting geometric forms of periodic motion paths;

— classify periodic paths for:

a) a load of a swinging spring whose axis oscillates to-
gether with the mathematical pendulum;

b) a load in the common point of attachment of two
swinging springs;

¢) a load of a swinging spring suspended to a movable
carriage;

— construct phase paths of functions of generalized coor-
dinates of the swinging spring and its varieties and provide
estimates of the range of change of their values and the load
motion velocities.

4. Determination of periodic paths of load
of a swinging spring and its varieties

4.1. Making the table of geometric forms of periodic
paths of motion of load of the swinging spring depending
on its parameters

In the process of constructing periodic paths, we shall rely
on studies [31-35]. Therefore, intermediate results will be
omitted as far as possible and only final results will be shown.

Let conditions of idealization of load motion be fulfilled
for all tasks:

— parameters and initial conditions are given in conven-
tional numerical units;

— pendulum oscillations of the spring relative to the
fixed suspension occur in the vertical plane Oxy;

— axis of the massless spring remains straight during
oscillation;



— the load mass is centered in the point located on the
spring axis from the nonfixed end;

— there are no supports in nodes and air resistance
during oscillation;

— the process of energy dissipation is slow in comparison
with the characteristic time scales (the oscillatory system is
conservative).

Let us determine paths of motion of the swinging spring
load in a vertical plane depending on the load mass, initial
length of the spring in the non-loaded state, stiffness of the
spring and initial conditions of oscillation occurrence.

The swinging spring diagram according to [34] is shown
in Fig. 1.

Fig. 1. The swinging spring diagram

Take value of the angle formed by the spring axis and
the vertical axis Oy as the first generalized coordinate
function o(¢). Link the second generalized coordinate func-
tion u(¢) with the spring extension in time; denote length of
the spring in non-loaded state through 4. Then virtual coor-
dinates of the moving point load can be calculated according
to these formulas:

x=(h+u)sinv;, y=—-(h+u)cosv. )

Specify Lagrangian as the difference between kinetic and
potential energies:

du o\
LzO.Sm[(dt) +(h+u)(EJ J—

- 0.5ku* =9.81m(h+u)(1—cosv)—9.81mu. (2)

To form a system of Lagrange differential equations of the
second degree, use the following relation (the point means
time derivative):

d(oL) oL d(dL) oL
—|=|-—=0; —| —|-=—=0. 3
dt(azl) ou dt(az')) v ®)

As a result, the system of Lagrange equations of the se-
cond degree is obtained in the form:

d*v . dodu
—+2——+9.81sinv=0;
(u+h)dt2 + 7 dt+98 sinv=0;
d*u do\' ku
W—(U‘Fh)(z) +g—9.81COSU:0. (4)

The problem statement. Determine value of the spring
stiffness £ which would provide periodic path of movement
of the load of mass m attached to the spring of length % in
anon-loaded state. In its initial position, the swinging spring
is arranged vertically, that is, (0)=0. Oscillation is initiated
by means of an impulse applied to the spring load in direction

of the Ox axis: dv(0)=0.5. The value 0.5 can be characterized
as initial velocity of change in time of the angle value, v(¢).

Applying algorithms and programs described in [31-34],
solve the system of equations (4) with the values of para-
meters and initial conditions v(0)=0; dov(0)=0.5; u(0)=1;
du(0)=0. As a result of solution of the system of equa-
tions (4), integral curves and phase paths are obtained. The
phase paths are characterized by the number of pixels in their
images. Fig. 2 shows graphs of change of the number of pixels
Np depending on the value of stiffness & for «unit> values
m=1and ~=1. Extreme locally minimum values are obtained.
This makes it possible (after refinement) to determine six
main critical values of the coefficients of stiffness k: 7.99; 9.55;
12.67; 18.12; 22.96; 28.84.

13000 13000
11000
NplOOOO Np 9000
8000 7000
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4 6 8 10 12 16 20 26 30
k k
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Fig. 2. Graphs of change of the number of pixels depending
on k for m=1: within 3<k<13 (a); within 13<k<30 (b)

Fig. 3 shows instantaneous positions of the swinging
spring and periodic paths of motion of loads of mass m=1
depending on values of the coefficient of stiffness k. Note that
images of the obtained geometric shapes of the load motion
paths correspond to the local minima of the number of pixels
in Fig. 2. Computer animations of the corresponding oscilla-
tions are given at the Internet site [36].
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Fig. 3. Periodic paths of the spring load motion for:
k=1.99 (a); k=9.55 (b); k=12.67 (c); k=18.12 (d);
k=22.96 (e); k=28.84 (f)

Fig. 4 shows images of the phase paths of the generalized
coordinate functions corresponding to periodic paths of
Fig. 3. They were built in the coordinate phase planes {u, Du}
and {o, Do} which are shown together in the figure. Red
color indicates the function u(¢) phase path and blue color
indicates the function o(¢). phase path. Recall that the func-
tion u(t) describes the spring length and the function o(¢) is
the angle of deviation of the spring from vertical.
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Fig. 4. Phase paths in phase planes {u, Du} and {v, Dv} for:
k=1.99; 1<u(t)<1.4; —0.6 < Du(t)<0.6; —0.3< v(#)<0.3;
—0.45<Dv(t)<0.45 (a); k=9.55; 0.9<u(t)<1;
—0.2<Du(t)<0.2; —0.3< v(#)<0.3; —0.44< Dv(#)<0.44 (b);
k=12.67; 0.6 <u(t)<0.9; —1.1<Du(t)<1.1; —0.35< v(#)<3.5;
—0.6<DvV(t)<0.6 (c); k=18.12; 0.2<u(t)< 1;
—1.8<Du(t)<1.8; —0.4< v(t)<0.4; —0.5< Dv(t)<0.5 (d);
k=22.96; 0<u(t)<1; —2.5< Du(t)<2.5; —0.8 < v(t)<0.8;
—1.5<Dv(t)< 1.5 (e); k=28.84; O<u(t)<1; —=3<Du(t)<3;
—1<t)<1; =2.5<DV(t)<2.5 (f)

Hence, it is possible to determine ranges of change of ge-
neralized coordinates functions as well as rate of their change
with the help of phase paths (Fig. 4).

1 <u(t)<1.4; —0,6<Du(t)<0,6; —0.3<0(t)<0.3;
~0.45<Do(t)<0.45 (Fig. 4, a);

0.9<u(t)<1; —0.2<Du(t)<0.2; —0.3<0(£)<0.3;
~0.44<Do(t)<0.44 (Fig. 4, b);

0.6<u()<0.9; —1.1<Du(t)<1.1; —0.35<0(t)<3.5;
—0.6<Do(t)<0.6 (Fig. 4, ¢);

0.2<u(t)<1; ~1.8<Du(t)<1.8; —0.4<v()<0.4;
~0.5<Do(t)<0.5 (Fig. 4, d);

O<u(t)<1; -2.5<Du(t)<2.5; —-0.8<0v(t)<0.8;
—1.5<Do(t)<1.5 (Fig. 4, e);

O<u(t)<1; -3<Du(t)<3; —1<ov(t)<1;
—2.5<Do(t)<2.5 (Fig. 4, /).

At the next stage, find proportions between the coeffi-
cient of spring stiffness £ and mass m which would provide
the same (by geometric shape) paths of motion of loads (the
spring length A=1 in the non-loaded state is known). For this
purpose, it is necessary to express value of the load mass m
as a function of the coefficient of stiffness k. Specify initial
conditions for initiating oscillations by vertical position of
the spring suspension v(0)=0 which was assigned an initial
angular velocity Do(0)=0.5. Let u(0)=1; du(0)=0.

Determine periodic path for the variable mass m by fi-
xing value of the spring stiffness. Using the procedure given
in [31-34], build the graph of change of the number of pixels
in the image of the phase paths depending on mass m, for
example, for the value of £=18.12 (Fig. 5). Locally minimum

extreme values of the graph enable determination of critical
values of mass m: 0.627; 0.788; 1; 1.43; 1.88; 2.24.
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Fig. 5. Graphs of change of the number of pixels
depending on m for k=18.12: within 0.5<m<1.5 (a);
within 1.5<m<5 (b)

Fig. 6 shows instantaneous positions of the swinging
spring with £=18.12 as well as periodic paths of the load mo-
tion for the calculated load masses. One can see that periodic
paths in Fig. 6 are similar in their geometric forms to the
paths in Fig. 3. This indicates existence of a certain regularity
of «generation» of periodic paths.
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Fig. 6. Periodic paths of the spring load for:
m=0.627 (a); m=0.788 (b), m=1(c); m=1.43 (d);
m=1.88 (e); m=2.26 (f)

Contents of Fig.3 and Fig. 6 convinces that a number
of geometric forms of periodic paths repeat in a certain
sequence. To check this observation and generalize the
technique, consider another variant of spring oscillation, for
example, with stiffness £=28.84.

Fig. 7 shows the graph of change of the number of pixels
in the image of phase paths depending on mass m for the va-
lue of £=28.84. Locally minimum extreme values of the graph
enable determination of critical mass values m: 1; 1.26; 1.59;
2.28; 3; 3.6.

It turns out that the built periodic paths of load motion
will look identical in their form to those shown in Fig. 6,
however, at other values of mass: m=1 (a); m=1.26 (b);
m=1.59 (¢); m=2.28 (d); m=3 (e); m=3.6 (f). This observa-
tion facilitates making the table for classification of parame-
ters m and & which would ensure existence of a periodic path
of the swinging spring load motion (h=1).

Let us consider classification of periodic paths of motion
of the spring load. To identify geometric form of periodic



paths we will use the ratio of periods of vertical T, = 2n\/4/g
and horizontal T = 2mn./m/k oscillations of the load.
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Fig. 7. Graphs of change of the number of pixels
depending on m for k=28.84: within 0.5<m<1.6 (a);
within 1.6 <m<5 (b)

Table 1 gives the value of ratio of horizontal oscillation
periods to vertical ones depending on geometric shape of
the motion paths with respect to periodic paths in Fig. 3, 6.
Values of the load masses m for the corresponding values of
the coefficient of stiffness & are also given. All values are in
conditional units.

Table 1
Values of load masses for periodic paths
corresponding to stiffness k
Values Values
of stiffness of the
coefficients | 799 | 95 |12.67[18.12(22.96|28.87| period
- ratios
Path form {
0.276| 0.33 | 0.44 | 0.63 | 0.8 1 1.71
0.35 |0.415]0.554(0.793| 1 1.25 1.525

0.44 1 0.23 | 0.7 1 1.26 | 1.58 1.36

0.63 | 0.75 1 [1.423] 1.8 | 2.27 1.14

0.83 1 132 | 19 | 24 3 0.986

G B|<€|<

1 118 | 1.58 | 2.26 | 285 | 3.6 0.9

Table 1 enables finding of values load masses and forms of
paths only for discrete values of k. In order to determine per-
missible value of mass m for arbitrary 10<k<35 with the aim
of obtaining a certain load path (for example, for verification,
shown in Fig. 6, a), use interpolation formula for two points
with coordinates (28.84, 1) and (18.12, 0.627). Computation
gives function

m(k)=0.0348k—-0.00348.

Other functions are obtained in a similar way:
m(k)=0.044k—0.00923;

m(k)=0.055k+0.00272;

m(k)=0.0792k—-0.00675;

m(k)=0.1044-0.0131;

m(k)=0.127k—0.0588, (5)

which correspond to the load paths depicted in Fig. 6, b—f.

Consequently, to calculate mass m when it moves along
a periodic path at a specified value of the coefficient of stiff-
ness &, one of the formulas (5) must be used. At the same
time, an opportunity appears not only to construct periodic
paths but also pre-select one of the geometric forms of the
paths shown in Fig. 6.

For example, to obtain periodic paths shown in Fig. 6, a—f
for the coefficient of stiffness £=22.96, it is necessary to se-
lect mass values, respectively, m=0.8; m=1; m=1.27, m=1.8;
m=2.38; m=2.85.

This illustrates the possibility of not only constructing
a periodic path but also to choose one of the paths shown
in Fig. 6. Thus, in a certain sense, the inverse problem of
determining periodic paths of motion of the spring load was
solved. Next, let us consider other classes of periodic paths.

4. 2. The class of periodic paths of motion of load of the
spring whose axis oscillates together with the mathema-
tical pendulum

Let us consider a kind of a swinging spring combined
with a mathematical pendulum. Let the swinging spring
axis be a mathematical pendulum of length R and a load of
mass M (Fig. 8). Assume that masses m and M of the spring
and the pendulum do not coincide. Determine the family of
paths of movement of the swinging spring load in the vertical
plane Oxy depending on the spring parameters.

Fig. 8. Diagram of a swinging spring connected
with a pendulum

Value of the angle formed by the swinging spring axis
and the vertical axis Oy was taken as the first generalized
coordinate function v(z). The second generalized coordinate
function u(t) is associated with elongation of the spring in
time; A denotes length of the swinging spring in the non-
loaded state. Then virtual coordinates of the moving point
load of the spring can be calculated by formulas (1):

Lagrangian systems:

o\ du\ do\
L=05MR*| = . — =
0.5MR (dt) +05m[(dt) +u (dt) ]+

+9.81(mu+ MR)cosv—0.5k(u—h)*. (6)



To form a system of Lagrange differential equations of the
second degree, use relation (3). As a result, the system of La-
grange equations of the second degree is obtained in the form:

mdzu—mu(dv)Q—Q 81mcosv+k(u—h)=0; )
dt? dt ' -

2
(MR’ +muz)%+2mu%%+9.81sinv(MR+mu)=0.

The problem statement. Determine value of mass M of the
mathematical pendulum with length R which would provide
periodic path of moving the load with mass m of the swinging
spring with stiffness & and length % in non-loaded state. In
initial position, the oscillating system is arranged vertically,
that is, v(0)=0. Oscillations are initiated by means of an
impulse applied to the spring load in direction of the axis Ox:
dv(0)=1.5. The value 1.5 can be characterized as initial ve-
locity of change in time of the angle value v(¢). Initial values
for the parameter u of the spring elongation will be chosen in
the form: #(0)=1; du(0)=0.

Applying algorithms and programs described in [31-34],
solve the system of equations (7) by numerical Runge-Kutta
method with initial conditions 0(0)=0; do(0)=1.5; u(0)=2;
du(0)=0. To determine magnitude of critical value of M, the
graph of saturation of the image of the phase path lines [34]
can be used. Provide periodicity of the path of the swinging
spring load for parameters R=8, m=15, k=150 and h=2.5
using the found value of M. Fig. 9 shows periodic paths
depending on the mass M of the mathematical pendulum.
Fig. 10 shows combined phase paths constructed in the
coordinate phase planes {u, Du} and {o, Do} in red and blue,
respectively. To confirm value of the found critical value
of M, the graph of saturation of the image of lines of the phase
path [34] can be used. The Internet site [36] demonstrates
computer animations of corresponding oscillations.
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Fig. 9. Periodic paths of motion of the spring load for:
M=20.4 (a); M=17.17 (b); M=5.26 (c); M=2.19 (d)

It is possible to determine ranges of change of generalized
coordinates functions as well as rate of their change with the
help of phase paths (Fig. 10).

0.5<u(t)<7;, -8.5<Du(t)<8.5; —1<ov(t)<1;
—1<Do(t)<1.5 (Fig. 10, a);

1<u(t)<7; -8.5<Du(t)<8.5; —1<ov(t)<1;
~1<Do(t)<1 (Fig. 10, b);

1<u(t)<6.1; —-8.2<Du(t)<8.2; —1<v(f)<1;
—1<Do(t)<1,5 (Fig. 10, ¢);

2<u(t)<5; =5<Du(t)<5; —1<o(t)<1;
—1.5<Do(t)<1.5 (Fig. 10, d).
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Fig. 10. Phase paths in planes {u, Du} and {v, Dv} for:
M=20.4; 0.5<u(t)<7; —8.5<Du(t)<8.5; —1<v(t)<1;
—1<Dv(t)< 1.5 (a); M=T.17; 1<u(t)<T; —8.5< Du(t)<8.5;
—1<v(t)<1; —=1<Dv(t)< 1 (b); M=5.26; 1<u(t)<6.1;
—8.2<Du(t)<8.2; —1<v(t)<1; —1<Dv(t)<1,5 (c);
M=2.19; 2<u(t)<5; =5<Du(t)<5; —1<v(t)< 1;
—1.5<Dv(t)< 1.5 (d)

4. 3. The class of periodic paths of a joint movable load
of two swinging springs

Let us consider an oscillation system formed of a pair
of swinging springs. Construct a path of motion of a load
common to these swinging springs in vertical plane Oxy
(Fig. 11). Parameters include the load mass m, the same
initial lengths % of springs in the non-loaded state, the same
stiffness of the springs £ and initial conditions for occurrence
of oscillations. In addition, it is necessary to specify distance
H between fasteners of the springs.

Fig. 11. Diagram of the system formed
of two swinging springs

Take the values of Cartesian coordinates in the vertical

plane Oxy as generalized coordinate functions X(¢) and Y(z).
We have Lagrangian:

L= o.sm[(dyjz +("X)2]-o.5k(m A -

dt dt

—O.Sk( X+ (Y- HY —h)2—9.81mY. (8)



To form a system of Lagrange differential equations of the
second degree, use relation (3). As a result, a system of La-
grange equations of the second degree is obtained in the form:

mpq + 2 pqku —kuh(q+ p) =0,

2
mpq dt{ +2pqkY —kYqh -

— kpgH —kphY + kphH +9.81mpg =0,

where

p=~NX2+Y% =X +Y2-2YH+H". )

The problem statement. Determine value of mass m which
would provide a periodic path of movement of a joint load of
a system of two swinging springs with coefficient of stiffness
k and length % in the non-loaded state each.

Let load of the system of swinging springs have coordi-
nates X(0)=2 and Y(0)=3 in initial position. Oscillations are
initiated due to the energy of springs. That is, there will be
no impulses applied to the spring load in direction of the axes:
dX(0)=0 and dX(0)=0. Let H=5; k=15 and h=2.5.

Applying the algorithms and programs described in [31-34],
solve the system of equations (9) by the numerical Runge-
Kutta method with initial conditions X(0)=2 and Y(0)=3;
dX(0)=0 and dX(0)=0. It is necessary to take value of mass
m for the specified parameters £ and 4 in order to provide
periodicity of motion of the path of the swinging spring load.
Fig. 12 shows an image of the class of periodic paths depen-
ding on the load mass m. Fig. 13 shows combined phase paths
constructed in the {u, Du} and {0, Do} planes shown in red
and blue, respectively. To confirm value of the found critical
value of M, the graph of saturation of the image of the phase
path lines can be used [34]. The site [36] demonstrates com-
puter animations of the corresponding oscillations.
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Fig. 12. Periodic paths of motion of the joint load
of two swinging springs for: m=0.53 (a); m=0.89 (b);
m=0.2 (c); m=0.758 (d)

With the help of phase paths, it is possible to determine
ranges of change of functions of generalized coordinates as
well as rate of this change (Fig. 13).

2<u(t)<2; —=5<Du(t)<5; 1.5<0(t)<3;
—6<Do(t)<6 (Fig. 13, a);

2<u(t)<2; =3<Du(t)<3; 1.5<v(t)<3;
-5<Duo(t)<5 (Fig. 13, b);

2<u(t)<2; —-8<Du(t)<8; 1.8<v(t)<3;
—7<Do(t)<7 (Fig. 13, ¢);

2<u(t)<2; —4<Du(t)<4; 1.5<0(t)<3,2;
—6<Do(t)<6 (Fig. 13, d).
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Fig. 13. Phase paths in planes {v, Du} and {v, Dv} for:
m=0.53; —2<u(t)<2; =5<Du(t)<5; 1.5<v(t)<3;
—6<Dv(t)<6 (a); m=0.89; —2<u(t)<2; =3<Du(t)<3;
1.5<v(#)<3; =5<Dv(t)<5 (b); m=0.2; —=2<u(t)<2;
—8<Du(t)<8; 1.8<v(t)<3; —=7<Dv(t)<T (c);
m=0.758; —2<u(t)<2; —4< Du(t)< 4;
1.5<v()<3,2; —6<Dv(t)<6 (d)

4. 4. The class of periodic paths of motion of a load at-
tached to a spring suspended to a movable carriage

Let us apply a swinging spring as a mover when moving
horizontally a carriage model installed on a «ramp». To do
this, create an oscillatory system by suspending the swinging
spring to the carriage bottom (Fig. 14). Show that to model
translational motion of the carriage, it is necessary to en-
sure motion of the spring load in a periodic path. Also, it
is necessary to apply impulse to the carriage in a direction
of intended motion. Here is the way to determine path of
movement of the load of the swinging spring suspended to
a movable carriage along vertical axis Oxy. Parameters will
be as follows: the carriage mass M, the load mass m, initial
length of the spring in non-loaded state 4, the spring stiff-
ness k and initial conditions for occurrence of oscillations.

Fig. 14. Diagram of a swinging spring suspended
to a movable carriage



Choose value of the carriage motion in horizontal di-
rection as the first generalized coordinate function u(t).
Value of the angle between the swinging spring axis and
vertical axis Oy will be the second generalized coordinate
function o(¢). Relate the third generalized coordinate func-
tion w(t) to the change of the spring length in time; denote
length of the swinging spring in non-loaded state by A. Then
virtual coordinates of the moving point load can be calcula-
ted according to the formulas:

x=u+(h+w)sinv;, y=—(h+w)coso. (10)

Specify Lagrangian as difference between kinetic and po-
tential energies:

L=0.5(M + m)(di;) ~0.5k(w—h)’ +

dw S(doY
+05 (dt)+w(dt)+

du(d do )
+ 2—| —sinv+w—-cosv
dt

+9.81mwcoso.

(11
dt dt

To form a system of Lagrange differential equations of the
second degree, apply relation (3). As a result, the system of La-
grange equations of the second degree is obtained in the form:

2

d wsmv+4d—@cosv+
dt? dt dt

9 2
+2wﬂcosv Zw(zj) sinv]zO;

(m+M)+(0 5m

d2

2
0.5m (4 @d—w +2w 2Q+2wﬂcosv+

de dt dr? dr?
Z%é—wc —Qw%%smv)
du( dw do
_mE(ECOSU wasmv)+981mwsmv 0; (12)

2 2
0.5m(2 i{t +26;—2 nv+2dL;dvcost—

do\ . dudo
_ g du @0 _
OSm( (d)+ ddcosv]
—9.81mcosv+k(w—h)=0.

The problem statement. Determine length % of non-loaded
swinging spring which will oscillate to ensure translational
motion of the carriage in horizontal direction provided that
path of the load motion is periodic. Oscillations of the swinging
spring suspended to the carriage as well as initial impulse
supplied to the carriage in the direction of Ox axis will be
movers of the motion process. Presence of such an impulse
is necessary for translational motion of the carriage. With no
impulse, the carriage will oscillate along the Ox axis relative
to the initial position. Take the following parameters of the
oscillatory system: the carriage mass M=>500; the swinging
spring load mass m=86.8; spring stiffness £=750.

Initial position of the swinging spring is horizontal, that
is v(0)=m/2. Oscillations are initiated by pendular motions
of the swinging spring and by means of the initial impulse

du(0)=1 applied to the carriage in direction of the Ox axis.
Choose initial values for the spring elongation parameter w
in a form w(0)=5; dw(0)=0. That is, initial length of the
swinging spring is equal to five conventional units.

In accordance with the procedure described in [31-34],
first solve a system of equations (12) by Runge-Kutta
numerical method at initial conditions u(0)=1; du(0)=1;
0(0)=n/2; do(0)=0; w(0)=5; dw(0)=0. Applying the me-
thod of projection focusing, select such value of parameter A
which would ensure periodicity of the spring load path. To
find critical value of %, construct integral curves in the phase
spaces {u, Du, t}, {v, Do, t} and {w, Dw, t} as well as phase paths
in planes {u, Du} and {v, Dv}. Using the phase paths, ranges
of change of coordinate functions of parameters during oscil-
lation of the swinging spring can be determined. To confirm
critical value of /& that was found, the graph of saturation of
the image of the phase path lines [34] can be used.

After calculating A, this value must be substituted in the
system of Lagrange equations of the second degree (12) and
numerically solved by Runge-Kutta method with respect
to the functions u(¢); v(¢t) and w(¢). With the help of these
solutions, an approximate image of the path of the swinging
spring load motion is determined in the Oxy plane. Fig. 15
shows periodic paths of motion of swinging spring loads de-
pending on the obtained values of .

The Internet site [36] demonstrates computer anima-
tions of corresponding oscillations. The animations illustrate
geometric models of the carriage motion to the right.
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Fig. 15. Periodic paths of motion of the spring load for:
h=>5.44 (a); h=5 (b); h=3.3 (¢); h=2.08 (d)

Fig. 16 shows phase paths in planes {&, Du}, {v, Dv} and
{w, Dw} in red, blue and black, respectively.

Character of motion of geometric carriage model can be
determined using the graph of derivative of the coordinate
function u(t) (Fig. 17).

With the help of phase paths, it is possible to determine
ranges of change of generalized coordinate functions as well
as rate of their change (Fig. 16).

1<u(t)<12; -0.5<Du(t)<2.5; -1 <o(t)<1;
—1<Do(t)<1; 3<w(t)<9; -3<Dw(t)<3 (Fig. 16, a);
1<u(t)<12; -0.5<Du(t)<2.5; -1 <o(t)< 1;
—1<Do(t)<1; 3<w(t)<9; —4<Dw(t)<4 (Fig. 16, b);

1<u(t)<11; 0<Du(t)<0.5; —1<ov(t)<2; —2<Do(t)<2;
1<w(t)<8; —10<Dw(t)< 10 (Fig. 16, ¢);



1<u(t)<12; 0,5<Du(t)<2; —0.5<0v(t)<3;
—5.5<Do(t)<5.5; 3<w(t)<7; —10<Dw(t) <10 (Fig. 16, d).
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Fig. 16. Phase paths in planes {v, Du}, {u, Du} and {w, Dw} for:
h=5.44; 1<u(t)<12; —0.5<Du(t)<2.5; —1<v(t)<1;
—1<Dv(t)<1; 3<w(t)<9; —=3<Dw(t)<3 (a);
h=5; 1<u(t)<12; —=0.5<Du(t)<2.5; =1<t)< 1;
—1<DV(t)<1; 3<w(t)<9; —4< Dw(t)<4 (b);
h=3.3; 1<u(t)<11; 0< Du(t)<0.5; —1<(t)<2; —2< Dv(t) < 2;
1<w(t)<8; —10<Dw(t) <10 (c); h=2.08; 1< u(t)<12;
0,5<Du(t)<2; —0.5<v(t)<3; =5.5<Dv(t)<5.5;
3<w(t)<7; —10<Dw(t)< 10 (d)
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Fig. 17. Graphs of derivative of the coordinate
function u(t) for: h=5.44 (a); h=5 (b); h=3.3 (c); h=2.08 (d)

For completeness of classification, let us give other
periodic paths of a load of a swinging spring suspended to
a movable carriage.

The problem statement. Determine mass m of a swinging
spring of length % in non-loaded state suspended to a movable
carriage of mass M which would ensure periodic oscillatory
character of motion of this carriage relative to its initial
position. Choose parameters of the oscillatory system as fol-
lows: the carriage mass M=10; the spring stiffness =35, the
spring length #=3. Choose generalized coordinate functions
and sequence of problem solving as in the previous example.

Let initial position of the swinging spring be horizontal,
that is v(0)=m/2. Oscillations are only initiated by pendular
motions of the swinging spring. Let us verify that the car-
riage will move only to the left or to the right and will not

move translationally towards Ox axis without initial condition
du(0)=1. In the previous example, the carriage translationally
proceeded in a steady way to the right thanks to such an initial
impulse. Initial values for of the spring elongation parameter w
will be chosen as @w(0)=3; dw(0)=0. That is, initial length of
the swinging spring is equal to three conventional units.

Consequently, the problem is solved with initial con-
ditions #(0)=0; du(0)=0; v(0)=n/2; do(0)=0; w(0)=3;
dw(0)=0. According to the procedure described in [31-34],
determine possible masses m of the spring load that provide
periodic paths: 5.06; 4.59; 3.85 and 1.91 (Fig. 18).

Fig. 19 shows phase paths in planes {u, Du}, {v, Do} and
{w, Dw} in red, blue, and black, respectively.

b

Fig. 18. Periodic paths of motion of a spring load for:
my=>5.06 (a); my=4.59 (b); my=3.85 (c); my=1.91 (d)
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Fig. 19. Phase paths in planes {v, Du}, {v, Dv} and {w, Dw} for:
my=5.06 (a); my=4.59 (b); m=3.85 (c); m=1.91(d)

With the help of obtained phase paths, it is possible to de-
termine ranges of change of generalized coordinate functions
as well as rate of this change.

6. Discussion of classification and results of modeling
the path of motion of the load of the swinging spring
and is modifications

The developed classification and the compiled table of
periodic paths make it possible to solve inverse problems,
namely, add periodic curves as parameters in a graphic form
to the list of numerical parameters of the swinging spring.



Values of the ratio of horizontal and vertical periods of oscil-
lation of the swinging spring enable determination of nume-
rical values of the parameters that would ensure existence of
a periodic path of load motion preliminary chosen from the
indicated six path forms.

Besides, the developed method for constructing periodic
paths makes it possible to estimate their lengths by counting
the number of pixels in the path image. That is, if necessary,
a possibility should appear to specify a periodic path of
a certain length which should be taken into account when
studying dynamic systems in which energy «pumping» takes
place between its parts.

The estimates of limits and speeds of change of pendulum
angles as well as corresponding elongations and speeds of
spring elongation given in the work allow one to investigate
the swinging spring versions, for example, in a form of sus-
pension to a movable carriage. Lack of a systems approach
to modeling periodic paths of motion of the swinging spring
load and the spring varieties hampered algorithmic imple-
mentation of similar solutions.

The results obtained can be explained by possibility of
applying the Lagrange variational principle to calculation of
mechanical oscillations of the swinging spring type. This has
allowed us to use the Lagrange equation of the second degree
to describe motion of the spring load.

The non-realized possibilities of geometric modeling in
the study of oscillations of concrete swinging springs include
consideration of their resonant state. A question arises: can the
resonant state of the swinging spring manifest itself as a perio-
dic path of its load motion? How this periodic path will look
like? Answers to such questions are important as angular sway
of a swinging spring is most effective due to this spring energy.
Development of random transverse perturbation will last to
a fixed value of amplitude since the spring energy reserves
are finite. Stretching (or compression) of the swinging spring
again occurs after reaching such an amplitude during oscilla-
tion of this spring. It is necessary to study the range of varia-
tion of parameters with a maximum corresponding to the ratio
mg/kh=1/4, where m is the load mass, & is the spring stiffness,
h is spring length in non-loaded state, g=9.81. It is necessary
to check under what conditions this relation is fulfilled with
acceptable accuracy and how it affects image of periodic paths
of the spring load motion. It is necessary to determine number
of possible periodic paths for a certain set of input parameters,
as well as classify images of periodic paths and perform their
gradation taking into account increase in their lengths.

It will be of interest to study from these positions
nonlinear coupled systems with interacting subsystems on
examples of engineering problems. Study of mechanical de-
vices in which springs will affect paths of oscillation of their
loads will be a step towards this goal. Some examples of such
devices are given in this paper. It is still advisable to add
mechanisms with springs and movable loads of the following
schemes:

— a pendulum fixed to a vertical spring in a guide device;

— variants of a double pendulum, one of the elements of
which is a swinging spring;

— a pendulum under a movable carriage whose position is
influenced by a spring.

Difficulties in this direction of studies will arise when
trying to determine the resonant state of a swinging spring
included in such devices as well as in the case of study of
oscillations of a spatial swinging spring.

7. Conclusions

1. Tt has been shown that there are at least six geometric
forms of periodic paths of motion of the swinging spring load
that correspond to specified coefficients of stiffness  and the
value of mass m.

2. With the help of the ratio of horizontal and vertical
periods of load oscillations, it was possible to determine six
numbers, namely 1.71; 1.525; 1.36; 1.14; 0.986; 0.9 which cor-
respond to geometric forms of periodic motion paths.

3. Classes of periodic paths of motion were found for:

a) the load of a swinging spring whose axis oscillates
with the mathematical pendulum (for example, with the fol-
lowing parameters: R=8; m=15; k=150; h=2.5; M=2.19 and
initial conditions: v(0)=0; do(0)=1.5; u(0)=2; du(0)=0);

b) the load positioned at the common point of attach-
ment of two swinging springs (for example, with the fol-
lowing parameters: H=5; k=15; h=2.5; m=0.758 and initial
conditions: X(0)=2 and Y(0)=3; dX(0)=0 and dY(0)=0);

¢) the load of the swinging spring suspended to a mov-
able carriage (for example, with the following parameters:
M=500; m=86.8; k=750; h=2.08 and initial conditions:
w(0)=1; du(0)=1; v(0)=n/2; do(0)=0; w(0)=5; dw(0)=0).

4. For all considered variants, phase paths of functions of
generalized coordinates of the swinging spring and its varie-
ties were constructed and the range of change of their values
and velocities of load motion was estimated.
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