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Продовжено дослідження можливостей гео­
метричного моделювання нехаотичних періодич­
них траєкторій руху вантажу хитної пружини 
та її різновидів. В літературі хитною пружиною 
(swinging spring) називають різновид матема­
тичного маятника, який складається з точко­
вого вантажу, приєднаного до невагомої пружи­
ни. Другий кінець пружини фіксується нерухомо. 
Розглядаються маятникові коливання пружи­
ни у вертикальній площині за умови збереження 
прямолінійності її осі. Шукана траєкторія ван­
тажу хитної пружини моделюється з викорис­
танням рівнянь Лагранжа другого роду. 

Актуальність теми визначається необхідні­
стю дослідження умов відмежування від хаотич­
них коливань елементів механічних конструк­
цій, до складу яких входять пружини, а саме 
визначення раціональних значень параметрів для 
забезпечення періодичних траєкторій їх коли­
вань. Хитні пружини можна використати як 
механічні ілюстрації при дослідженні складних 
технологічних процесів динамічних систем, коли 
нелінійно зв’язані коливальні компоненти систе­
ми обмінюються енергією між собою.

Одержані результати дозволяють долучити 
до переліку числових параметрів хитної пружи­
ни ще й періодичні криві як «параметри» в гра­
фічній формі. Тобто визначити числові значення 
параметрів, які б забезпечили існування напе­
ред заданої форми періодичної траєкторії руху 
вантажу хитної пружини. Розглянуто приклад 
обчислення маси вантажу за відомими жорст­
кістю пружини, її довжиною без навантажен­
ня, початковими умовами ініціалізації коливань, 
а також (увага) формою періодичної траєкторії 
цього вантажу. Одержано періодичні траєкторії 
руху вантажу для модифікацій хитної пружи­
ни – таких як підвішеної до рухомого візка і вісь 
якої збігається з математичним маятником. 
А  також двох хитних пружин зі спільним рухо­
мим вантажем і з різними точками кріплення.

Одержані результати проілюстровано комп’ю­
терними анімаціями коливань відповідних хит­
них пружин та їх різновидів.

Результати можна використати як пара­
дигму для вивчення нелінійних зв’язаних систем, 
а також при розрахунках варіантів механічних 
пристроїв, де пружини впливають на коливання 
їх елементів. А також у випадках, коли в техно­
логіях використання механічних пристроїв необ­
хідно відмежуватися від хаотичних переміщень 
вантажів і забезпечити періодичні траєкторії 
їх руху

Ключові слова: маятникові коливання, траєк­
торія руху, хитна пружина, рівняння Лагранжа 
другого роду
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1. Introduction

In the present-day sense, a complex technological pro-
cess can be interpreted as a dynamic system consisting of 

nonlinearly coupled oscillating components. Besides, within 
the framework of a dynamic system, its components can ex-
change energy with each other. An approach to solving the 
class of problems associated with the phenomenon of energy 
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exchange between components is considered in [1–3]. The 
issues of dependence of this action on the system control 
parameters are studied. The method consists in determining 
total system energy and correct estimation of energy values 
in time as well as their connection with each component.

To illustrate this approach, a two-dimensional spring pen-
dulum is used as a mechanical model of studying several 
non-linearly connected systems. Such kind of spring pendu-
lum in an idealized form consists of a «point» load of mass m 
attached to the end of a massless spring with stiffness k and 
length h in non-loaded state. The other end of the spring is 
motionlessly fixed. The oscillating system thus formed should 
move only in a vertical plane while keeping the spring axis 
straight. The point load simultaneously performs two types 
of oscillations: similar to the spring (when moved along the 
straight axis of the spring) and similar to the pendulum (when 
oscillated together with its axis). This kind of oscillatory 
system is called in literature a swinging spring [4]. In practice, 
swinging springs can perform role of mechanical illustrations 
where transverse (pendulum) oscillations and longitudinal 
(spring) oscillations are analyzed. In a case when ratio of fre-
quencies of above oscillations will differ approximately twice, 
then the swinging spring will be in a state of resonance.

A large number of possible implementations of the idea 
of oscillation of a swinging spring are given in [1–3]. For 
example, oscillations of swinging springs are directly related 
to many mechanical dynamic systems. Effects of violation 
of stability and controllability of high-speed ships were 
revealed in the process of calculation of their dynamics in 
conditions of unfavorable waves. At a ratio of 1:2 between 
frequencies of quartering and athwart sea, loss of dynamic 
stability takes place [5]. Also, oscillation of swinging springs 
helps to study dynamics of supersonic planes when effects 
of violation of their stability and controllability manifest 
themselves. It turned out that the most intense oscillation 
of a swing occurs when oscillations at the angle of attack 
occur with a frequency twice the frequency of lateral oscilla-
tions [4]. These examples explain when it is expedient to take 
into account energy exchange between its components (lon-
gitudinal and transverse oscillations) within the framework 
of a dynamic system (ship or aircraft).

Modified model of the swinging spring (the model of 
flexible thread) plays an important role in building me-
chanics. Flexible thread is a peculiar spring that works only 
for stretching. In a typical two-dimensional model, flexible 
thread can simultaneously perform transverse oscillations 
in its plane (analogous to angular oscillations of the loaded 
swinging spring) and pendulum oscillations which connect 
support attachments (analogous to vertical oscillations) [6], 
for example, wires of high-voltage lines whose state is in
fluenced by wind gusts. Loss of dynamic stability occurs 
at a ratio of 1:2 of frequencies of the indicated oscillations 
and then transverse oscillations of the thread appear with 
amplitude reaching rather large values. The possibility of 
occurrence of such phenomena must be taken into account in 
calculation of various structures of building mechanics (sus-
pension bridges, cable and girder systems, cable-ways, power 
lines, various antennas, cable systems for holding various 
objects, flexible hoses, etc.) [4].

It is clear that the state of resonance of the swinging 
spring occurs at a certain combination of values of the swin
ging spring parameters, namely, when the period of vertical 
oscillations will be approximately two times smaller than 
that of horizontal oscillations [7]:

2T Ty x= ,

where

T
m
kx = 2p ,  T

h
gy = 2p ,

where m is the load mass, k is the spring stiffness, h is the 
spring length in non-loaded state, g is acceleration of gravity.

Beside conditions of resonance, there is another possibi
lity to characterize the swinging spring, namely, distinguish 
periodic paths from possible motions during oscillation of 
a swinging spring load [8, 9]. To do this, it is necessary to 
elicit regularities of formation of periodic paths depending on 
parameters of the swinging spring and also classify obtained 
periodic paths according to the type of schemes of mecha
nical devices making up them. It is also desirable to bring 
to conformity a certain number that would characterize its 
geometric form for each periodic path. In addition, it would 
be important to study the variety of structures which include 
swinging springs.

Therefore, it would be advisable to conduct studies aimed 
at geometric modeling of periodic paths of motion of the 
swinging spring load as well as varieties of swinging spring 
designs.

2. Literature review and problem statement

As usual, the methods of dynamic system solution based 
on ideas of a swinging spring use coordinates that determine 
spring and pendulum motion [1–3]. In this case, possibility 
of representing a Hamiltonian in the form of sum of three 
members corresponding to the energies associated with 
motions of the spring, the pendulum and the component of 
their connection are foreseen. As a result, it becomes possible 
to find out how energy is distributed between above three 
energy quantities. It is also possible to find out how energy  
distribution varies according to the total energy and the con-
trol parameter which is the ratio of frequencies of a simple 
pendulum and the spring mass. Energy exchange for indivi
dual paths is analyzed with the help of the obtained analyti-
cal expressions. Also, global characteristics of distribution of 
the swinging spring energy are obtained by calculating spa-
tial and time-average components of energy for a large num-
ber of paths (periodic, quasiperiodic and chaotic) throughout 
the phase space.

In [8], changes are studied in behavior of a swinging 
spring when one response becomes unstable and is replaced 
by another under the parameter control. Poincare sampling 
is used to reduce the problem of determining stability of the 
boundary cycle to a simpler problem of determining stability 
of a fixed point by Poincaré’s mapping. Influence of ampli-
tude and frequency of the basic motion on periodic reaction 
of the system is investigated and bifurcation characteristics 
of periodic solution are analyzed in [9]. It has been estab-
lished that Hopf bifurcation can occur in a periodic response 
of a system that corresponds to some base frequencies and 
amplitudes. In [10], dynamics of a spring pendulum is inves-
tigated using asymptotic methods. Methods of the theory of 
nonlinear normal oscillation forms have made it possible to 
study pendulum dynamics not only for small oscillation am-
plitudes but for significant ones as well. In [11], experimen-
tal observations were made and simple explanations of the  
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spring load motion given including a well-known case where 
frequency of oscillations in vertical direction is twice as high 
as for the pendulum motion. Theoretical study of small plane 
nonlinear oscillations of a swinging spring with a nonlinear 
dependence of the spring tension on its extension is con-
sidered in [12, 13]. The method of the Hamiltonian normal 
form is used. Solutions of Hamiltonian equations of normal 
form have shown that periodic reorganization of oscillations 
between vertical and horizontal modes occurs only in the 
case of resonances 1:1 and 2:1. In all other cases, both in the 
presence of resonance and in its absence, oscillations occur 
with two constant frequencies. In [14], energy crossflow bet
ween longitudinal and pendulum oscillations is considered 
as pulsation. Pulsation and stepped precession are charac-
teristic features of the swinging spring dynamics. Hamilto-
nian reduction was used to find complete analytical solution. 
Oscillations of a swinging spring with a moving point of 
suspension are investigated in [15]. Swinging pendulum is 
described in [16] as a mechanical system with two degrees of 
freedom. To do this, a scalar differential equation was formed 
and numerically solved using Jacobi-Levi-Civita equations. 
Periodic process of pumping the swinging spring energy 
from one mode to another is investigated in [17]. The found 
analytical description reflects with high accuracy the process 
at any initial deviations of the pendulum. Comparison of this 
algorithm with algorithms of the classical method of normal 
form is made. It is shown in [18] that integral approximation 
of a spatial swinging spring adjusted to the resonance 1:1:2 
has a monochromium and the stepwise angle of precession 
of the plane of oscillation of the resonant spring pendulum 
is the rotation number of integral approximations. Swinging 
spring oscillation is analyzed in [19] from the standpoint of 
energy exchange within the framework of the parametric 
mechanism. In particular, swinging spring with two degrees 
of freedom is an auto-parametric system which is the basis 
for studying nonlinear intertwined systems. An invariant 
normal form used in [20] has made it possible not to divide 
oscillations of the swinging spring into autonomous – not 
autonomous, or resonant – non-resonant cases in the frame-
work of a single approach. Connection of a possible path of  
a swinging spring load with Lissajou’s figures is studied in [21].

However, these profound theoretical works often do not 
provide clear algorithms of constructing non-chaotic perio
dic paths of the swinging spring load. Besides theoretical 
studies, methods for constructing real non-chaotic periodic 
paths of the swinging spring loads are needed for engineering 
practice. Some of them are described in [22] where examples 
of periodic paths are given as well as in [23] where conditions 
for construction of periodic paths were studied. Examples of 
periodic swinging spring paths are given in [24]. An example 
of constructing paths of motion of a spring load is given 
in [25]. The swinging spring dynamics is described in [26] 
in two different ways: by means of Lagrange equations and 
with application of Newton’s second law. A large number of 
periodic paths of the swinging spring load are shown in [27]. 
In this case, motions of the spring pendulum are studied de-
pending on its two control parameters (the ratio of the spring 
and the pendulum frequencies). It was shown that within the 
limits of very small and very large values of parameters, path 
of the spring pendulum load predominantly can be regulated 
and changes in parameters of most initial conditions lead 
to chaotic paths. A maple program for constructing path 
of a swinging spring load is presented in [28]. It is shown 
in [29] how to construct these paths. Based on a composite 

program, parametric resonance of the swinging spring is 
illustrated in [30]. It manifests itself in energy transfer from 
vertical load oscillations to horizontal and vice versa. It was 
shown that velocity and amplitude of energy transfer depend 
essentially on initial conditions.

A method of projection focusing for construction of pe-
riodic paths of loads of a variety of mathematical pendulums 
is considered in [31, 32]. Examples of implementation of this 
method are given in [33]. A method for finding values of  
a set of parameters to provide a non-chaotic periodic path of  
a point load of a swinging spring is given in [34]. Computer 
animations of corresponding swinging spring oscillations 
which illustrate the results obtained are shown in [35].

As a result of review of published sources [1–30], issues 
that have not yet been investigated by other authors were 
identified, in particular, with regard to development of a uni-
versal method for constructing periodic paths of motion of 
a  swinging spring load and classification of these paths de-
pending on basic parameters of the swinging spring.

3. The aim and objectives of the study

The study objective is classification and synthesis of pe-
riodic paths of motion of the swinging spring load and some 
of its varieties.

To achieve this objective, the following tasks should be 
solved:

–  make a table of geometric forms of periodic paths of 
motion of the swinging spring load which correspond to the 
specified value of stiffness, k, and mass, m;

–  using the ratio of horizontal and vertical periods of 
load oscillations, determine numbers that will characterize 
the resulting geometric forms of periodic motion paths; 

–  classify periodic paths for:
a)  a load of a swinging spring whose axis oscillates to-

gether with the mathematical pendulum;
b)  a load in the common point of attachment of two 

swinging springs;
c)  a load of a swinging spring suspended to a movable 

carriage;
–  construct phase paths of functions of generalized coor-

dinates of the swinging spring and its varieties and provide 
estimates of the range of change of their values and the load 
motion velocities.

4. Determination of periodic paths of load  
of a swinging spring and its varieties

4. 1. Making the table of geometric forms of periodic 
paths of motion of load of the swinging spring depending 
on its parameters

In the process of constructing periodic paths, we shall rely 
on studies [31–35]. Therefore, intermediate results will be 
omitted as far as possible and only final results will be shown.

Let conditions of idealization of load motion be fulfilled 
for all tasks:

–  parameters and initial conditions are given in conven-
tional numerical units;

–  pendulum oscillations of the spring relative to the 
fixed suspension occur in the vertical plane Oxy;

–  axis of the massless spring remains straight during 
oscillation;
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–  the load mass is centered in the point located on the 
spring axis from the nonfixed end;

–  there are no supports in nodes and air resistance 
during oscillation;

–  the process of energy dissipation is slow in comparison 
with the characteristic time scales (the oscillatory system is 
conservative).

Let us determine paths of motion of the swinging spring 
load in a vertical plane depending on the load mass, initial 
length of the spring in the non-loaded state, stiffness of the 
spring and initial conditions of oscillation occurrence.

The swinging spring diagram according to [34] is shown 
in Fig. 1.

 
Fig. 1. The swinging spring diagram

Take value of the angle formed by the spring axis and 
the vertical axis Oy as the first generalized coordinate 
function v(t). Link the second generalized coordinate func-
tion u(t) with the spring extension in time; denote length of 
the spring in non-loaded state through h. Then virtual coor-
dinates of the moving point load can be calculated according 
to these formulas:

x h u v= +( )sin ;  y h u v= − +( )cos . 	 (1)

Specify Lagrangian as the difference between kinetic and 
potential energies:

L m
du
dt

h u
dv
dt

ku m h u

= 
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To form a system of Lagrange differential equations of the 
second degree, use the following relation (the point means 
time derivative):

d
dt

L
u

L
u

∂
∂


ç


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−
∂
∂

=


0;  
d
dt

L
v

L
v

∂
∂


ç




−
∂
∂

=


0. 	 (3)

As a result, the system of Lagrange equations of the se
cond degree is obtained in the form:

( ) . sin ;u h
d v
dt

dv
dt

du
dt

v+ + + =
2

2 2 9 81 0

d u
dt

u h
dv
dt

ku
m

v
2

2

2

9 81 0− + 
ç


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+ − =( ) . cos . 	 (4)

The problem statement. Determine value of the spring 
stiffness k which would provide periodic path of movement 
of the load of mass m attached to the spring of length h in  
a non-loaded state. In its initial position, the swinging spring 
is arranged vertically, that is, v(0) = 0. Oscillation is initiated 
by means of an impulse applied to the spring load in direction 

of the Ох axis: dv(0) = 0.5. The value 0.5 can be characterized 
as initial velocity of change in time of the angle value, v(t).

Applying algorithms and programs described in [31–34], 
solve the system of equations (4) with the values of para
meters and initial conditions v(0) = 0; dv(0) = 0.5; u(0) = 1; 
du(0) = 0. As a result of solution of the system of equa-
tions (4), integral curves and phase paths are obtained. The 
phase paths are characterized by the number of pixels in their 
images. Fig. 2 shows graphs of change of the number of pixels  
Np depending on the value of stiffness k for «unit» values 
m = 1 and h = 1. Extreme locally minimum values are obtained. 
This makes it possible (after refinement) to determine six 
main critical values of the coefficients of stiffness k: 7.99; 9.55; 
12.67; 18.12; 22.96; 28.84.

  
а b

Fig. 2. Graphs of change of the number of pixels depending 
on k for m = 1: within 3 < k < 13 (a); within 13 < k < 30 (b)

Fig. 3 shows instantaneous positions of the swinging 
spring and periodic paths of motion of loads of mass m = 1 
depending on values of the coefficient of stiffness k. Note that 
images of the obtained geometric shapes of the load motion 
paths correspond to the local minima of the number of pixels 
in Fig. 2. Computer animations of the corresponding oscilla-
tions are given at the Internet site [36].

 
 

 

а

d e f

b c

Fig. 3. Periodic paths of the spring load motion for: 	
k = 7.99 (a); k = 9.55 (b); k = 12.67 (c); k = 18.12 (d ); 	

k = 22.96 (е); k = 28.84 (f )

Fig. 4 shows images of the phase paths of the generalized 
coordinate functions corresponding to periodic paths of 
Fig. 3. They were built in the coordinate phase planes {u, Du}  
and {v, Dv} which are shown together in the figure. Red 
color indicates the function u(t) phase path and blue color 
indicates the function v(t). phase path. Recall that the func-
tion u(t) describes the spring length and the function v(t) is 
the angle of deviation of the spring from vertical.
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d

b

e

c

f

Fig. 4. Phase paths in phase planes {u, Du} and {v, Dv} for: 	
k = 7.99; 1 < u(t ) < 1.4; –0.6 < Du(t ) < 0.6; –0.3 < v(t ) < 0.3; 

–0.45 < Dv(t ) < 0.45 (a); k = 9.55; 0.9 < u(t ) < 1; 
–0.2 < Du(t ) < 0.2; –0.3 < v (t ) < 0.3; –0.44 < Dv(t ) < 0.44 (b); 

k = 12.67; 0.6 < u(t ) < 0.9; –1.1 < Du(t ) < 1.1; –0.35 < v(t ) < 3.5; 
–0.6 < Dv(t ) < 0.6 (c); k = 18.12; 0.2 < u(t ) < 1; 

–1.8 < Du(t ) < 1.8; –0.4 < v(t ) < 0.4; –0.5 < Dv(t ) < 0.5 (d ); 
k = 22.96; 0 < u(t ) < 1; –2.5 < Du(t ) < 2.5; –0.8 < v (t ) < 0.8; 

–1.5 < Dv(t ) < 1.5 (е); k = 28.84; 0 < u(t ) < 1; –3 < Du(t ) < 3; 
–1 < v(t ) < 1; –2.5 < Dv(t ) < 2.5 (f )

Hence, it is possible to determine ranges of change of ge
neralized coordinates functions as well as rate of their change 
with the help of phase paths (Fig. 4).

1 < u(t) < 1.4; –0,6 < Du(t) < 0,6; –0.3 < v(t) < 0.3; 

–0.45 < Dv(t) < 0.45 (Fig. 4, a); 

0.9 < u(t) < 1; –0.2 < Du(t) < 0.2; –0.3 < v(t) < 0.3; 

–0.44 < Dv(t) < 0.44 (Fig. 4, b);

0.6 < u(t) < 0.9; –1.1 < Du(t) < 1.1; –0.35 < v(t) < 3.5; 

–0.6 < Dv(t) < 0.6 (Fig. 4, c);

0.2 < u(t) < 1; –1.8 < Du(t) < 1.8; –0.4 < v(t) < 0.4; 

–0.5 < Dv(t) < 0.5 (Fig. 4, d);

0 < u(t) < 1; –2.5 < Du(t) < 2.5; –0.8 < v(t) < 0.8; 

–1.5 < Dv(t) < 1.5 (Fig. 4, e);

0 < u(t) < 1; –3 < Du(t) < 3; –1 < v(t) < 1;  

–2.5 < Dv(t) < 2.5 (Fig. 4, f).

At the next stage, find proportions between the coeffi-
cient of spring stiffness k and mass m which would provide 
the same (by geometric shape) paths of motion of loads (the 
spring length h = 1 in the non-loaded state is known). For this 
purpose, it is necessary to express value of the load mass m 
as a function of the coefficient of stiffness k. Specify initial 
conditions for initiating oscillations by vertical position of 
the spring suspension v(0) = 0 which was assigned an initial 
angular velocity Dv(0) = 0.5. Let u(0) = 1; du(0) = 0.

Determine periodic path for the variable mass m by fi
xing value of the spring stiffness. Using the procedure given 
in [31–34], build the graph of change of the number of pixels 
in the image of the phase paths depending on mass m, for 
example, for the value of k = 18.12 (Fig. 5). Locally minimum 

extreme values of the graph enable determination of critical 
values of mass m: 0.627; 0.788; 1; 1.43; 1.88; 2.24.

  
а b

Fig. 5. Graphs of change of the number of pixels 	
depending on m for k = 18.12: within 0.5 < m < 1.5 (a); 	

within 1.5 < m < 5 (b)

Fig. 6 shows instantaneous positions of the swinging 
spring with k = 18.12 as well as periodic paths of the load mo-
tion for the calculated load masses. One can see that periodic 
paths in Fig. 6 are similar in their geometric forms to the 
paths in Fig. 3. This indicates existence of a certain regularity 
of «generation» of periodic paths.
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Fig. 6. Periodic paths of the spring load for: 	
m = 0.627 (a); m = 0.788 (b); m = 1 (c); m = 1.43 (d ); 	

m = 1.88 (e); m = 2.26 (f )

Contents of Fig. 3 and Fig. 6 convinces that a number 
of geometric forms of periodic paths repeat in a certain 
sequence. To check this observation and generalize the 
technique, consider another variant of spring oscillation, for 
example, with stiffness k = 28.84.

Fig. 7 shows the graph of change of the number of pixels 
in the image of phase paths depending on mass m for the va
lue of k = 28.84. Locally minimum extreme values of the graph 
enable determination of critical mass values m: 1; 1.26; 1.59; 
2.28; 3; 3.6.

It turns out that the built periodic paths of load motion 
will look identical in their form to those shown in Fig. 6, 
however, at other values of mass: m = 1 (a); m = 1.26 (b); 
m = 1.59 (c); m = 2.28 (d); m = 3 (e); m = 3.6 (f). This observa-
tion facilitates making the table for classification of parame-
ters m and k which would ensure existence of a periodic path 
of the swinging spring load motion (h = 1).

Let us consider classification of periodic paths of motion 
of the spring load. To identify geometric form of periodic 
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paths we will use the ratio of periods of vertical T h gy = 2p  
and horizontal T m kx = 2p  oscillations of the load.

  
а b

Fig. 7. Graphs of change of the number of pixels 	
depending on m for k = 28.84: within 0.5 < m < 1.6 (a); 	

within 1.6 < m < 5 (b)

Table 1 gives the value of ratio of horizontal oscillation 
periods to vertical ones depending on geometric shape of 
the motion paths with respect to periodic paths in Fig. 3, 6. 
Values of the load masses m for the corresponding values of 
the coefficient of stiffness k are also given. All values are in 
conditional units.

Table 1

Values of load masses for periodic paths 	
corresponding to stiffness k 

Values  
of stiffness 
coefficients 

→
7.99 9.5 12.67 18.12 22.96 28.87

Values 
of the 
period 
ratios 

¯Path form ¯

0.276 0.33 0.44 0.63 0.8 1 1.71

0.35 0.415 0.554 0.793 1 1.25 1.525

0.44 0.23 0.7 1 1.26 1.58 1.36

0.63 0.75 1 1.423 1.8 2.27 1.14

0.83 1 1.32 1.9 2.4 3 0.986

1 1.18 1.58 2.26 2.85 3.6 0.9

Table 1 enables finding of values load masses and forms of 
paths only for discrete values of k. In order to determine per-
missible value of mass m for arbitrary 10 < k < 35 with the aim 
of obtaining a certain load path (for example, for verification, 
shown in Fig. 6, a), use interpolation formula for two points 
with coordinates (28.84, 1) and (18.12, 0.627). Computation 
gives function

m(k) = 0.0348k–0.00348.

Other functions are obtained in a similar way:

m(k) = 0.044k–0.00923;

m(k) = 0.055k+0.00272;

m(k) = 0.0792k–0.00675;

m(k) = 0.104k–0.0131;

m(k) = 0.127k–0.0588,	 (5)

which correspond to the load paths depicted in Fig. 6, b–f.
Consequently, to calculate mass m when it moves along  

a periodic path at a specified value of the coefficient of stiff-
ness k, one of the formulas (5) must be used. At the same 
time, an opportunity appears not only to construct periodic 
paths but also pre-select one of the geometric forms of the 
paths shown in Fig. 6.

For example, to obtain periodic paths shown in Fig. 6, a–f 
for the coefficient of stiffness k = 22.96, it is necessary to se-
lect mass values, respectively, m = 0.8; m = 1; m = 1.27; m = 1.8; 
m = 2.38; m = 2.85.

This illustrates the possibility of not only constructing 
a periodic path but also to choose one of the paths shown 
in Fig. 6. Thus, in a certain sense, the inverse problem of 
determining periodic paths of motion of the spring load was 
solved. Next, let us consider other classes of periodic paths.

4. 2. The class of periodic paths of motion of load of the 
spring whose axis oscillates together with the mathema
tical pendulum

Let us consider a kind of a swinging spring combined 
with a mathematical pendulum. Let the swinging spring 
axis be a mathematical pendulum of length R and a load of 
mass M (Fig. 8). Assume that masses m and M of the spring 
and the pendulum do not coincide. Determine the family of 
paths of movement of the swinging spring load in the vertical 
plane Oxy depending on the spring parameters.

 
Fig. 8. Diagram of a swinging spring connected 	

with a pendulum

Value of the angle formed by the swinging spring axis 
and the vertical axis Oy was taken as the first generalized 
coordinate function v(t). The second generalized coordinate 
function u(t) is associated with elongation of the spring in 
time; h denotes length of the swinging spring in the non- 
loaded state. Then virtual coordinates of the moving point 
load of the spring can be calculated by formulas (1):

Lagrangian systems:

L MR
dv
dt

m
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u
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To form a system of Lagrange differential equations of the 
second degree, use relation (3). As a result, the system of La-
grange equations of the second degree is obtained in the form:

m
d u
dt

mu
dv
dt

m v k u h
2

2

2

9 81 0− 
ç




− + − =. cos ( ) ; 	 (7)

MR mu
d v
dt

mu
du
dt

dv
dt

v MR mu2 2
2

2 2 9 81 0+( ) + + + =. sin ( ) .

The problem statement. Determine value of mass M of the 
mathematical pendulum with length R which would provide 
periodic path of moving the load with mass m of the swinging 
spring with stiffness k and length h in non-loaded state. In 
initial position, the oscillating system is arranged vertically, 
that is, v(0) = 0. Oscillations are initiated by means of an 
impulse applied to the spring load in direction of the axis Ox: 
dv(0) = 1.5. The value 1.5 can be characterized as initial ve-
locity of change in time of the angle value v(t). Initial values 
for the parameter u of the spring elongation will be chosen in 
the form: u(0) = 1; du(0) = 0.

Applying algorithms and programs described in [31–34], 
solve the system of equations (7) by numerical Runge-Kutta 
method with initial conditions v(0) = 0; dv(0) = 1.5; u(0) = 2; 
du(0) = 0. To determine magnitude of critical value of M, the 
graph of saturation of the image of the phase path lines [34] 
can be used. Provide periodicity of the path of the swinging 
spring load for parameters R = 8, m = 15, k = 150 and h = 2.5  
using the found value of M. Fig. 9 shows periodic paths 
depending on the mass M of the mathematical pendulum. 
Fig. 10 shows combined phase paths constructed in the 
coordinate phase planes {u, Du} and {v, Dv} in red and blue, 
respectively. To confirm value of the found critical value  
of M, the graph of saturation of the image of lines of the phase 
path [34] can be used. The Internet site [36] demonstrates 
computer animations of corresponding oscillations.
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Fig. 9. Periodic paths of motion of the spring load for: 

M = 20.4 (a); M = 7.17 (b); M = 5.26 (c); M = 2.19 (d )

It is possible to determine ranges of change of generalized 
coordinates functions as well as rate of their change with the 
help of phase paths (Fig. 10).

0.5 < u(t) < 7; –8.5 < Du(t) < 8.5; –1 < v(t) < 1; 

–1 < Dv(t) < 1.5 (Fig. 10, а);

1 < u(t) < 7; –8.5 < Du(t) < 8.5; –1 < v(t) < 1;  

–1 < Dv(t) < 1 (Fig. 10, b); 

1 < u(t) < 6.1; –8.2 < Du(t) < 8.2; –1 < v(t) < 1;  

–1 < Dv(t) < 1,5 (Fig. 10, c); 

2 < u(t) < 5; –5 < Du(t) < 5; –1 < v(t) < 1;  

–1.5 < Dv(t) < 1.5 (Fig. 10, d). 
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Fig. 10. Phase paths in planes {u, Du} and {v, Dv} for: 	
M = 20.4; 0.5 < u(t ) < 7; –8.5 < Du(t ) < 8.5; –1 < v (t ) < 1; 

–1 < Dv(t ) < 1.5 (а); M = 7.17; 1 < u(t ) < 7; –8.5 < Du(t ) < 8.5; 
–1 < v(t ) < 1; –1 < Dv(t ) < 1 (b); M = 5.26; 1 < u(t ) < 6.1; 
–8.2 < Du(t ) < 8.2; –1 < v(t ) < 1; –1 < Dv(t ) < 1,5 (c); 	

M = 2.19; 2 < u(t ) < 5; –5 < Du(t ) < 5; –1 < v(t ) < 1; 
–1.5 < Dv(t ) < 1.5 (d )

4. 3. The class of periodic paths of a joint movable load 
of two swinging springs

Let us consider an oscillation system formed of a pair 
of swinging springs. Construct a path of motion of a load 
common to these swinging springs in vertical plane Oxy 
(Fig. 11). Parameters include the load mass m, the same 
initial lengths  h of springs in the non-loaded state, the same 
stiffness of the springs k and initial conditions for occurrence 
of oscillations. In addition, it is necessary to specify distance 
H between fasteners of the springs.

Fig. 11. Diagram of the system formed 	
of two swinging springs

Take the values of Cartesian coordinates in the vertical 
plane Oxy as generalized coordinate functions X(t) and Y(t). 
We have Lagrangian:

L m
dY
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dt
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To form a system of Lagrange differential equations of the 
second degree, use relation (3). As a result, a system of La-
grange equations of the second degree is obtained in the form:

mpq pqku kuh q p+ − + =2 0( ) ,

mpq
d Y
dt

pqkY kYqh

kpqH kphY kphH mpq

2

2 2

9 81 0

+ − −

− − + + =. ,

where

p X Y= +2 2 ;  q X Y YH H= + − +2 2 22 . 	 (9)

The problem statement. Determine value of mass m which 
would provide a periodic path of movement of a joint load of 
a system of two swinging springs with coefficient of stiffness 
k and length h in the non-loaded state each.

Let load of the system of swinging springs have coordi-
nates X(0) = 2 and Y(0) = 3 in initial position. Oscillations are 
initiated due to the energy of springs. That is, there will be 
no impulses applied to the spring load in direction of the axes: 
dX(0) = 0 and dX(0) = 0. Let H = 5; k = 15 and h = 2.5.

Applying the algorithms and programs described in [31–34],  
solve the system of equations (9) by the numerical Runge- 
Kutta method with initial conditions X(0) = 2 and Y(0) = 3; 
dX(0) = 0 and dX(0) = 0. It is necessary to take value of mass 
m for the specified parameters k and h in order to provide 
periodicity of motion of the path of the swinging spring load. 
Fig. 12 shows an image of the class of periodic paths depen
ding on the load mass m. Fig. 13 shows combined phase paths 
constructed in the {u, Du} and {v, Dv} planes shown in red 
and blue, respectively. To confirm value of the found critical 
value of M, the graph of saturation of the image of the phase 
path lines can be used [34]. The site [36] demonstrates com-
puter animations of the corresponding oscillations.
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Fig. 12. Periodic paths of motion of the joint load 	

of two swinging springs for: m = 0.53 (a ); m = 0.89 (b); 	
m = 0.2 (c); m = 0.758 (d )

With the help of phase paths, it is possible to determine 
ranges of change of functions of generalized coordinates as 
well as rate of this change (Fig. 13).

2 < u(t) < 2; –5 < Du(t) < 5; 1.5 < v(t) < 3;  

–6 < Dv(t) < 6 (Fig. 13, а); 

2 < u(t) < 2; –3 < Du(t) < 3; 1.5 < v(t) < 3;  

–5 < Dv(t) < 5 (Fig. 13, b); 

2 < u(t) < 2; –8 < Du(t) < 8; 1.8 < v(t) < 3;  

–7 < Dv(t) < 7 (Fig. 13, c); 

2 < u(t) < 2; –4 < Du(t) < 4; 1.5 < v(t) < 3,2;  

–6 < Dv(t) < 6 (Fig. 13, d). 
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Fig. 13. Phase paths in planes {u, Du} and {v, Dv} for: 	
m = 0.53; –2 < u(t ) < 2; –5 < Du(t ) < 5; 1.5 < v(t ) < 3; 

–6 < Dv (t ) < 6 (а ); m = 0.89; –2 < u(t ) < 2; –3 < Du(t ) < 3; 
1.5 < v (t ) < 3; –5 < Dv(t ) < 5 (b); m = 0.2; –2 < u(t ) < 2; 

–8 < Du(t ) < 8; 1.8 < v(t ) < 3; –7 < Dv(t ) < 7 (c); 	
m = 0.758; –2 < u(t ) < 2; –4 < Du(t ) < 4; 	

1.5 < v(t ) < 3,2; –6 < Dv(t ) < 6 (d )

4. 4. The class of periodic paths of motion of a load at-
tached to a spring suspended to a movable carriage

Let us apply a swinging spring as a mover when moving 
horizontally a carriage model installed on a «ramp». To do 
this, create an oscillatory system by suspending the swinging  
spring to the carriage bottom (Fig. 14). Show that to model 
translational motion of the carriage, it is necessary to en-
sure motion of the spring load in a periodic path. Also, it 
is necessary to apply impulse to the carriage in a direction 
of intended motion. Here is the way to determine path of 
movement of the load of the swinging spring suspended to  
a movable carriage along vertical axis Oxy. Parameters will 
be as follows: the carriage mass M, the load mass m, initial 
length of the spring in non-loaded state h, the spring stiff-
ness  k and initial conditions for occurrence of oscillations.

 
Fig. 14. Diagram of a swinging spring suspended 	

to a movable carriage
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Choose value of the carriage motion in horizontal di-
rection as the first generalized coordinate function u(t). 
Value of the angle between the swinging spring axis and 
vertical axis Oy will be the second generalized coordinate 
function v(t). Relate the third generalized coordinate func-
tion w(t) to the change of the spring length in time; denote 
length of the swinging spring in non-loaded state by h. Then 
virtual coordinates of the moving point load can be calcula
ted according to the formulas:

x u h w v= + +( )sin ;  y h w v= − +( )cos . 	 (10)

Specify Lagrangian as difference between kinetic and po-
tential energies:
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To form a system of Lagrange differential equations of the 
second degree, apply relation (3). As a result, the system of La-
grange equations of the second degree is obtained in the form:
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The problem statement. Determine length h of non-loaded 
swinging spring which will oscillate to ensure translational 
motion of the carriage in horizontal direction provided that 
path of the load motion is periodic. Oscillations of the swinging  
spring suspended to the carriage as well as initial impulse 
supplied to the carriage in the direction of Ox axis will be 
movers of the motion process. Presence of such an impulse 
is necessary for translational motion of the carriage. With no 
impulse, the carriage will oscillate along the Ox axis relative 
to the initial position. Take the following parameters of the 
oscillatory system: the carriage mass M = 500; the swinging 
spring load mass m = 86.8; spring stiffness k = 750.

Initial position of the swinging spring is horizontal, that 
is v(0) = p/2. Oscillations are initiated by pendular motions 
of the swinging spring and by means of the initial impulse 

du(0) = 1 applied to the carriage in direction of the Ox axis. 
Choose initial values for the spring elongation parameter w  
in a form w(0) = 5; dw(0) = 0. That is, initial length of the 
swinging spring is equal to five conventional units.

In accordance with the procedure described in [31–34], 
first solve a system of equations (12) by Runge-Kutta 
numerical method at initial conditions u(0) = 1; du(0) = 1; 
v(0) = p/2; dv(0) = 0; w(0) = 5; dw(0) = 0. Applying the me
thod of projection focusing, select such value of parameter h 
which would ensure periodicity of the spring load path. To 
find critical value of h, construct integral curves in the phase 
spaces {u, Du, t}, {v, Dv, t} and {w, Dw, t} as well as phase paths 
in planes {u, Du} and {v, Dv}. Using the phase paths, ranges 
of change of coordinate functions of parameters during oscil-
lation of the swinging spring can be determined. To confirm 
critical value of h that was found, the graph of saturation of 
the image of the phase path lines [34] can be used.

After calculating h, this value must be substituted in the 
system of Lagrange equations of the second degree (12) and 
numerically solved by Runge-Kutta method with respect 
to the functions u(t); v(t) and w(t). With the help of these 
solutions, an approximate image of the path of the swinging 
spring load motion is determined in the Oxy plane. Fig. 15 
shows periodic paths of motion of swinging spring loads de-
pending on the obtained values of h.

The Internet site [36] demonstrates computer anima-
tions of corresponding oscillations. The animations illustrate 
geometric models of the carriage motion to the right.
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Fig. 15. Periodic paths of motion of the spring load for: 

h = 5.44 (a); h = 5 (b); h = 3.3 (c); h = 2.08 (d )

Fig. 16 shows phase paths in planes {u, Du}, {v, Dv} and 
{w, Dw} in red, blue and black, respectively.

Character of motion of geometric carriage model can be 
determined using the graph of derivative of the coordinate 
function u(t) (Fig. 17).

With the help of phase paths, it is possible to determine 
ranges of change of generalized coordinate functions as well 
as rate of their change (Fig. 16).

1 < u(t) < 12; –0.5 < Du(t) < 2.5; –1 < v(t) < 1; 

–1 < Dv(t) < 1; 3 < w(t) < 9; –3 < Dw(t) < 3 (Fig. 16, а);

1 < u(t) < 12; –0.5 < Du(t) < 2.5; –1 < v(t) < 1; 

–1 < Dv(t) < 1; 3 < w(t) < 9; –4 < Dw(t) < 4 (Fig. 16, b);

1 < u(t) < 11; 0 < Du(t) < 0.5; –1 < v(t) < 2; –2 < Dv(t) < 2; 

1 < w(t) < 8; –10 < Dw(t) < 10 (Fig. 16, c);
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1 < u(t) < 12; 0,5 < Du(t) < 2; –0.5 < v(t) < 3; 

–5.5 < Dv(t) < 5.5; 3 < w(t) < 7; –10 < Dw(t) < 10 (Fig. 16, d).
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Fig. 16. Phase paths in planes {u, Du}, {u, Du} and {w, Dw} for: 	
h = 5.44; 1 < u(t ) < 12; –0.5 < Du(t ) < 2.5; –1 < v(t ) < 1; 

–1 < Dv(t ) < 1; 3 < w(t ) < 9; –3 < Dw(t ) < 3 (а); 	
h = 5; 1 < u(t ) < 12; –0.5 < Du(t ) < 2.5; –1 < v(t ) < 1; 

–1 < Dv(t ) < 1; 3 < w(t ) < 9; –4 < Dw(t ) < 4 (b); 	
h = 3.3; 1 < u(t ) < 11; 0 < Du(t ) < 0.5; –1 < v(t ) < 2; –2 < Dv(t ) < 2; 

1 < w(t ) < 8; –10 < Dw(t ) < 10 (c); h = 2.08; 1 < u(t ) < 12; 
0,5 < Du(t ) < 2; –0.5 < v(t ) < 3; –5.5 < Dv(t ) < 5.5; 	

3 < w(t ) < 7; –10 < Dw(t ) < 10 (d )
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Fig. 17. Graphs of derivative of the coordinate 	
function u(t ) for: h = 5.44 (а); h = 5 (b); h = 3.3 (c); h = 2.08 (d )

For completeness of classification, let us give other 
periodic paths of a load of a swinging spring suspended to  
a movable carriage.

The problem statement. Determine mass m of a swinging 
spring of length h in non-loaded state suspended to a movable 
carriage of mass M which would ensure periodic oscillatory 
character of motion of this carriage relative to its initial 
position. Choose parameters of the oscillatory system as fol-
lows: the carriage mass M = 10; the spring stiffness k = 35, the 
spring length h = 3. Choose generalized coordinate functions 
and sequence of problem solving as in the previous example.

Let initial position of the swinging spring be horizontal, 
that is v(0) = p/2. Oscillations are only initiated by pendular 
motions of the swinging spring. Let us verify that the car-
riage will move only to the left or to the right and will not 

move translationally towards Ox axis without initial condition 
du(0) = 1. In the previous example, the carriage translationally 
proceeded in a steady way to the right thanks to such an initial 
impulse. Initial values for of the spring elongation parameter w 
will be chosen as w(0) = 3; dw(0) = 0. That is, initial length of 
the swinging spring is equal to three conventional units.

Consequently, the problem is solved with initial con-
ditions u(0) = 0; du(0) = 0; v(0) = p/2; dv(0) = 0; w(0) = 3; 
dw(0) = 0. According to the procedure described in [31–34], 
determine possible masses m of the spring load that provide 
periodic paths: 5.06; 4.59; 3.85 and 1.91 (Fig. 18).

Fig. 19 shows phase paths in planes {u, Du}, {v, Dv} and 
{w, Dw} in red, blue, and black, respectively.
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Fig. 18. Periodic paths of motion of a spring load for: 
m2 = 5.06 (a); m2 = 4.59 (b); m2 = 3.85 (c); m2 = 1.91 (d )

    
 

  

а

c

b

d

Fig. 19. Phase paths in planes {u, Du}, {v, Dv} and {w, Dw} for: 
m2 = 5.06 (а); m2 = 4.59 (b); m2 = 3.85 (c); m2 = 1.91 (d )

With the help of obtained phase paths, it is possible to de-
termine ranges of change of generalized coordinate functions 
as well as rate of this change.

6. Discussion of classification and results of modeling  
the path of motion of the load of the swinging spring  

and is modifications

The developed classification and the compiled table of 
periodic paths make it possible to solve inverse problems, 
namely, add periodic curves as parameters in a graphic form  
to the list of numerical parameters of the swinging spring. 
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Values of the ratio of horizontal and vertical periods of oscil-
lation of the swinging spring enable determination of nume
rical values of the parameters that would ensure existence of 
a periodic path of load motion preliminary chosen from the 
indicated six path forms.

Besides, the developed method for constructing periodic 
paths makes it possible to estimate their lengths by counting 
the number of pixels in the path image. That is, if necessary, 
a possibility should appear to specify a periodic path of  
a certain length which should be taken into account when 
studying dynamic systems in which energy «pumping» takes 
place between its parts.

The estimates of limits and speeds of change of pendulum 
angles as well as corresponding elongations and speeds of 
spring elongation given in the work allow one to investigate 
the swinging spring versions, for example, in a form of sus-
pension to a movable carriage. Lack of a systems approach 
to modeling periodic paths of motion of the swinging spring 
load and the spring varieties hampered algorithmic imple-
mentation of similar solutions.

The results obtained can be explained by possibility of 
applying the Lagrange variational principle to calculation of 
mechanical oscillations of the swinging spring type. This has 
allowed us to use the Lagrange equation of the second degree 
to describe motion of the spring load.

The non-realized possibilities of geometric modeling in 
the study of oscillations of concrete swinging springs include 
consideration of their resonant state. A question arises: can the 
resonant state of the swinging spring manifest itself as a perio
dic path of its load motion? How this periodic path will look 
like? Answers to such questions are important as angular sway 
of a swinging spring is most effective due to this spring energy. 
Development of random transverse perturbation will last to  
a fixed value of amplitude since the spring energy reserves 
are finite. Stretching (or compression) of the swinging spring 
again occurs after reaching such an amplitude during oscilla-
tion of this spring. It is necessary to study the range of varia-
tion of parameters with a maximum corresponding to the ratio 
mg kh = 1 4, where m is the load mass, k is the spring stiffness, 
h is spring length in non-loaded state, g = 9.81. It is necessary 
to check under what conditions this relation is fulfilled with 
acceptable accuracy and how it affects image of periodic paths 
of the spring load motion. It is necessary to determine number 
of possible periodic paths for a certain set of input parameters, 
as well as classify images of periodic paths and perform their 
gradation taking into account increase in their lengths.

It will be of interest to study from these positions 
nonlinear coupled systems with interacting subsystems on 
examples of engineering problems. Study of mechanical de-
vices in which springs will affect paths of oscillation of their 
loads will be a step towards this goal. Some examples of such 
devices are given in this paper. It is still advisable to add 
mechanisms with springs and movable loads of the following 
schemes:

– a pendulum fixed to a vertical spring in a guide device;
– variants of a double pendulum, one of the elements of 

which is a swinging spring;
– a pendulum under a movable carriage whose position is 

influenced by a spring.
Difficulties in this direction of studies will arise when 

trying to determine the resonant state of a swinging spring 
included in such devices as well as in the case of study of 
oscillations of a spatial swinging spring.

7. Conclusions

1.  It has been shown that there are at least six geometric 
forms of periodic paths of motion of the swinging spring load 
that correspond to specified coefficients of stiffness k and the 
value of mass m.

2.  With the help of the ratio of horizontal and vertical 
periods of load oscillations, it was possible to determine six 
numbers, namely 1.71; 1.525; 1.36; 1.14; 0.986; 0.9 which cor-
respond to geometric forms of periodic motion paths.

3.  Classes of periodic paths of motion were found for:
a)  the load of a swinging spring whose axis oscillates 

with the mathematical pendulum (for example, with the fol-
lowing parameters: R = 8; m = 15; k = 150; h = 2.5; M = 2.19 and 
initial conditions: v(0) = 0; dv(0) = 1.5; u(0) = 2; du(0) = 0);

b)  the load positioned at the common point of attach-
ment of two swinging springs (for example, with the fol-
lowing parameters: H = 5; k = 15; h = 2.5; m = 0.758 and initial 
conditions: X(0) = 2 and Y(0) = 3; dX(0) = 0 and dY(0) = 0);

c)  the load of the swinging spring suspended to a mov-
able carriage (for example, with the following parameters: 
М = 500; m = 86.8; k = 750; h = 2.08 and initial conditions: 
u(0) = 1; du(0) = 1; v(0) = p/2; dv(0) = 0; w(0) = 5; dw(0) = 0).

4.  For all considered variants, phase paths of functions of 
generalized coordinates of the swinging spring and its varie
ties were constructed and the range of change of their values 
and velocities of load motion was estimated.
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