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Basicausy ponv y eupiwenni mpusumipnux saoay
meopii npyncHocmi 2paromov ACUMNMOMUUHI Memo-
ou. Y piwmenni npoonemu zpanuuinozo nepexody 6io
mpusumipHux 3a0au 00 080BUMIPHUX Ol NPYHCHUX
00601010K 0COBIUBE Micue 3aUMAE MeMOO ACUMNMO-
MUUH020 THME2PYBAHH MPUBUMIPHUX PIBHAHbL Meo-
pii npyscnocmi. Ha ochoei memoody acumnmomuuiozo
IHMeZPYBAHHSA PIBHAHb MEOPIi NPYHCHOCMI 6UBUAEMb-
ca ocicumempuuna 3aoaua meopii npyxcHocmi 0as
paodianvio-neo0Hopionozo uuniHopa manoi moswu-
Hu. Po3zensdaemvcsa 6unadox, xoau Mooyni npyoic-
HOCMI 3MiHIOIOMbCA NO padiycy 3a NHIUHUM 3AKO-
nom. Ilepeddoanaemovcs, wo 6iuna wacmuna yUIHOpa
8iIbHA 610 HANPYICEHDb, A HA MOPUAX YULIHOpa 3a0a-
Hi 2PaHuMHi YMOBU, WO 3ATNUNAIOM UUTIHOP 6 PIBHO-
sa3zi. Cihopmynvosana xpaiiosa 3adaua 3600umvcs 00
cnexmpanvioi 3adaui. Busuaemoca nosedinka pimens
cnexmpanvnoi 3adaui ax y GHYymMpilwHil vacmuni
yuninopa, max i noOIU3Y Mopuie yuIiHOpa npu npaz-
HenHi 00 HYJs napamempa MOHKOCMIHHUX UUIHOPA.
Ompumano mpu zpynu piwieHv i po3'ACHEHO Xapax-
mep nodyoosanux oonopionux piwens. Pimenns, 6io-
nogione nepwomy imepauiinomy npouecy, 6usHa-
uae nponuKarouuil Hanpyiceno-oedopmosanuii cman
yuninopa. Piwenns, 6ionosione opyzomy imepauiiino-
20 npouecy, asusne co06010 Kpaiiosi epexmu ¢ npuxnao-
Hill meopii o6oaonox. Tpemiil imepauiiinuii npouec
8uU3HAUAE piuleHHs, sKe MAE XxXapakmep nozpanuy-
Ho20 wapy. Piwmenns, 6ionogione nepwomy i opyeo-
MY imepauiinum npouecam, BU3HAUAE GHYMPIWHIU
Hanpydceno depopmosanuii cman yuainopa. Y nep-
WOMY UNeHI ACUMNMOMUKY IX MONCHA PO32asdamu K
piumennsa 3 npuxaaonoi meopii oéoaonox. Ioxasano,
wo Hanpyiceno-depopmosanuii cman, Ak i Yy unao-
KY 00HOPiIOH020 YUNIHOPA MAN0i MOSWUHU, CKAA0A-
EMBCA 3 MPLOX MUNIB: NPOHUKAIOUO20 HANPYICEHOZ20
cmany, npocmozo Kkpaiiosozo edpexmy i nozpanuunoz2o
wapy. Pozensnymo numanus npo 3a00601eHH 2pa-
HUMHUX YMOE HA MOPUAX PadiaibHO-He00HOPiIOHO020
UUNIHOPA 3 BUKOPUCIAHHAM 6aAPIAUIIHO20 NPUHUUNY
Jazpanica

Kmouosi crosa: padiansho-neoonopionuil yuainop,
acumMnmomuuHuii Memoo, nopanutHull wap, Kpauo-
suil epexm, sapiauiinuii npuHUUN, 20108HUL 6EKMOP,
8J1acHe 3HaAeHHs.

u] =,

1. Introduction

The studies of non-homogeneous shells take one of the
special places in the theory of shells. Analysis of non-homoge-
neous shells based on three-dimensional equations of elasti-
city theory is a very laborious task. That is why it is necessary
to turn to various approximate methods that make it possible
to simplify the calculation of shells. The complex nature of
the phenomena that occur at deformation of non-homoge-
neous shells led to the creation of many applied theories,
each of which is based on a certain system of assumptions.
In modern engineering, there occur the new shelled designs,
the calculation of which is impossible within the framework
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of the existing applied theories. For example, the simplest
variants of applied theories do not give a full description of
deformation of shells, the thicknesses of which are compa-
rable with longitudinal dimensions and radii of curvature.
To find the region of applicability of existing theories of
non-homogeneous shells and to create new and more refined
applied theories, it is necessary to analyze the stressed-
strained state of inhomogeneous shells from the positions of
three-dimensional equations of the elasticity theory. In ad-
dition, many issues related to the study of stressed-strained
state for non-homogeneous shells can be properly solved
only within the framework of the elasticity theory. This is
especially important when researching non-stationary and




stationary oscillations in a rather wide range of frequencies,
when studying stress concentration near the boundary, local
loads and openings.

Among the reasons that encourage the study of non-homo-
geneous shells from the perspective of three-dimensional
equations of elasticity theory, most adequately taking into
account their mechanical and geometrical structure, it is pos-
sible to highlight another one, purely internal. Development
of the theory of shells, as well as of any other theory goes from
simple to more complex models. That is why the internal lo-
gic of development requires the analysis of non-homogeneous
shells from more general positions.

2. Literature review and problem statement

Asymptotic methods have made a significant contribu-
tion to the development of the theory of plates and shells.
These methods have proved to be very effective in studying
the problem of limiting transition from three-dimensional
to two-dimensional problems of elasticity theory [1-3]. The
study of three-dimensional problems of the theory of elastic-
ity for a cylinder was the subject of several studies. Paper [4]
reports an asymptotic analysis of the spatial problem of
elasticity theory for an isotropic cylinder of small thickness
and comparison of asymptotic solution with the solutions
obtained by the applied theories. Paper [3] developed a ge-
neral theory of a transversely-isotropic cylinder of the small
thickness, which includes the methods for constructing
heterogeneous and homogeneous solutions, which make it
possible to reveal the characteristics of stressed-strained
state of an anisotropic cylindrical shell. In papers [2, 3], using
the method of homogenous solutions, an axisymmetric dy-
namic problem of the elasticity theory for an isotropic and
transversely-isotropic hollow cylinder of small thickness was
explored. Homogeneous solutions that depend on the roots
of a dispersion equation were constructed. The qualitative
study of some applied theories was carried out, the bounda-
ries of their applicability were established. Article [5] studied
the axisymmetric problem of the elasticity theory for a ra-
dially layered cylinder with alternating hard and soft layers.
The theorem, which establishes lamination of the spectrum
into the lower and higher part, was obtained. It was shown
that there are weakly damped boundary-layer solutions for
a radially-layered cylinder with alternating hard and soft
layers. They can significantly influence the internal stressed-
strained state of a cylinder, which indicates a violation of
the Saint-Venant principle in its classical statement. In
paper [5], the propagation of axisymmetric waves in a radial-
ly-laminated cylinder was studied and the dispersion curves
based on a combination of analytical and numerical methods
were plotted. Article [6] deals with bending deformation of
a multi-layered cylinder with the most common form of cy-
lindrical anisotropy. In paper [7], a semi-analytical method to
solve the problem of Almansi-Michell for an inhomogeneous
anisotropic cylinder was proposed. Paper [8] considered the
equivalent to the Lamé classical problem for an isotropic
hollow cylinder with the Jung module, depending on the
radial coordinate and with constant Poisson’s coefficient. In
article [9], the influence of non-homogeneity of the material
on the stressed-strained state of a cylinder was explored.

We will note that the analytical solution to a spatial
problem of elasticity theory for a radially non-homogeneous
cylinder of small thickness is related to significant mathe-

matical difficulties. From the mathematical point of view,
studying a spatial problem of the elasticity theory for a ra-
dially non-homogeneous cylinder is reduced to the study of
boundary-value problems for systems of linear differential
equations of the second order in private derivatives with
arbitrary variable coefficients. When building homogeneous
solutions for radially non-homogeneous cylinder, a spectral
problem for differential operators with arbitrary variable
coefficients is obtained.

This causes difficulties in the methods for solving prob-
lems for radially non-homogeneous cylinders.

That is why it is advisable to consider a classic task of the
mathematical theory of elasticity for a radially non-homoge-
neous cylinder of small thickness using the method of asymp-
totic integration of equations of the theory of elasticity.

3. The aim and objectives of the study

The aim of this study is to reveal the features and to con-
struct effective methods for calculating the stressed-strained
state of a radially inhomogeneous cylinder.

To accomplish the aim, the following tasks have been set:

— to construct homogeneous solutions using the method
of asymptotic integration of equations of the elasticity theo-
ry, based on three iterative processes;

— to construct asymptotic formulas for displacements and
stresses;

— to analyze the stressed-strained states, corresponding
to various types of homogenous solutions;

— meeting the boundary conditions at the ends of a cy-
linder.

4. Statement of boundary-value problems
for a radially inhomogeneous cylinder

Consider the axisymmetric problem of the elasticity
theory for a radially inhomogeneous isotropic hollow cylin-
der of small thickness. In the cylindrical coordinate system,
the area occupied by the cylinder will be designated as:

r={relrnl 0€[0.2n], ze[-LL}.

Let us assume that a change in elasticity module by a ra-
dius occurs according to the linear law:

G(r)=Gr,Mr)=\r,

where G., A. are some constant magnitudes.
Equations of equilibrium in displacements take the form:

(L, +9,L,+9’L,)ui = 0. (1)

Here @ =u(p,&) = (u,(p.£),u:(p,§))", L, is the matrix of
differential operations of the following form:
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dimensionless magnitudes and G, is some characteristic pa-

rameter, having the dimensionality of the shift module.

Suppose that the lateral side of a cylinder is free from
stresses:

Ol .= =0, (2)

G‘p:ﬁ u ‘p:ﬂ

where

5=(0,,,0,) » M=M,+3,M,
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Let us assume that boundary conditions are assigned at
the ends of a cylinder:

Oul,_,, = iP) O, =/o(P) 3)

E=+] &=t/

Here f,.(p), /,.(p) (s=1,2) are smooth enough functions,
meeting the conditions of equilibrium.

5. Construction of homogeneous solutions for a radially
non-homogeneous cylinder of small thickness

We will find solution (1), (2) in the form:

u(p&)=a(p)e™, (4)

where
a(p)=(u(p),w(p))".

Substituting (4) in (1), (2), we obtain:

(M, +aM,)a| _ =0. )

p=+1

{(L0 +al, +0a’L,)a=0,

Applying the method of asymptotic integration of equa-
tions from the theory of elasticity [10, 11], based on three
iterative processes at € — 0 for (5), we obtain three groups
of solutions:

A
L ulP=—=0 Ce® u®=CE (6)
PG+ ) :

These solutions correspond to two-fold eigenvalues o.= 0.

The stress corresponding to the solution (6) takes the
following form:

o == =0, o =™, e
where
_G,(2G,+3M,)
0 G, +A,

Net stretching along the axis of the cylinder corresponds
to eigenvalue oo =0 [4].
IL o, =& (0, +e0t,; +..).
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To determine o, we obtain bi-quadratic equation:

4 3 g12

T A gy

o, +3=0. C))

The stresses, corresponding to solutions (8), take the
form:

4 —
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form:
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The stresses, corresponding to solutions (14), take the
form:

= 1
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Here, By, is the solution to equation:
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% eXP(*(BOk +ePB,, )&), (®), (11),. (14), corresponding to the above three iterative
processes:



u(p,&)= u(“ + u(2) + u“ D4 u(3 2

1 2 31 3,2
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For the component of tensor of stress, we obtain:
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6. Analysis of the stressed-strained state determined
by homogeneous solutions

Displacements will be represented in the form:

up(p7E.’) = u;“ + ZEkuk(p)eaki’
k=1

u(p.E)=u" + ZEkwk(p)eaki (20)

The second term includes the displacement, determined
by the second and third iterative process.
For stresses, we obtain:

. =0W + 2 E,0,,(p)e™, o,.=Y Eo,(p)e™s, (21)
k=1
where
6,,(p)= f(w,xp) +80,,%u,(p)),
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Consider the relationship of the constructed solutions
with the main vector P of stresses acting in cross section
& = const. It should be noted that:

1
P= 21‘CSJ (csaé +Gp§)ezs"dp. (22)
=
Substituting (21) in (22), we will obtain:
4n > vt
P= 5 8,Csh(3e)+2me ) E,me™, (23)
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where

1

m, = _[ (ou(p)+o,, (p)) e***dp.
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We will prove that all m,=0 (k=1,2...). To do this, we
will consider the following boundary-value problem:
Vat §=§;(j=12). (24)

&) _
Ope = o, (p)e™, Og = G, (p)e™

The main vector, which corresponds to the stressed state
of problem (24) in cross-section &= const, is reduced to the
following form:

P, = 2nem,e™". (25)

According to the solvability of the problem of the elas-
ticity theory, P, should not depend on variable & However,
in (25) the right part depends on &. Hence, it follows that
P, =0, i.e. m,=0. From (23), we obtain:

pP= %"gocsh(se). (26)

The stressed state that corresponds to the second and
third groups of solutions is self-balanced in any cross-section
& =const.

Solutions (6), (8) determine the internal stressed-strained
state of a cylinder. The first terms of their asymptotic decom-
positions for parameter € can be considered as a solution by
the applied theory of shells. Solution (6) that corresponds
to the first iterative process penetrates without attenuation
inside the area of a cylinder and is a penetrating solution.
Solution (8) determines the edge effect similar to a simple
edge effect in the applied theory of shells [1, 3, 4, 11]. Solu-
tion (11), (14) has the character of a boundary layer. The first
terms of its asymptotic decomposition are equivalent to the
Saint-Venant edge effect for a non-homogeneous plate [1].

The stresses, determined from formulas (10), (13), (16),
that is, by the second and third iterative processes, are lo-
calized at the ends of a cylinder and exponentially decrease
at removing from the ends. The indicators of attenuation of
stresses, determined by the second iterative processes, have
order O(e™?), relative to €, and stresses corresponding to
the third iterative process, have order O(e™).

As it was shown, the non-self-balanced part of stresses
can be removed with the help of the penetrating solution (6),
and in this case, the relation of constant C with the main
vector P is assigned by equality (26).

7. Meeting boundary conditions at the ends
of a cylinder

To determine the unknown constants D, (j=1,4), T, and
F, (k=12,..), we will use the Lagrangian variation principle.
Since solutions (17) satisfy the equilibrium equation and
boundary conditions on the lateral surface, the variation
principle takes the following form [2, 3, 12]:

ij[( ~ ;. )8u,+ (0~ ) u |

s=1

e**dp=0.

el

(27)

Substituting (17), (18) in (27) and considering 8D,
87, 8F, to be independent variations, we obtain from (27)
the following systems of linear algebraic equations:

4 N

kaijozrk; (k=1,4), (28)
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Y QuF,=di; (j=1), (30)
k=1
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Determining constants D, T,, F, (p=12,.) is re-
duced to the systems, the matrices of which coincides with
matrices of systems (28)—(30).

The system of infinite linear algebraic equations (29),
(30) is positively determined in the space of energy H, and
that is why it is always solvable under physically meaningful
conditions imposed on the right side [4]. Solvability and
convergence of the method for reduction for (29), (30) was
proved in [1, 13].

8. Discussion of results of studying a three-dimensional
problem of elasticity theory for a radially
non-homogeneous cylinder of small thickness

Using the method of asymptotic integration of the equa-
tions of the elasticity theory, the homogeneous solutions
were constructed. Based on the conducted analysis, it was
obtained that homogeneous solutions include three types
of solutions: penetrating solutions, solution of the type of
simple edge effect and solution having the nature of the
boundary layer.

The character of the constructed homogeneous solutions
was explained. The solutions corresponding to the first
iterative process penetrate without attenuation inside a cyl-
inder and are a penetrating solution. The first terms of their
decomposition by the parameter of wall thinness of a cylin-
der determine the momentless stressed state. The solutions
corresponding to the second iteration process represent
the edge effects in the applied theory of shells. In the first
terms of decomposition by the parameter of wall thinness of
a cylinder, the penetrating solution, together with the edge
effect solution, can be considered as a solution by the applied
theory of shells. The solutions corresponding to the third
iterative process have the character of a boundary layer and
do not exist in applied theories. The stresses determined by
the second and third iterative processes are localized at the
ends of a cylinder and at remoteness from the ends, exponen-
tially damp at different rates.

Using the Lagrange principle of possible displacements,
the problem of meeting the boundary conditions at the
ends of a cylinder was explored. The non-self-balanced load
part, assigned at the ends of a cylinder is removed using
a penetrating solution. To find the constants included in the



solution, determined by the second and third iterative pro-
cesses, respectively, the finite and non-finite systems of linear
algebraic equations were obtained.

The obtained asymptotic formulas make it possible to
calculate the three-dimensional stressed-strained state of
a radially non-homogeneous cylinder of small thickness un-
der various boundary conditions on the ends of the cylinder.
The constructed solutions are the basis for the assessment
of existing theories. Using the constructed solutions, it is
possible to suggest a new refined applied theory, which more
accurately describes the processes that occur in a radially
non-homogeneous cylinder of small thickness.

The obtained asymptotic formulas are only suitable for
a radially non-homogeneous cylinder of small thickness. For
a thick radially non-homogeneous cylinder, the separation of
the stressed-strained state into the internal and boundary-
layer solutions are impossible. It is characteristic only for
thin cylinders.

The phenomenon of a weak boundary layer is absent in
small non-homogeneous cylinders of small thickness (a cy-
linder, where the values of elasticity modules vary within
a single order). In this case, the method for asymptotic inte-
gration of the equations of the theory of elasticity makes it
possible to solve the axisymmetric problem of the elasticity
theory for radially non-homogeneous cylinder of small thick-
ness. For a radially-layered cylinder of small thickness with
alternating hard and soft layers (strongly heterogeneous
cylinder), there appear two different small parameters: small
parameter characterizing the thickness of a cylinder and
small parameter, which is responsible for the relative charac-
teristic of layers’ stiffness. The asymptotic behavior of the
solution depends on the ratio of these small parameters. As
a result of the collision of two small parameters, a weak

boundary layer appears. The processes of determining the
internal solution and a weak boundary layer are not separa-
ted. That is why in the case of a strongly non-homogeneous
cylinder of small thickness, it is convenient to apply the dis-
turbance methods of the theory of operators.

9. Conclusions

1. The asymptotic analysis revealed the features of the
stressed-strained state in a radially non-homogeneous cylin-
der. The analysis identified three groups of solutions. The
solution, corresponding to the first iterative process, deter-
mines the penetrating stressed-strained state of a cylinder.
The stressed state, determined by this solution, is equivalent
of the main vector of forces applied in an arbitrary cross-sec-
tion & = const of a cylinder. The stressed state, corresponding
to the second iterative process, represents edge effects in the
applied theory of shells. The third iterative process deter-
mines the solutions, which have the character of a boundary
layer and are localized at the ends of a cylinder.

2. It was shown that the solution that corresponds to
the first and second iterative processes determines the in-
ternal stressed-strained state of a cylinder. It was proved
that stressed state that corresponds to the second and third
groups of solutions is self-balanced in each section & = const.

3. The new groups of solutions corresponding to the third
iterative process, which are not found in the applied theories,
were found. The asymptotic formulas for displacement and
stresses were obtained.

4. The problem of meeting boundary conditions at the
ends of a cylinder using the Lagrangian variation principle
was considered.
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