|l =,

B poéomi Odocnidxnceni numanus noody-
006u i 63a€M00ii po3N0OiNEHUX CEHCOPHUX
Mmepexc 6 apximexmypi Inmepnemy peueil i
cucmemax agMoOMAMU306aH020 YNPAGINIHHIA
ounamivnumu inpacmpyxmyprumu 00 'cx-
mamu. IIpoananizoeano ocobausocmi ma
CmMpyKmypa MyavmumeoiiHux nomoxie uug-
Po6oi menemempii i nakemnux O0AHUX MidC
KOHMPOANEPAMU CEHCOPHUX MePeiHC MiCb-
K020 mpancnopmy. 3anponoHoéano cnocio
Mooudpikauii cmanoapmmnozo mepesiceeozo
inmepdeiicy Ethernet na niopieni ynpaenin-
Ha aoziunum 3'eonannam (LLC) 3a mexno-
noziero "cupux coxemis” (Raw Socket) ona
cninbHoi nepedaui bGazamoxanaavHoi mee-
Mmempii i nakemnux danux. Pospoéieno npo-
2PAMHUTL CUMYIAMOP KOHBEEPHO-MOOYIbHOZ20
nepenecenns na moei Python e onepauiiniii
cucmemi Linux Ubuntu, 6 saxomy euxopu-
cmamno memoo OUHAMIMHO020 CMPYKMYPYEaH-
Hs 0aHux mezamu po3mimku. Axmyanshicmo
danoi pooomu o6ymosnena neo6XioHicmio
no0anvuoz20 nidUWEHH MidcMepeNcesoi
inmeponepaéenvrocmi npu no6y0osi eemepo-
eennux cucmem Inmepnuemy peueii. B pesyno-
mami npogedenux 00Cai0xceHs 002pYyHmMosano
3acmocyeants KoOHEEEPHO-M00YIbHOZ0 nepe-
necenns (KMII) onsn 06miny danumu meaeme-
mpii 3 00MeNCEHHAM 3AMPUMOK 8 cCucmeMax
KOHmpoo 0e3nexu Micvk020 mpamcnopmy.
IIposedeni eunpodysanns cumynsamopa Kom-
8EEPHO-MOOYNIbH020 NepeHeceHHs niomeep-
ounu penesanmmicmo i J02iuHy Hecynepeu-
AUGICMb OCHOBHUX NPUHUUNIE KOOYEAHHS,
nepedaui i 0dexodyeanns myabmumeoiunux
danux 6 xawani 36n3xky KMII. Ompumani
pe3yavmamu cmeoprooms HAYK0GO-Memo-
Ouuni nepedymoéu 0nsL NONOGHEHHS ICHY-
wuozo cmexa TCP/IP nosum npomoxoaom
Mixcmepescesoi 63aemo0ii 3 oOMedNceHHAM
3ampumor, AKUU MoJNCe BUKOPUCMOBYEAMUCS
cninoio 3 npomoxoaom IP ¢ dodamxax peann-
H020 wacy Inmepnemy peueil, i nepu 3a ece,
8 cucmemax ynpasiinns 6e3nexor MicbKozo
mpancnopmy

Kniouoei caoea: cencopna mepesca,
Iumepnem peueii, 63acmoois peanviozo uacy,
KOHMPOIb 3ampumMox, KOHEEEPHO-M00YIbHUTL
nepenoc

|l =,

|DOI: 10.15587/ 1729—4061.2019.162305|

MODELING THE CONVEYOR-
MODULAR TRANSFER OF
MULTIMEDIA DATAIN A
SENSOR NETWORK OF
TRANSPORT SYSTEM

V. Tikhonov

Doctor of Technical Sciences, Professor*
E-mail: victor.tykhonov@onat.edu.ua

O. Tykhonova

Lecturer*

E-mail: elena.tykhonova@onat.edu.ua

O. Tsyra

PhD, Senior Lecturer*

E-mail: aleksandra.tsyra@gmail.com

O. Yavorska

Senior Lecturer®

E-mail: yavorskayao7@gmail.com

A. Taher

PhD

Department of Computer Technical Engineering
Islamic University

Kufa str., Najaf, Iraq, 54001

E-mail: abdallahgays@gmail.com

0. Kolyada

Senior Lecturer**

E-mail: e.shapenko@i.ua

S. Kotova

Senior Lecturer**

E-mail: e.shapenko@i.ua

O. Semenchenko

Senior Lecturer**

E-mail: e.shapenko@i.ua

E. Shapenko

Senior Lecturer**

E-mail: e.shapenko@i.ua

*Department of Telecommunication Networks
0. S. Popov Odessa National Academy of Telecommunications
Kuznechna ave., 1, Odessa, Ukraine, 65029
**Department of Transport Systems and Road Safety
National Transport University

M. Omelianovycha-Pavlenka ave., 1, Kyiv, Ukraine, 01010

1. Introduction

towards the “Internet of Everything” (IoE). Herewith, both

With the increase in the number of terminal devices, the
worldwide Internet is gradually migrating towards the “In-
ternet of Things” (IoT). In a more distant future, it is moving

traditional clients and servers and automated control sys-
tems (ACS) of various sensor objects in transport, energy,
and other industries, are integrated in a common network
infrastructure [1, 2].

Any distributed ACS functions by exchanging telemetry
data between the ACS-controller and sensor network objects in
real-time mode. Such automated control systems are sensitive
to data transmission delays in the control loop, [3, 4]; these time
delays can generate parasitic self-oscillations in the system, [5].

In the last decades, special hardware and software tools
have been actively developed to build sensor networks [6, 7].
Many developments of this type exhibited as proprietary com-
mercial products; therefore, a large variety of methods, tools
and protocols emerged, as well as difficulties in standardizing
these products raised. In this regard, the current direction
in the field of telecommunications is to further increase the
interoperability of heterogeneous sensor networks while their
aggregation into the infrastructure of the Internet of things.

2. Literature review and problem statement

In the architecture of the Internet of Things (IoT), by
analogy with the TCP/IP stack for the Internet, we distinguish
three main layers for the open systems interoperability.

1) The access layer of terminal sensor devices, which rep-
resent distinct segments of a sensor network (sensor access
networks).

2) The aggregation layer of sensor access networks into
IoT-domains.

3) The interconnection layer of geographically and/or
functionally separated IoT-domains of the entire Internet of
things, each of which combines several segments of sensor
access networks.

Consider the main characteristics of each of these three
layers of interoperability in the architecture of the Internet of
Things (IoT).

The first IoT-layer (i.e. sensor access networks) is typically
built on the equipment of a particular manufacturer. Thus,
diverse sensor access networks often meet difficulties in co-
herent operation because of various technical solutions offered
by competing companies. Known approach at this IoT-layer is
utilization of different Ethernet modifications, aka “Real Time
Ethernet” (RTE), [8]. The RTE-technologies are used for both
wired and wireless communications.

The second 1oT-layer (aggregation of sensor access networks
into IoT-domains) is not always possible to build entirely on the
equipment of one manufacturer. Therefore, at the second layer,
the problem arises of joining disparate hardware/software
technologies from competing manufacturers.

In the TCP/IP model of the contemporary Internet no
particular layer had been designed for real-time open system
interconnection. Therefore, the conjunction of heterogeneous
sensor networks into a common domain acts as an intermediate
sublayer in TCP/IP architecture, which is located between the
access layer and the internetworking layer (denote it L1.5).

The third ToT-layer (integration of distributed sensor do-
mains) coincides with the second layer of the TCP/IP stack (i.e.
[P-layer). However, the IoT-domains interaction in real-time
mode on IP-protocol does not always meet the QoS require-
ments in M2M systems or services (e.g. urban traffic safety
management).

Known methods and protocols of telemetry data exchange
in sensor networks and IoT-segments mainly support the mul-
tichannel real-time data transmission at the access layer, [9].

For the real-time Ethernet (RTE), particular mechanisms
are used to synchronize individual processes of the sensor
network in RTE compatible protocols. Examples of such mech-

anisms are the open application protocol of the Industrial Eth-
ernet family (EtherNet/IP, [10]), as well as the open industry
standard based on the TCP/IP stack (PROFINET, [11]). One
of the most popular 10T technologies is EtherCAT (industrial
standard of the Industrial Ethernet family, [12]). Local sensor
networks and control systems widely use the Ethernet Power-
link real-time data transfer protocol ([13]), as well as the third
generation of the Serial Real time Communication System
standard (SERCOS 111, [14]).

The Ethernet Powerlink protocol provides for scheduling
exchanges on the bus at the expense of the allocated time in-
tervals in which access to the bus is allowed only to one of the
devices. Also known is the IEEE 1588 standard, which allows
synchronization of subscriber timers, [15]. A comparative anal-
ysis of the standards and protocols mentioned above is given
in [16]. According to this analysis, the most widely used is the
EtherCAT standard, developed by Beckhoff. The EtherCAT
protocol specification is currently available only to members
of the co-founders organization, which increases the cost of
EtherCAT devices.

The EtherCAT protocol operates on packets transmitted
within an IEEE 802.3 Ethernet frame (with an Ethertype 88a4
field) or within a UDP/IP datagram. The EtherCAT network
segment combines one master device with its MAC address and
many slave devices (without their own MAC addresses). The
EtherCAT segment has a logical ring topology (although the
physical topology can be of any other type like bus, star, etc.).

The 802.3 Ethernet frame payload field contains an em-
bedded EtherCAT packet. The EtherCAT packet is indivisible
and consists of a header (2 bytes) and one or more messages.
The data sequence does not depend on the physical order of the
nodes in the network, and the addressing can be serviced in any
order. Each packet sent by the slave device sequentially travers-
es all the nodes of the segment with a specified time cycle.

Multicast and broadcast data transfer between final re-
cipients is also possible, and should be implemented on the
master device in the current network segment. If IP routing
is not required, the EtherCAT protocol can be inserted into a
UDP/IP datagram. This makes it possible to use the TCP/IP
stack for addressing in EtherCAT segments.

Technological solutions offered in the telecommunications
market in the field of compatibility of various IoT platforms rely
primarily on the TCP/IP stack. At the same time, manufactur-
ers provide for expansion of the address space and additional
flow control capabilities in the IPv6 protocol [17]. The task of
interconnection of individual segments and domains of sensor
networks is partially solved by prioritizing real-time packet
traffic in the known models of integrated services (IntServ)
and differentiated services (DiffServ), [18]. Increasing the
priority for telemetry streams reduces the overall average data
latency, but variations of time delay may not be acceptable in
specific M2M systems.

A wide range of IoT researches is focused on appli-
cation-layer software interfaces, [19]. To increase
the IoT scalability, researchers in academia and indus-
try developed recommendations on heterogeneous
IoT platforms, [20]. The problem of IoT standardiza-
tion is dealt with by the Open Interconnect Consor-
tium (OIC), AllSeen Alliance, oneM2M, OMALwWM2M,
ETSI M2M and other international organizations. A popu-
lar trend in IoT development is network function virtualiza-
tion (NFV) on a software defined network (SDN), [21]. This
approach implies an additional local controller embedded
between the SDN control plane and application plane. Also,

technological developments of W3C’s SemanticWeb at [oT
application layer, such as the Resource Description Frame-
work (RDF) and SPARQL [22], as well as Web Ontology
Language (OWL) are known, [23]. On the way of IoT glo-
balization and transition to integrated regional networks,
the interoperability provision becomes a key issue of the
21st century [24]. In [25], the authors note that solving the
interoperability problem for segments and domains of the
IoT network yields up to 40 % of additional economic gain.
As a part of NGN researches at the telecommunication
networks department of A.S. Popov ONAT (Ukraine), the
new concept of packet networks interoperability is developed,
[26—30]. This concept provides for the adaptation of basic data
link layer technologies (primarily Ethernet) and the TCP/IP
stack expansion to design IoT sensor network segments. This
concept relies on special protocol for conveyor-modular data
transfer in real time mode with latency control (CMT) acting
along with conventional TP. The CMT method targets both
traditional multimedia applications (digital telephony, video
conferencing, etc.) and the telemetry data exchange in IoT
sensor networks. Time delays are limited in real-time appli-
cations by installing virtual connections between individual
controllers of sensor networks. In particular, the adaptation of
Ethernet LLC sublayer has been proposed. The CMT supports
QoS provision for real-time applications at the second (inter-
networking) layer of the TCP/IP model. This is higher than
the access layer of industry sensor networks standards (such as
EtherCAT, Ethernet Powerlink and others). On the other hand,
the CMT does not affect the application layer of open systems
interconnection (as in the above-mentioned technologies and
protocols such as NFV/SDN, RDF and OWL). The CMT
based IoT interoperability provides a packet-overhead to laten-
cy-control compromise with respect to conventional real-time
data encapsulation, along with the ease of inter-layer data
processing. The price of such a solution is the need to further
expand the standards for the most promising data link layer
technologies (Ethernet, WiFi and LTE). Physical interfaces,
as well as the MAC sublayer of the data link layer of the under-
lying technologies, do not require modification to implement
the CMT protocol. To support the conveyor-modular transfer
of real-time data through modified link-layer frames, several
variants of the CMT protocol are described in [25-30], includ-
ing, based on IEEE 802.3 wired Ethernet, IEEE 802.11 radio
(WiFi), and mobile LTE communication. Analyzing related
works [8-17, 19, 20, 24, 26-31] we conclude that promissing
increase of IoT interoperability is available by the
use of conveyor-modular transfer of multimedia
data (CMT) developed in the Odessa Nation-
al Academy of Telecommunications [26-30]. L3
However, more researches are needed for
CMT method verification and related protocol
specification. An important step in network pro-
tocol enhancement is computer simulation of ba- | ,
sic algorithms and processes of the open system
interaction that underlie the proposed method.

3. The aim and objectives of the study L1

This work aims conveyor-modular transfer
simulation for multimedia data processing in the

Network environment 1

Segment 1
of the sensor
network

Domain 1 of the sensor network

— Substantiation of an appropriate algorithm for multi-
channel telemetry transmission in urban transport manage-
ment system,;

— Development of the data link layer interface for convey-
or-modular transfer via the Ethernet frames;

— The software simulation of multi-channel real-time data
transfer combined with TP-packets delivery.

4. Substantiation of the algorithm for multichannel
telemetry transmission

Consider the three-layered architecture of a distributed
transport management system, Fig. 1. The first layer embraces
four segments with local controllers (C1—-C4) aggregated in
two second layer domains. The number of segments in one
domain depends on specific transport management system. For
example, the first domain combines sensor networks for subor-
dinated transport means control; the second one integrates air
traffic and meteorology services, flight control, etc. The region-
al transport management system may also contain subsystems
of road control, sea and river transport, each of which forms
its own departmental domain of the sensor network on the
Internet of things. The domain controller communicates with
the segment controllers through some network environment.
Ways to build this environment are of interest from the point of
view of the interoperability problem, and are discussed further
in this paper.

Any sensor network domain is a subnet on the second
(aggregation) layer of 10T hierarchy. At the same time, sensor
domains are entities of the 3-rd layer of IoT hierarchy incorpo-
rated through the IoT infrastructure by the central processor
of sensor network, which interacts with domain controllers.
Any sensor network under a common administration policy
forms an IoT autonomous system (AS-IoT). Currently, the
AS-I0T systems are mainly deployed on the access layer and
are heterogeneous on object dynamics and QoS requirements.
Today, the main protocol for interworking on the Internet is IP.
However, consider the distributed objects management, IP acts
as a sublayer of transport tunnel for telemetry data exchange.
Other sublayers of this TCP/IP stack tunnel are UDP/TCP
transport protocols along with the Real-Time Transport Pro-
tocol (RTP) and RTP control Protocol (RTCP). The distrib-
uted control system processes the upstream telemetry of sensor
states and downstream telemetry of actuator commands.

IoT network infrastructure

Central processor of
the sensor network

Domain
controller 2

Domain
controller 1

Network environment 2

Segment 4
of the sensor
network

Segment 3
of the sensor
network

Segment 2
of the sensor
network

Domain 2 of the sensor network

J K segments

segments

IoT sensor network domain of urban transport
management system. On this premise, the follow-
ing tasks are considered:

Fig. 1. Three-layer architecture of distributed sensor network: L1, L2, L3 —
the layers of open systems interconnection in a sensor network

The IoT telemetry of sensor networks has the following
properties.

1) The distinct object telemetry is mainly formed by short
messages sequence.

2) The telemetry must be recurrent and low latent for sus-
tained object control.

3) The telemetry QoS requirements widely differ depend-
ing on objects dynamics.

For instance, a modern urban traffic management system
targets future unmanned vehicles control requiring millisecond
or less telemetry latency. At the same time, the control subsys-
tem of traffic lights is not so critical to the small time delays in
data transmission. The telemetry time delay is formed by two
main parts:

1) Unremovable latency caused by the finite time of electro-
magnetic wave propagation;

2) Operational delay in data processing nodes (mainly, the
overall queuing time in switching/routing nodes).

An urban transport management network may include vid-
eo monitoring subsystem with local data storage. However, the
one-way video data transmission or streaming does not require
high dynamics or strict time delay control, and therefore, can
be carried out using UDP/TCP in batch mode, which is typ-
ical for IP networks. Thus, when building distributed AS-IoT,
the coherence of many IoT-domains must be ensured in a wide
range of QoS-requirements, along with the packet overhead
minimization.

This problem solution involves integration of parallel data
streams in a common physical communication channel which
is divided into many heterogeneous logical subchannels (te-
lemetry transmitted in circuit-switching mode, and data files
delivered in packet-switching mode). Since different sensor
networks are usually performed at the access layer on the
equipment of one manufacturer, the local compatibility can be
ensured within any segment. Therefore, the IoT access layer
naturally allows for a large variety of competitive solutions,
and objectively, it is difficult to unify. The interoperability
and protocol compatibility issues mainly emerge on the second
layer of IoT-hierarchy, Fig. 1. If sensor networks are compact
and compatible (i. e. allocated on the common territory of one
company), then a special backbone network can be created on
the data link layer to aggregate these networks into domains.

The domain of a sensor network, whose entire infrastruc-
ture is subordinated to the common administration policy,
is turned into an autonomous system of sensor network. So
the AS-segments compatibility becomes an internal task of
AS-administrator. In this case, achieving interoperability is
less limited by the current standards. If the segments of a sensor
network are located in different areas of the city or functionally
divided, then a special network infrastructure for IoT-segments
aggregation is neither technically nor economically expedient.
In this case, the existing telecommunications infrastructure
can be utilized based on the conventional TCP/IP protocols.
Consider sensor networks interoperability. A relatively simple
aggregation option is the use of IP-based Internet. To support
this option, the sensor network controllers must operate on
the TCP/IP platform. This approach prevails today in the IoT
sensor networks.

When IP based aggregation of sensor networks, the
IoT-domain loses the privilege of AS common administration
policy; therefore, the sovereign admin policy is solely pre-
served at the access layer. Such a solution meets QoS issues in
telemetry long distance delivery, because of IntServ/DiffServ
models limitations. Besides, transmission the short real-time

messages via the TCP/IP stack results in excessive overhead.
The TCP/IP redundancy in sensor telemetry delivery is due
to complicated multilayered RTP segments encapsulation
(12-byte header). In turn, the RTP protocol segments are
packed into UDP transport protocol segments (8-byte head-
er). Next, UDP segments are embedded in IP packet (20-
byte header for IPv4). Again, IP packets are enclosed in L2
frames (i. e. Ethernet frames with 18-byte header). The total
overhead of TCP/IP encapsulation is now 58 bytes. In case
of 2-byte telemetry unit, the overall IoT-channel utilization
yields inefficient figure of 2/(2+58)-100 %=3.3 %.

The TP-aggregation of sensor networks turns the 3-layer
IoT-architecture (Fig. 1) into a 2-layer framework, where the
last two layers merged into one IP-based interworking layer.
So, the sovereign admin policy drops to the layer of sensor
network segments. Such a decision complicates the M2M
systems design on the IoT platform. The integration of sensor
network segments into IoT-domain via the public ITP-network
solely retains the AS-policy privilege when “transparent” te-
lemetry traffic. This “transparency” implies telemetry latency
control in a wide range of QoS requirements, as well as elimi-
nation of the conventional protocol overhead.

The sensor network domain formed by the sensor network
integration through the transparent public network, can be
considered as a virtual autonomous system (VAS). As noted
above, the transparency of the IoT packet transporting sys-
tem for telemetry traffic of sensor network segments can be
achieved by conveyor-modular transfer of multimedia data
(CMT, [26—-30]). There are two principal CMT-algorithms.

The first algorithm for expanding the interoperability
of the packet network provides for the introduction of one
additional virtual circuit switching protocol VCP at the in-
terworking layer (IP layer in the TCP/IP model), along with
the current IP protocol (regardless of the specific IP protocol
version) [26, 27]. The idea of this approach is as follows. In
the gateway, a simple local network with one communication
channel and a pair of Ethernet network interfaces is formed.
In this network, the MAC addresses of the sender and receiver
are known in advance, and there is no need to switch frames
to the MAC addresses of the receiver. Frames are generated by
the sender and processed by the receiver using the Raw Socket
Ethernet technology. The Raw Socket Ethernet enables a
system programmer to independently form a frame structure,
including header fields, payload, and checksum. Due to this,
in a single Ethernet frame instead of the traditional IP packet
and header fields, there are two blocks of data:

1) Block of real-time data of variable length (which con-
tains a tuple of segments of real-time data from many objects,
for example, telemetry from sensors of the state of control
objects);

2) Packet data block (which contains one or more frag-
ments of a common packet queue); the length of this block is
dynamically calculated as the rest of the overall frame payload
after the real-time telemetry block is allocated.

According to the CMT method, the Raw Socket Ethernet
frames circulate in both directions of the gateway with a con-
stant duty cycle, forming a modular transport conveyor. The
maximum possible frame length (within the selected Ether-
net standard) is limited by the frequency of circulation and
the bandwidth of the communication channel. The specific
length of each frame changes dynamically depending on its
actual payload. In the absence of data on the next duty cycle,
the frame is omitted. While conveyor-modular data trans-
mission, the time delay is predetermined by frame duty cycle

in a particular gateway. Real-time segments are transmitted
via pre-established virtual connections based on channel
resource reservation at each gateway hop. This eliminates
sporadic telemetry queuing and latency deviation. The overall
time delay yields the sum of all the intermediate gateway duty
cycles. The considered above first algorithm of multimedia
data integration with one additional virtual circuit switching
protocol VCP has the following peculiarity. During each

transmission cycle, a block of packet data is
formed in accordance with dynamically shaped
telemetry block which always occupies the first
part of the frame payload. It means; that IP-pack-
et queuing data is scheduled to the rest slot of the
current frame. For this type of data scheduling,
the necessary part of the queue of concatenated
IP packets is truncated. Therefore, when there
is a packet data queue, the frame is always full,
which ensures high efficiency of communication
channel utilization (more than 90 %).

The second algorithm of multimedia data
integration developed in ONAT ([29]), provides
for the introduction of two additional channel
switching protocols along with conventional TP
protocol. The first of the two novel protocols of
the second algorithm (designated as VCP) sup-
ports the above method of virtual circuits switch-
ing with time delay control. The second protocol
in this algorithm (designated as LCP) is intended
for fast label switching of logical connections
without latency control and resource reservation
(by analogy with MPLS, but implemented at
the interworking layer). The LCP protocol data
segments are served by known methods; howev-
er, additional gain is achieved by overhead and
delays reducing.

At this stage of computer simulation of con-
veyor-modular transfer, we have chosen the first
algorithm (with one additional protocol VCP),
since its implementation is simpler and more acces-
sible in the short term. The implementation of the
second algorithm may be an actual task in the IoT
sensor networks in a more distant future.

5. Interface development of the conveyor-
modular data transfer via Ethernet frames

We'll build an interface of the conveyor-mod-
ular data transfer by modified Ethernet frames on
Raw Socket technology using Send and Receive
function modules of Python programming envi-
ronment in Linux Ubuntu operating system. The
Send module runs on the sending workstation, and
the Receive module — on the receiving worksta-
tion. Both modules run in admin mode.

Fig. 2 shows the program code of the Send
module, designed for constructing and transmis-
sion of modified Ethernet frames. The operator
from socket import socket, AF_PACKET, SOCK__
RAW loads the standard socket module and de-
fines the parameters AF_PACKET, SOCK_RAW.
The last two parameters are used to build a “raw
socket” at the data link layer of the TCP/IP
stack, i. e. for non-standard frame formation.

Fig. 3 shows the program code of the Receive module,
designed to receive modified Ethernet frames generated and
transmitted by the Send module described above. The import
optparse, socket, time, binascii operator loads four standard
modules from the Linux library. The optparse module is the
parser of parameters contained in program code operators.
In the BUF SIZE=1,600 code line, the buffer size is set to
1600 bytes for receiving an Ethernet frame.

Send module (Python 2.7.12 for Linux Ubuntu 16.04.3 LTS)

First terminal (Ctrl+Alt+T): run the program as administrator, e.g.
sudo python /home/user/Desktop/Send.py

The patch-cord must be plugged to either the switch or another PC
The wired interface must be activated by switching the "on" mode

import time
from socket import socket, AF_PACKET, SOCK_RAW # used for L2 Raw Socket
from binascii import hexlify # to use in decoding hexadecimal numbers
sock = socket(AF_PACKET, SOCK_RAW)
sock.bind(("eth0", 0)) # Interface name get from the netstat -r
DMAC="\x00\x13\xE8\x7E\x05\xF5" # An actual DMAC shell be taken
SMAC="\x3C\xF8\x62\xE1\x3A\x6B" # The source address
PAYLOAD=(' Hello! ') # FRAME length must be more then 6+6+2+4=18
FRAME=DMAC+SMAC+PAYLOAD
interval = 1; n=1
lastTime = time.time() # returns time as a floating point number in
seconds since the epoch, in UTC (e.g. 1234892919.6559320)
while n<=50: # unlimited cycle in Python
now = time.time ()
if now > lastTime + interval:
sock.send(FRAME)
print 'Sent frame: DMAC= "+hexlify(FRAME[0:6])+' SMAC=
"+hexlify(FRAME[6:12])+' PAYLOAD="+FRAME[12:]+' Time =',now
lastTime = now
n=n+1
else:
time.sleep(0.1)

Fig. 2. Program code of the Send module

Receive module (Python 2.7.12 for Linux Ubuntu 16.04.3 LTS)
The dedicated network interface must be switched "on"

import optparse, socket, time, binascii

BUF_SIZE = 1600

ETH P ALL =3

Interface = "eth0"
(MAC1,MAC2)=("3cf862¢13a6b","0013e87e05{5")

Open socket

sock = socket.socket(socket. AF_PACKET, socket. SOCK_RAW,
socket.htons(ETH_P_ALL))

sock.setblocking(0)

Repeat receiving frames
interval = 1
lastTime = time.time()
while True: # Non-stop cycle (To stop use the command "Ctrl+C" from the terminal)
now = time.time()
try/except/else
try:
FRAME = sock.recv(BUF_SIZE) # recive frame from buffer in packet
except socket.error:
print ("Error")
pass
else:
DMAC = binascii.hexlify(FRAME[0:6]).decode()
SMAC = binascii.hexlify(FRAME[6:12]).decode()
PAYLOAD=FRAME[12:]
if(DMAC==MACI! or DMAC==MAC2):
print "Recv frame: DMAC="+DMAC+" SMAC="+SMAC+" PAYLOAD=",
PAYLOAD," Time =", now

Fig. 3. Program code of the Receive module

6. Software modeling of the multi-channel multimedia
data transfer

Fig. 4 shows a functional scheme of a software simulator
for modeling the processes of conveyor-modular transfer of
the telemetry data and packet data between sensor networks
controllers in the Internet of things infrastructure. This
scheme describes the simplex half of the duplex communi-
cation channel. The second simplex half of the channel is
constructed similarly.

The second group consists of medium dynamic flows
(for example, cyclists’ telemetry). The data blocks of these
streams will be placed in every even of two successively
transmitted frames. The transmission delay will be 2T.

The third group — the least dynamic flows (for example,
telemetry of pedestrians and special vehicles); data blocks
will be placed in every third of three successively transmit-
ted frames. The transmission delay will be 3T.

For the convenience of visual control in the process of

On the transmitting side of the chan- | Real Time .
. . Data Real Time
nel, the MUX multiplexer receives a flow
of segments from the Real Time Data Generator [N N R T ,”| Data Output
MUX |- -+~ -- - -42 23 s pEMUX

Generator, as well as from the IP Packet (P UV P
Generator. From these two flows, the IP-Packet L] Raw Socket Frames t N IP-Packet
multiplexer forms Raw Socket Ethernet Generator Send ﬂ Ethernet Channel |—> Receive Output

frames. Each successive frame is passed
to the Send software module to be sent
to the specified network interface (wired
Ethernet or WiFi radio interface).

On the receiving side of the channel, the frame is re-
ceived by the Receive program module and placed in the
data processing buffer. Next, the DEMUX inverse multi-
plexing module parses the frame payload in the buffer. As
a result, the buffer content is divided into a real-time data
flow (Real Time Data Output) and an IP packet queue
(IP-Packet Output). Real-time segments are transmitted
over pre-established virtual connections (VC). Each virtual
connection has a label, a fixed frequency and size of the seg-
ments. A modified Raw Socket Ethernet channel is formed
by a pair of Send/Receive modules.

Consider a sensor network managing traffic safety at a
complex intersection of the city’s or megalopolis transport
system. We'll assume that this sensor network contains three
main segments according to departmental subordination:

— First segment: municipal electric transport (trams,
trolley buses);

— Second segment: traffic police of the Ministry of Inter-
nal Affairs (manned and unmanned vehicles, motorcycles,
bicycles and pedestrians with move control devices);

—Third segment: traffic service (traffic lights, sound
signaling devices, surveillance cameras, etc.).

Each of the three sensor network segments is an autono-
mous system of the access layer, and contains its own controller.
The segments associate into a domain via a domain controller,
which provides their interaction with the urban traffic manage-
ment system. The number of sensors and controls in each seg-
ment of such an access network may be many dozens, which de-
termines the number of parallel flows and virtual channels for
telemetry data transfer. Each flow has its own characteristics in
terms of possible rates and admissible delays in the control loop.
For example, the speed of cars at the intersection can reach
50 km/h, cyclist’s —about 15 km/h, pedestrian’s — 5 km/h.

For the model description simplicity, we divide all re-
al-time telemetry flows into three main categories.

The first group is the most dynamic flows (for example,
car telemetry). We assume that each frame transmitted
between the segment controllers and the domain controller
contains telemetry data blocks from all sensors or actuators
from the first group of streams for a particular segment of the
sensor network. The delay in transmission over the physical
link is approximately one duty cycle T of frame circulation.
The metropolis scale delay of electromagnetic waves propa-
gation can be neglected.

Fig. 4. Functional scheme of the simulator for multimedia data transfer

debugging a software simulator CMT, we will assume that
all data blocks of the first category of telemetry streams are
the same in size and value, and are equal to the character
constant ‘11. Blocks of the second category take constants
2222’; the third category ‘333333". The operation of CMT
multiplexer does not depend on the specific values of data
blocks. The PAYLOAD size is 24 characters (maximum size
is 1,506). In each frame, if there is free space, we will place a
fragment of the packet queue (for example, information from
surveillance cameras) in order to fully utilize the payload
field. For ease of visualization, individual packages and their
fragments carry the monotonous characters, for example:
XXX, YYY, ZZZ, etc. The payload field formed in this way,
containing telemetry data blocks and packet fragments, we
designate as conveyor-transporting module (CTM).

Multiplexing telemetry blocks and fragments of a packet
queue in the PAYLOAD field will be performed using
markup tags, each of which is formed by a combination of
the reserved character “C” (command) and other symbols:

CO0 is the separator between the real-time data area (the
initial part of the CTM module) and the packet data area
(the remaining part of the CTM module);

CN is the label of the telemetry data block for the Nth
category of real-time streams (C1, C2, C3, etc.);

CA is the beginning of the package; CC is a substitution
command for transferring any tag as a data byte.

Suppose the packet queue is:

— XXXXXX;

“YYYYYYYYYY;

-717;

—HHHH;

— PPPP;

-QQQQ000AQAQQ;

- WWWWWW,

— RRRRRR;

~TTTTTT.

Then the first six CTM modules will take the form
shown in Fig. 5.

The program code of the simplified version of the MUX
multiplexer is shown in Fig. 6. The MUX module is designed
as a standalone program that can be used independently of
the Send and Receive modules for verifying the principle of
multiplexing based on the entered markup tags. The working
version of the MUX module is implanted in the Send module
as subroutine based on an extended list of markup tags. The

first three operators in the MUX module determine the size
of the CTM module, the frequency of telemetry data blocks
appearance, as well as the number of characters in each data
block. The operator fout = open (“/ home / user / Desktop /
OutPack.txt”, ‘w’) opens the OutPack.txt file for recording,
which displays the results of the MUX module. Operator x =
fin.read (1) sets the read pointer on the first character of the
fin file. The DEMUX software module is in many respects
similar to the MUX module and performs inverse multiplex-
ing operation on the receiving side of the channel.

CT™M-1 BEITCOCAXXXXXXCAYYYYYYYY
ct™M-2 EIIE22222c0Y YCAZZCAHHHH
CT™M-3 E211€8333333Cc0CAPPPPCAQQ
CTM-4 EIT1€22222C00000000QCANW
CT™M-5 EEIICOWWWWCARRRRRRCATTTT
cTvs EEIIG2222263333333C0TTCA

Fig. 5. Data structure in conveyor transporting modules CTM

Begin MUX module
CTM=24
K1,K2,K3=(1,2,3)
D1, D2, D3 = (2,4, 6)
n=1
fin = open(''/home/victor/Desktop/InPack.txt", 'r'")
fout = open(''/home/user/Desktop/OutPack.txt", 'w')
x = fin.read(1)
while n<=6:
L=2
print \n CTM=""%2d" %(n),
fout.write("\n CTM=""%2d" %(n),)
if (m%K1 == 0):
L=L+2+D1
print '\t C1'+'11",
fout.write ("\t C1'+'11",)
if (n%K2 == 0):
print 'C2'+'2222',
fout.write ('C2'+'2222',)
L=L+2+D2
if (n%K3 == 0):
print 'C3'+'333333',
fout.write ('C3'+'333333")
L=L+2+D3
print 'C0',
fout.write ("C0',)
Freeslot = CTM-L
if Freeslot >= 1:
x = fin.read(Freeslot)
print x
fout.write(x)
n=n+1
fin.close()
fout.close()
End MUX module

Fig. 6. The program code of the data multiplexing module MUX

7. Discussion on computer simulation results

The sensor networks interoperability is a great challenge
for different equipment manufacturers on the way to the
Internet of Things. One of the possible approaches to sensor
networks compatibility provision was proposed in the Odesa
national academy of telecommunications (Ukraine) based
on the conveyor-modular data transfer (CMT) at the OSI
network layer. To verify the CMT method, three main tasks
were set in this work.

As a result of solving the first task in Section 4 of this
work, a compromise choice of the algorithm for multi-chan-
nel transmission of multimedia data and digital telemetry in

sensor networks of the Internet of Things is justified. This
compromise is achieved through a technically simple mod-
ification of the logical link control (LLC) sublayer in the
network interfaces of one of the most popular local area net-
work technologies Ethernet. Such a modification at the first
stage of its implementation can be carried out consolidated
within the framework of separate associations of autono-
mous systems, and does not require a complex procedure for
the harmonization and adoption of international standards.
The essence of the selected CMT algorithm (Odesa national
academy of telecommunications) is the implementation of
one additional interworking protocol (VLC virtual con-
nection protocol) in addition to the conventional IPv4 and
IPv6 protocols. The choice of such a solution allows com-
bining two difficultly compatible methods of processing and
transmitting data in one physical communication channel —
circuit switching (with deterministic delay) and packet
switching (with high channel resource efficiency).

The result of solving the second task (Section 5) is the
development of a software interface for conveyor-modular
transfer of multimedia data via the Ethernet link or WiFi
radio channel. This result was achieved through the creation
of two software modules in the Python language in the Li-
nux operating system (modules Send and Receive), as well as
through the use of a low-level Raw Socket Ethernet frame
shaping mode.

The result of solving the third task (Section 6) is a soft-
ware simulation of multimedia data transfer processes that
combines the processing of real-time data (telemetry of
sensor networks) and IP packets. This result was achieved
by creating two software modules in the Python/Linux lan-
guage (MUX and DEMUX). The MUX module multiplexes
data on the transmit side of the channel, i.e. carries logical
coding of telemetry blocks and fragments of IP packets in
the form of formal grammar text using markup tags. The
DEMUX module performs data demultiplexing, i.e. parsing
of the formalized text on the receiving side of the channel.
After demultiplexing, the input data stream is divided into
an IP-packet queue and a multi-channel telemetry queue.
The packet queue is processed by the router, and the telem-
etry queue is processed by the virtual connection switch.

The advantage of modeling the conveyor-modular trans-
fer (CMT) compared to previously published results is the
creation of the first working version of the software simula-
tor, in which the processes of data multiplexing and demul-
tiplexing at the logical link layer (LLC) are separated from
the processes of cyclic data transfer via the Ethernet frames.

From the point of view of the problem formulated in Sec-
tion 2, this work is the next stage in the complex of systemic
research on verification of the theoretical method of convey-
or-modular transfer (CMT). The results of the work confirm
the logical correctness of the selected basic algorithm with
one additional interworking protocol VCP (virtual con-
nection protocol). The developed software simulator is a
practical tool for a new spectrum of model experiments and
specification of individual parameters of the VCP protocol.

The main limitations of the simulation of the interwork-
ing processes in the IoT networks described in the software
simulator and based on it modeling results are as follows.
The first limitation is a simplified visual user interface that
does not allow for cognitive tracking of rather complex infor-
mation processes in sensor networks. The second aspect is a
small set of markup tags, which limits the number of possible
channels for parallel transmission of telemetry data (up to

10 channels). The third limitation is the absence in the simu-
lator of a built-in generator of random telemetry streams and
IP packets with given statistical characteristics. In addition,
the simulator described is intended only for network adapt-
ers and Ethernet interfaces.

The above limitations can be considered as short-
comings of this work from the point of view of further
research. The most urgent tasks at the next stages are the
improvement of the interactive graphical user interface,
the extension of the logical coding language of the frame
payload, the development of a methodology for modeling
the information load of communication channels. Also of
interest is the scaling of the principles of conveyor-modular
transfer (CMT) to other local area network technologies.

8. Conclusions

1. In the work, the rationale and specification of the al-
gorithm for multi-channel data transmission in a real-time
transport management system at the aggregation layer of

individual domains of sensor networks are carried out. The
proposed algorithm is based on the sharing of packet data
transmission based on the current IP protocol and the new
method of conveyor-modular transfer (CMT), the protocols
of which are under development.

2. To build a multiplex channel in the real-time systems
of the Internet of Things, wired and wireless interfaces
were developed using the Raw Socket Ethernet technology
in the Python programming language in the Linux Ubuntu
operating environment. The implementation of such a com-
munication channel involves the modification of the logical
link control (LLC) sublayer in Ethernet technology.

3. Software modules MUX and DEMUX in the Py-
thon/Linux environment for simulating multi-channel data
transfer using the conveyor-modular transfer method were
developed. Preliminary testing of these modules was car-
ried out, which confirms the logical correctness of the
proposed algorithm. Based on the simulation results, the
directions for further research in the field of interconnec-
tion of sensor networks in the architecture of the Internet
of Things are formulated.

References

1. Porkodi R., Bhuvaneswari V. The Internet of Things (IoT) Applications and Communication Enabling Technology Standards: An
Overview // 2014 International Conference on Intelligent Computing Applications. 2014. doi: https://doi.org/10.1109 /icica.2014.73

2. Internet of Nano-Things, Things and Everything: Future Growth Trends / Miraz M., Ali M., Excell P, Picking R. // Future
Internet. 2018. Vol. 10, Issue 8. P. 68. doi: https://doi.org/10.3390 /110080068

3. Machine-to-Machine (M2M) communications: A survey / Verma P. K., Verma R., Prakash A., Agrawal A., Naik K., Tripathi R. et. al. //
Journal of Network and Computer Applications. 2016. Vol. 66. P. 83—105. doi: https://doi.org/10.1016/j.jnca.2016.02.016

4. Time-Delay Systems: Modeling, Analysis, Estimation, Control, and Synchronization / Boubaker O., Balas V. E., Benzaouia A.,
Chaabane M., Mahmoud M. S., Zhu Q. // Mathematical Problems in Engineering. 2017. Vol. 2017. P. 1-3. doi: https://doi.org/

10.1155/2017,/1398904

5. Yu W, Cao J., Chen G. Stability and Hopf Bifurcation of a General Delayed Recurrent Neural Network // IEEE Transactions on
Neural Networks. 2008. Vol. 19, Issue 5. P. 845-854. doi: https://doi.org/10.1109,/tnn.2007.912589
6. Bharathidasan A., Sai Ponduru V. A. Sensor Networks: An Overview. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.84.5089 &rep=rep1&type=pdf

7. ZhengJ., Jamalipour A. Introduction to Wireless Sensor Networks // Wireless Sensor Networks. 2008. P. 1-18. doi: https://doi.org/

10.1002/9780470443521.ch1

8. Doyle P. Introduction to Real-Time Ethernet I // The Extension. A Technical Supplement to Control Network. 2004. Vol. 5, Issue 3.

URL: http://www.ccontrols.com.cn/pdf/Extv5n3.pdf

9. Lammermann S. Ethernet as a Real-Time Technology. Leipzig, 2008. 21 p. URL: http://www.lammermann.eu/wb/media/

documents/real-time_ethernet.pdf

10. EtherNet/IP Programmer’s Guide // Parker Hannifin Corporation. 2009. URL: https://www.naic.edu/~phil/hardware/

byuPhasedAr/floor/Parker EthernetIP_UG.pdf

11. Cao J. PROFINET. URL: http://www.cs.wayne.edu/~hzhang/courses/8260/Lectures/Chapter%2012%20-%20PROFINET.pdf
12. The Ethernet Fieldbus // EtherCAT Technology Group. 2009. URL: https://www.ethercat.org/pdf/english/EtherCAT

Introduction_0905.pdf

13. EPSG Draft Standard 301. Ethernet POWERLINK Communication Profile Specification. Version 1.3.0 // Ethernet POWERLINK
Standardisation Group. 2016. URL: https://www.ethernet-powerlink.org/fileadmin/user_upload/Dokumente/Downloads/
TECHNICAL DOCUMENTS/EPSG DS 301 V-1-3-0 4 .pdf

14. Sercos III Communication Development Platform // Texas Instruments. 2015. URL: http://www.ti.com/lit/ug/tidu534a/

tidub34a.pdf

15. IEEE 1588-2008 — IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems // IEEE Standard Association. 2008. URL: https://standards.ieee.org/standard/1588-2008.html

16. Hibbard J. 5 Real-Time, Ethernet-Based Fieldbuses Compared. 2016. URL: https://www.manufacturingtomorrow.com/
article/2016,/05/5-real-time-ethernet-based-fieldbuses-compared /8044 /

17. A Language-based Approach for Interoperability of IoT Platforms / Gabbrielli M., Giallorenzo S., Lanese 1., Zingaro S. P. //
Proceedings of the 51st Hawaii International Conference on System Sciences. 2018. doi: https://doi.org/10.24251 /hicss.2018.714

18. Integrated and Differentiated Services. URL: https://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M5L4.pdf

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Towards Multi-layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach / Fortino G., Savaglio C., Palau C.E.,
de Puga J. S., Ganzha M., Paprzycki M. et. al. // Internet of Things. 2018. P. 199-232. doi: https://doi.org/10.1007/978-3-319-
61300-0_10

Overcoming the Heterogeneity in the Internet of Things for Smart Cities / Kazmi A., Jan Z., Zappa A., Serrano M. // Interoperability
and Open-Source Solutions for the Internet of Things. 2017. P. 20-35. doi: https://doi.org/10.1007/978-3-319-56877-5 2
OpenFlow-enabled SDN and Network Functions Virtualization // Open Networking Foundation. 2014. URL: https://
www.opennetworking.org/wp-content/uploads/2013/05/sb-sdn-nvf-solution.pdf

Keyzer M., LoutasN., Goedertier S. Introduction to RDF & SPARQL // Open Data Support. 2014. URL: https://joinup.ec.europa.eu/
sites/default/files/document/2015-05/d2.1.2_training module 1.3 introduction to rdf sparql v1.00 en.pdf

Introduction to Web Ontology Language (OWL) // University of Dublin, Trinity College. URL: https://www.scss.ted.ie/
Owen.Conlan/CS7063/06%20Introduction%20to%200W L%20(1%20Lecture).ppt.pdf

Sousa P. T,, Stuckmann P. Telecommunication network interoperability // Telecommunication Systems and Technologies. Vol. I1.
URL: http://www.eolss.net/sample-chapters/c05/e6-108-22.pdf

The internet of things: mapping the value beyond the hype / Manyika J., Chui M., Bisson P, Woetzel J., Dobbs R., Bughin J.,
Aharon D. // McKinsey & Company. 2015. URL: https://www.mckinsey.com/~/media/mckinsey/business%20functions/
mckinsey%20digital /our%20insights/the%20internet%200f%20things%20the%20value%200f%20digitizing%20the %20
physical%20world /the-internet-of-things-mapping-the-value-beyond-the-hype.ashx

Tikhonov V. 1., Taher A., Tykhonova O. Conveyor module resource scheduling in packet based communication channel //
Bulletin of the National Technical University “KhPI”. A series of “Information and Modeling”. 2016. Issue 21 (1193). P. 152—161.
doi: https://doi.org/10.20998/2411-0558.2016.21.17

Tikhonov V. I, Taher A., Tykhonova O. V. Simulation the algorithm of multimedia data integration in packet based digital channel //
Measuring and Computing Devices in Technological Processes. 2016. Issue 2. P. 151-155.

Developing the architecture of integrated 5G mobile network based on the adaptation of LTE technology / Tikhonov V., Nesterenko
S., Babich Y., Taher A. Q., Berezovsky V. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 2 (89).
P. 42-49. doi: https://doi.org/10.15587/1729-4061.2017.111900

Tykhonova O. V. The Ethernet based method of interoperability scope extension in a converged network // Information and
Telecommunication Sciences. 2017. Vol. 8, Issue 2. P. 11-17.

Vorobiyenko P. P, Tykhonova O. V., Tikhonov V. L. Interoperability Scope Extension in Converged Packet Based Network //
The 2nd TEEE International Conference on Information and Telecommunication Technologies and Radio Electronics
(UkrMiCo0’2017). 2017. P. 497-500.

Elg L. Innovations and new technology — what is the role of research? // VINNOVA. 2014. URL: https://www.vinnova.se/
contentassets/e5fe05¢b13604be7b221f3ddbecb41c3/va 14 05.pdf

Tikhonov V. 1., Vorobiyenko P. P. Integrated telecommunication technology for the next generation networks // Proceedings of the
ITU Kaleidoscope Academic Conference “Building Sustainable Communities”. 2013. P. 187—-193.

