
51

 G. Kaniuk, T. Vasylets, O. Varfolomiyev, A. Mezeria, N. Antonenko, 2019 

Industry control systems

1. Introduction

When modern control systems are synthesized, the 
problem of identification persists to be extremely important. 
It is impossible to provide high quality control without use 
of a mathematical model reflecting properties of the control 
objects with a high degree of accuracy. Analysis of dynamic 
processes in multimass electromechanical systems presents 
a considerable complexity which is further aggravated in 
practice by the lack of precise quantitative characteristics of 
all elements and connections. Transition processes in such 
systems may have poor qualitative indicators. For efficient 
control of multimass electromechanical systems, it is nec-
essary to have their mathematical models that reflect the 
system properties with a high degree of accuracy. However, 
the desire to get exhaustive information for constructing an 

exact mathematical model of a complex system can result 
in a loss of time and resources since this can be technically 
impossible. The lack of complete information on operating 
conditions, properties and parameters of objects and systems 
necessitates the use of an adaptive approach to control which 
tolerates the use of simplified, in particular, linear models. 
Although this approach makes it possible, in some cases, 
to significantly reduce a priori uncertainty and implement 
rather effective control, constriction with linear models does 
not always ensure obtaining of desired results.

Application of neural-network technologies is one of 
the promising lines of constructing mathematical models 
of complex objects and systems based on measured input 
and output signals. When applied to the systems of control 
of neural-network regulators, system models are used in 
a form of neural nets for implementation of control algo-
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Метою роботи є побудова моделей багатомасових елек-
тромеханічних систем з застосуванням нейронних мереж, 
систем нечіткого висновку і гібридних мереж інструмен-
тальними засобами MATLAB. Модель системи у вигляді 
нейронної мережі або системи нейро-нечіткого висновку 
будується на основі відомих вхідних сигналів і виміряних 
сигналів на виході системи. При проведенні досліджень 
використані методи теорії штучних нейронних мереж і 
методи технології нечіткого моделювання.

Виконано синтез нейронної мережі для вирішення завдан-
ня ідентифікації електромеханічної системи із складни-
ми кінематичними зв’язками з застосуванням пакету при-
кладних програм Neural-network Toolbox системи MATLAB. 
Розглянуто можливість вирішення задачі ідентифікації за 
допомогою нечіткої апроксимуючої системи з використан-
ням пакету Fuzzy Logic Toolbox. Проведено синтез гібрид-
ні мережі, реалізованої у формі адаптивної систем ней-
ро-нечіткого висновку з застосуванням редактора ANFIS. 
Надано рекомендації з вибору параметрів, що найбільш 
суттєво впливають на точності ідентифікації при засто-
суванні розглянутих методів. Показано, що використання 
нейронних мереж і адаптивних систем нейро-нечіткого вис-
новку дозволяє виконувати ідентифікацію систем з точні-
стю 2–4 %.

В результаті проведених досліджень показана ефек-
тивність застосування нейронних мереж, систем нечітко-
го висновку і гібридних мереж для ідентифікації систем із 
складними кінематичними зв’язками при наявності інфор-
мації "вхід-вихід". Виконано синтез нейромережевої, нечіт-
кої і нейро-нечіткої моделей двомасової електромеханічної 
системи з використанням сучасних програмних засобів. 

Розглянутий підхід використання технологій штучно-
го інтелекту – нейронних мереж і нечіткої логіки – є пер-
спективним напрямом для побудови відповідних нейроме-
режевих і нейро-нечітких моделей технологічних об'єктів і 
систем. Результати досліджень можуть бути використані 
при синтезі регуляторів систем із складними кінематични-
ми зв’язками для забезпечення високих показників якості 
функціонування систем

Ключові слова: ідентифікація багатомасових систем, 
нейромережеві моделі, нечіткі апроксимуючі системи, 
гібридні мережі
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rithms. The use of neural nets as models can serve as an 
alternative to classical identification methods since precise 
knowledge of internal processes is not a prerequisite for 
modeling in this case.

In addition to neural nets, methods based on the the-
ory of fuzzy sets and fuzzy logic, namely the technologies 
of fuzzy modeling have found wide application in solving 
problems of identification. These methods are effective when 
information about the subject under study is incomplete or 
inaccurate.

Currently, structures are developed that combine the 
best properties of neural-network and fuzzy methods: hybrid 
networks in which the fuzzy inference system is presented 
as a neural net which can be taught by the methods applica-
ble to neural nets. This makes it possible to use computing 
power of neural nets in fuzzy logic systems and enhance 
intellectual capabilities of neural nets using fuzzy rules of 
decision making.

Therefore, current studies on application of the neu-
ral-network technologies and the fuzzy modeling technology 
to improve accuracy of identification of electromechanical 
systems with complex kinematic connections are urgent in 
the absence of complete information about their structure 
and parameters.

2. Literature review and problem statement

As is known, the mechanical part of electromechanical 
systems is a system of interconnected masses moving at dif-
ferent speeds, that is, a multimass system. Presence of elastic 
connections and nonlinear elements in electromechanical 
systems complicates application of classical methods of sys-
tem analysis and synthesis. A procedure of non-conventional 
choice of parameters of speed regulators of subordinate 
regulation systems is proposed in [1]. The studies [2, 3] 
address the synthesis of followers and regulators that are 
robust and optimal by various criteria and make it possible 
to satisfy various requirements to operation of multimass 
electromechanical systems in various modes. Synthesis of 
such regulators is based on a mathematical model of electro-
mechanical system. However, when regulators are synthe-
sized, simplified models of multimass systems are used which 
reduces accuracy of regulation. In the case of identification, 
real electromechanical systems are replaced by equivalent 
systems with concentrated masses. A mathematical model 
of an equivalent system is formed and its parameters are 
determined. These models do not take into consideration all 
factors that influence the dynamic processes in multimass 
systems. Studies [4–14] tackle the issues of improving ac-
curacy of identification of parameters of multimass system 
models. A method for identifying parameters of the me-
chanical component of the electromechanical system with 
many masses and elastic connections and viscous friction 
between them is given in [4]. However, it is necessary to 
take experimental tachographs of all masses to implement 
this method which is very difficult to realize in real systems. 
A method of identification of parameters of a two-mass elec-
tromechanical system on the basis of genetic algorithms is 
presented in [5]. However, it was established by studies that 
the method based on genetic algorithms makes it possible 
to identify parameters with accuracy sufficient for practi-
cal purposes but only for a simplified linear mathematical 
model. An analysis of methods for identification of dynamic 

systems in relation to electric drives of port transshipment 
machines which are complex electromechanical systems 
with mechanical equipment containing elements with elastic 
connections is presented in [6]. Peculiarities of these sys-
tems which require taking into consideration gaps in gear 
gears, elasticity in shafts, change of moments of inertia in 
gear rims and stiffness of elastic elements in couplings when 
solving problems of modeling and identification. However, 
algorithms of determining parameters of frequency char-
acteristics of only individual elements of the systems are 
considered in the paper, namely: a PI regulator, a DC motor, 
and a thyristor converter. An algorithm of parametric iden-
tification of electromechanical systems whose mathematical 
models are described by a system of Cauchy relations is 
proposed in [7]. As an example, the problem of parametric 
identification of an asynchronous squirrel-cage induction 
motor by the transient curve of the direct start process at a 
specified load is considered. Application of this method to 
identification of multimass electromechanical systems will 
lead to significant errors because, as it was noted, the state 
equations can be written only for an equivalent model with 
concentrated loads which does not take into consideration 
all the factors influencing dynamic processes in multimass 
systems. Methods of identification of parameters of a mul-
timass electromechanical system using the nonlinear least 
squares method are presented in [8]. However, the presented 
methods have been applied in parametric identification of a 
linear system with delays. Paper [9] reports a study into the 
expediency and usefulness of employing continuous wavelet 
transformation for estimation of model parameters, such as 
attenuation factors and eigenfrequencies of two-mass and 
three-mass electromechanical systems. Identification using 
a continuous wavelet transform is compared with the Gil-
bert-Huang transform technique and is evaluated in terms 
of accuracy and ability to evaluate system parameters. These 
methods are quite effective but they enable evaluation of just 
individual parameters of the multimass systems. Methods 
for determining frequency characteristics of two- and three-
mass systems using the Welch method were proposed in 
[10–12]. However, the frequency characteristics widely used 
as models of linear dynamic objects do not reflect dynamic 
processes in actual multimass electromechanical systems. In 
works [13–16], when approximating properties of two-mass 
[13–15] and three-mass [16] electromechanical systems, it 
is proposed to use linear statistical models that have proved 
to be well-established in practice, namely: an autoregressive 
model with additional input signals (ARX model) and an 
output error model (OE model). Such models are simple and 
can be used to verify their adequacy and the well-developed 
methods for analyzing frequency characteristics are the 
main advantage in their application. Methods for identi-
fying parameters of these models are presented in studies. 
However, application of linear models to complex nonlinear 
systems, such as multimass electromechanical systems does 
not provide necessary accuracy for control purposes.

The use of artificial intelligence technologies – neural 
nets and fuzzy logic ‒ opens up wide opportunities for con-
trol of complex systems. Knowledge of exact structure and 
system parameters is not a prerequisite for realization of 
control algorithms. A model of a system in a form of a neural 
net or a system of neuro-fuzzy inference is constructed on 
the basis of known input signals and the signals measured 
at the system output. Some papers devoted to identifica-
tion of complex technological processes and systems using 
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neural nets [17–26], systems of fuzzy inference [27–35] and 
neuro-fuzzy systems [36–41] are given in the reference list. 
However, the problems of synthesis of neural-network and 
fuzzy models of electromechanical systems with complex 
kinematic connections were not considered.

Analysis of published data suggests that it is expedient 
to conduct a study on identification of multimass electrome-
chanical systems using neural nets, fuzzy inference systems 
and hybrid networks.

3. The aim and objectives of the study

The study objective is to construct models of multimass 
electromechanical systems using neural nets, fuzzy inference 
systems and hybrid networks based on measured input and 
output signals with the help of MATLAB tools. This will 
enable improvement of accuracy of identification of electro-
mechanical systems with complex kinematic connections in 
absence of complete information about their structure and 
parameters and provide high quality of control.

To achieve this objective, the following tasks were solved:
– to synthesize a neural-network model of a two-mass 

electromechanical system using the GUI interface of the 
Neural Network Toolbox;

– to develop a fuzzy model of a two-mass electromechan-
ical system presented in a form of fuzzy inference systems 
with the use of Fuzzy Logic Toolbox;

– to construct a model of a two-mass electromechanical 
system using hybrid networks realized in a form of adaptive 
systems of the ANFIS neuro-fuzzy inference.

4. Synthesizing and studying the neural-network model of 
a two-mass electromechanical system

The MATLAB system includes the Neural Network Tool-
box package that is a tool helping users develop design meth-
ods and extends the scope of application of neural nets [42]. 
This package includes an NNTool graphical interface which 
is very convenient to use and simplifies work with neural nets.

Synthesis of neural-network models of complex systems 
using NNTool is considered on an example of creation of a 
neural net for identification of a two-mass electromechani-
cal system whose transient processes have the character of 
weakly damped oscillations. Next, accuracy of the obtained 
neural-network model will be evaluated by comparing the 
model values with the values obtained by modeling a two-
mass electromechanical system in the Simulink environment 
of the MATLAB system.

The DC motor is powered from a thyristor rectifier. 
The shaft of the motor and rigidly connected elements of 
the system with the moment of inertia Jd is connected with 
the working mechanism having moment of inertia Jm by an 
elastic connection having stiffness coefficient c and viscous 
friction coefficient β. The control system has an internal cur-
rent loop and an external electromotive force (EMF) loop. 
The current loop is tuned to a modular optimum and (taking 
into consideration compensation of the time constant of the 
motor rotor loop using the PI regulator) has an integrator 
and one small non-compensated time constant Tμt. The EMF 
loop is tuned according to the symmetric criterion.

The system of differential equations of a two-mass elec-
tromechanical system has the form:
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where ωd(t), ωm(t) are angular speeds of the motor and the 
mechanism; Md(t) is the motor torque; Mc(t) is the moment 
of static load; Mpr(t) is the moment of elasticity; 

P(t)=Md(t)/dt

is the jerk; UzЕ(t), EzЕ(t) is voltage and EMF of the task; 
UzzЕ(t) is voltage of feedback by EMF; UiE(t) is the output 
voltage of the integrator of the PI regulator of EDF; Ta is 
electromechanical time constant of the electric motor; kd is 
coefficient of motor gain; kt is coefficient of feedback current 
gain; kn is coefficient of feedback voltage gain; kpe, kіe are 
coefficients of gain of the proportional and integral parts of 
the PI regulator of the EMF loop.

Before proceeding with development of a neural-net-
work model of a two-mass system, it is necessary to form 
arrays containing the network training data. To check 
quality of training, it is expedient to form arrays of control 
and test sequences. To this end, the model of a two-mass 
system developed in Simulink can be used (Fig. 1). The 
arrays formed with this model are then loaded into the 
NNTool workspace.

To construct a neural-network model of a dynamic ob-
ject, it is necessary to set the input sequence based on the 
current value of the input signal of the object and a number 
of previous values of the input and output signals. The or-
ders of the input nin and output nout signal delays are pre-se-
lected based on a priori knowledge about the object of 
identification (if any) and the researcher’s experience and 
then refined experimentally in the process of neuromodel’s 
construction. It was established by multiple modeling that 
the best result for a two-mass electromechanical system is 
obtained if nin and nout are within the limits of 1‒2 and 2‒5, 
respectively.

Let us form the input sequence based on the current 
value of the input signal of the system, UzЕ(k), and the input 
signal delayed by one step of discreteness, UzЕ(k–1). Also, 
use the output signal delayed by one step, ωm(k–1) and two 
steps, ωm(k–2). Corresponding values of the mechanism 
speed, ωm(k), are the initial sequence.
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To form delayed signals, use Unit Delay units. It is 
necessary to specify the discreteness cycle in the parameter 
specification window of the unit. When specifying the value 
of the discreteness cycle, the following must be considered. 
Quality of the neural net training depends on the size of the 
training sample, NB, and the interval between two consecu-
tive moments of data reading, that is, the discreteness cycle, 
Δt. With an increase in Δt, the training quality decreases and 
the difference between the training errors and the errors oc-
curred in the control and test sets increases. When there is a 
significant decrease in Δt, NB must be increased accordingly 
which results in a significant increase in the network train-
ing time and a significant reduction of the network training 
error is not observed. The value of Δt is initially selected 
roughly for each object of identification proceeding from the 
available information about the object’s dynamic properties 
and then refined during modeling. For this example, it was 
established that the training sample NB must contain at least 
8,000‒10,000 values and the discreteness cycle, Δt, should 
be 0.03‒0.05 s.

To Workspase and To Workspase1 units are used in the 
model diagram shown in Fig. 1 to write sequence of values 
of inputs and targets into the MATLAB system workspace. 
In this case, these are UzЕ(k), UzЕ(k–1), ωm(k–1), ωm(k–2) 
signals and the mechanism speed, ωm(k), respectively. The 
discreteness cycle (the same value as for the Unit Delay unit, 
Δt=0.05 s) and format of the stored data should be specified 
in the unit’s task window. Data should be saved as an array 
in which the number of lines is determined by the size of 
the training sample, NB, and the number of columns by the 
number of signals sent to the unit input. In this example, the 
array of inputs contains 4 columns, and the array of targets 
contains one column.

The Uniform Random Number unit is used as a signal 
source in the diagram of Fig. 1. Minimum and maximum sig-
nal levels and the identification interval should be specified 
in the task window of this unit.

The minimum and maximum value of the input signal 
(the task voltage), UzЕ(t), is chosen during synthesis of the 
system of subordinate regulation (+10 V and −10 V, respec-
tively, in the example under consideration).

To get a representative sample, it is necessary to specify 
correct value of the identification interval ti, that is, length 
of the interval during which the task signal remains un-
changed. Its value depends on dynamic characteristics of 
the system. As the study results have shown, to achieve high 
identification accuracy, only acceleration phases should be 
contained in the training data. The value of this parameter, 
and practically of the remaining parameters, is selected 
roughly and then refined in the modeling process. In this 
example, the tі values should be selected from a range of  
3‒5 s. Take t=5 seconds.

If modeling time of 500 s is specified in the window of the 
Simulink system model and the system modeled, the input 
and output arrays will contain 10,001 lines. Graphs of the in-
put, UzЕ(t), and output, ωm(t), signals of the system are shown 
in Fig. 2. When the size of arrays is reduced, that is, value of 
the training sample, NB, results of the network training may 
be unsatisfactory. Similarly, control and test sequences are 
formed. For their further use, the formed arrays should be 
saved in the binary MAT files with the Save command.

In order to use the obtained arrays in training of the neu-
ral net, they must first be transposed. For this purpose, de-
bugger of the MATLAB m-files can be used. The transposed 
arrays of inputs contain four lines and the arrays of targets 
contain one line. The number of array columns corresponds 
to sizes of the corresponding sequences. Sequences of inputs 
and targets are loaded into the NNTool workspace.

Following the training data formation in the main win-
dow of the NNTool Network/Data Manager interface, cre-
ate a two-layer neural net with a direct signal transmission.

а 

b 
Fig. 2. Graphs of signals at the system input and output: 	

the graph of the input signal, UzЕ(t) (a); the graph of 	
the output signal, ωm(t) (b)

 
Fig. 1. The Simulink model of a two-mass electromechanical system
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The number of neurons in the first (hidden) layer is one 
of the main factors influencing the identification result. 
If the number of neurons is insufficient, then the training 
results are unsatisfactory. A problem of re-training occurs 
at a large number of neurons. As the studies have shown, an 
optimal number of the hidden layer neurons for this task of 
identification is within the range of 8‒12 and the training 
error as well as errors in the control and test sets do not ex-
ceed 2×10-2. The number of neurons is 1 in the second layer.

The functions of neuron activation should be as follows: 
hyperbolic tangent function in the first layer and linear func-
tion in the second layer. The most effective training function 
is TRAINLM which corresponds to Levenberg-Marquardt 
algorithm.

The network initialization and training are then per-
formed. The NNTool interface dialog panels provide ranges 
of initial values and initialization of network weights, input 
and output sequence names, training process parameters and 
network training. Dynamics of change of the training error 
as well as the check in the control and test sets are reflected 
in the window shown in Fig. 3

Fig. 3. Window of the training process control

The network training result depends on the initial value 
of weights of the neural-network, wij, and the number of 

training cycles Nc (epochs). To achieve the global minimum, 
the training process needs to be repeated many times at 
different initial values of wij and Nc. In this task, several 
dozen starting points of calculation were selected for each 
network option (that is, the number of neurons in the first 
layer) and the number of delayed signals. The number of 
training cycles after which the training error ceased to 
decrease was 200‒300 with an error of training approxi-
mately equal to 2×10-2. If results are unsatisfactory, new 
training sequences should be generated for other values 
of NB, Δt, ti and the process of network training should be 
repeated.

For clarity, Fig. 4 shows graphs of the input and output 
signals of the two-mass system, the output signal of the 
neural-network model and the graph of instantaneous value 
of the network training error for the first 2,001 values of the 
indicated signals corresponding to the time of 100 seconds. 
As can be seen from Fig. 4, the instantaneous value of the 
training error does not exceed 1.5 s-1.

To review the neural net structure, a network model can 
be constructed in Simulink. To do this, the Gensim state-
ment with the name of the synthesized network should be 
used. The neural-network diagram is constructed (Fig. 5) in 
the appearing Simulink window by activating all elements of 
the neural net and connecting them with each other.

Fig. 4. Results of the network training

 

 

 
Fig. 5. Model of the neural net with direct signal transmission
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Adequacy of the built neural-network model is checked 
using the diagram shown in Fig. 6. The diagram consists of a 
model of a two-mass electromechanical system and a Neural 
Network unit in which name of the synthesized neural-net-
work model of the system is specified. The Unit Delay units 
are used to specify the delayed signals.

The modeling results are shown in Fig. 7, 8.

Fig. 7. Results of testing the neural-network model: 	
the specified value of speed (1); speed at the output of 	

the two-mass system (2); the output coordinate of 	
the neural-network model (3)

Fig. 8. The graph of identification error of 	
the neural-network model

Graphs of the output coordinate of the system are given 
in Fig. 7: the mechanism speed, ωm(t). The graph 1 (the red 
line) corresponds to the specified speed value, the graph 2  
(the blue line) corresponds to the speed at the output of 
the two-mass system model, the graph 3 (the green line) 
corresponds to the output coordinate of the constructed 
neural-network model. As it can be seen, the graphs 2 and 3 
practically coincide.

Fig. 8 shows the graph of difference between the indicat-
ed speeds ε(t), that is, the identification error graph. It turns 
out from analysis of the graphs that when the mechanism 
speed changes from +140 s-1 to −140 s-1, the value ε(t) is in 
the range from +2.6 s-1 to −2.6 s-1, that is, the identification 
error does not exceed 2 %.

5. Synthesizing and studying the fuzzy model of  
a two-mass electromechanical system represented as  

a fuzzy inference system

Let us consider the possibility of solving the identifica-
tion problem using a fuzzy approximating system. To syn-
thesize a fuzzy system, use the Fuzzy Logic Toolbox which is 
the part of MATLAB. The Fuzzy Logic Toolbox provides the 
ability to create fuzzy systems in a graphical mode with the 
use of a fuzzy inference system editor (FIS editor).

Let us construct a fuzzy system that reflects relationship 
between the input and output variables of a two-mass elec-
tromechanical system. When constructing a fuzzy system 
(as in the case of synthesis of a neural-network model), form 
the input sequence on the basis of the current value of the 
input signal of the system and the input signal delayed by 
one step of discreteness. In addition, use the output signal 
delayed by one step and two steps. Take these data for a 
number of characteristic points from the above example of 
synthesis of a neural-network model of a two-mass system. 
The points should cover the entire range of changes of the 
system input and output signals.

It is necessary to choose a fuzzy inference system of 
Sugeno type in the FIS editor. The system should have four 
inputs, so it is necessary to add three more inputs to the sys-
tem with a single input signal specified by default and define 
their names. Let us set “UzE(k)” for the system input signal 

 
Fig. 6. The Simulink diagram for checking adequacy of the synthesized neural-network model of the two-mass system

 

 



57

Industry control systems

UzЕ(k); “UzE(k–1)” for the signal UzЕ(k–1); “Wm(k–1)”, 
“Wm(k–2)” for signals ωm(k–1) and ωm(k–2) and “Wm(k)” 
for the system output signal, ωm(k). The fuzzy system struc-
ture formed in the FIS Editor window is shown in Fig. 9.

Fig. 9. The fuzzy system structure

Using the Membership Functions Editor window, spec-
ify membership functions of the variables. Start specifying 
and editing of the membership functions with the “UzE(k)” 
variable (Fig. 10). Select Gaussian membership functions 
and set their number to 12 (for the number of character-
istic points of the input sequence). Note that the result of 
the fuzzy model synthesis depends to a large extent on the 
correct choice of these points. The number of functions, 
their type and parameters cannot be determined in ad-
vance, so they are initially taken roughly and then refined 
during modeling. Their number for a two-mass electro-
mechanical system should be within 10‒15. Set the range 
of the “UzE(k)” variable from −10 to +10 (as noted above, 
the range of the input signal change is determined when 
calculating the system of subordinate regulation). The 
membership functions must be placed along the abscissa 
axis so that the ordinates of maxima of these functions 
coincide with the above-mentioned characteristic points 
of the “UzE(k)” variable. As indicated above, scope of the 
functions is specified approximately and then refined in the 
process of multiple modeling.

Similarly, specify and edit membership functions of the 
“UzE(k–1)”, “Wm(k–2)”, “Wm(k–1)” variables. Specify the 
range of “Wm(k–2)”, “Wm(k–1)” variables from −150 to +150.

It is necessary to choose constant membership func-
tions for the “Wm(k)” output variable (ωm(k)) and their 
names should be specified as corresponding numerical val-
ues “Wm(k)”, for example 29, 43, –19.5, etc. (Fig. 11).

Using the Rule Editor window, introduce a series of rules 
of the fuzzy inference system.

When synthesizing a fuzzy system, it is necessary to 
form a base of rules. Each rule establishes correspondence 
between membership functions of the input variables and 
the numerical value of the output variable. The number of 
rules is refined in the modeling process. It is recommended 
to form 20‒25 rules for a two-mass electromechanical sys-
tem. Here is an example of formation of one of them. Take 

the following values from the formed input and output se-
quence obtained during the construction of the neural-net-
work model of the system: 

UzЕ(k)=–7.17; UzЕ(k–1)=–7.17; 

ωm(k–1)=–61.33; ωm(k–2)=–61.59; 

ωm(k)=–69. 

Fig. 10. Specifying the membership functions of the “UzE(k)” 
variable, UzЕ(k))

Fig. 11. Specifying the membership functions of the “Wm(k)” 
variable, (ωm(k))

The following membership functions correspond to these 
values: 

UzE(k)→mf12, UzE(k–1)→mf12, Wm(k–1)→mf1, 

Wm(k–2)→mf1, Wm(k)→–69. 

After entering, the rule is displayed in the Rule Editor 
window and will represent the following entry:
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if ( ) is 12 and ( 1) is 12 

and ( 1) is 1 

and ( 2) is 1 then ( ) is 69.

UzE k mf UzE k mf

Wm k mf

Wm k mf Wm k

−
−
− −

Similarly, another 23 rules have been formed.
Upon specifying the rules, construction of the fuzzy 

inference system is completed. To check identification 
accuracy, the Simulink scheme shown in Fig. 12 is used. 
The fuzzy model of a two-mass system is presented as a 
Fuzzy Logic Controller unit and the name of the gener-
ated fuzzy model is specified in the window of parameter 
specification.

The modeling results are presented in Fig. 13 where 
graphs of the output coordinate of a two-mass electrome-
chanical system, ωm(t), are given.

Analysis of graphs in Fig. 13 shows that the identifi-
cation accuracy is not high and the identification error 
reaches 40 %. This is explained by the fact that the num-
ber of experimental points is small and parameters of the 
membership functions of the input variables are chosen, 
most likely, not in an optimal way. Achieving high ac-
curacy of identification with the help of a fuzzy system 
is difficult enough. The use of fuzzy models of hybrid 
networks is a more promising way of solving the problem 
of identifying dynamic objects and systems. This issue is 
discussed further.

6. Synthesizing and studying the model of a two-mass 
electromechanical system using hybrid networks

Let us consider the possibility of using hybrid networks 
for identification of electromechanical systems with complex 
kinematic connections. Hybrid networks are implemented in 
the Fuzzy Logic Toolbox package of the MATLAB system in a 
form of adaptive neuro-fuzzy inference systems (ANFIS) [42].

First, prepare training, test and checking data. These 
data can be generated in different ways. Let us consider one 
of them which somewhat differs from the method considered 
above in development of a neural-network model.

Let us create a schematic diagram of the system model 
(Fig. 14) in the Simulink window. In this model scheme, 
the To Workspase unit is used to record input and output 
signals of the system (in this case, the task voltage, UzЕ(t), 
and the mechanism speed, ωm(t)), into the workspace of the 
MATLAB system. It is necessary to specify the array name 
(for example, Uz_Wm) in the unit’s window of task spec-
ification. Data and the discreteness cycle will be recorded 
to this array. Value of the discreteness cycle is established 
for the same reasons as when developing a neural-network 
model, so specify Δt=0.05 s. The Uniform Random Number 
unit is used as a signal source in the schematic diagram of 
Fig. 14. The same parameters should be specified in the task 
specification window of this unit as in development of the 
neural-network model of the system.

 
Fig. 12. The Simulink diagram for checking adequacy of the constructed fuzzy model

Fig. 13. The results of testing the fuzzy model: the specified speed value (1); speed at the output of the two-mass system (2); 
output coordinate of the fuzzy model (3)
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Specify the system modeling time of 100 s in the Sim-
ulink model window and perform the system modeling. The 
Uz_Wm array containing values of the input and output 
signals of the system has two columns and 2001 lines.

Save the Uz_Wm array in a file named Dat_Uz_Wm and 
place the file in the Fuzzy_Neural_Work folder on disk E. 
The Save command makes it possible to save contents of the 
workspace in a binary MAT file which can then be called by 
the Load command. However, this is unacceptable for solv-
ing this identification task since the source data file should 
be a normal text file with a .dat extension, so the array must 
be saved in ASCII format.

Next, use the first 1,000 lines of the Uz_Wm array to form 
the Input_Output_Training training data, the next 500 li- 
nes to form the Input_Output_Testing test data and then  
500 lines to form the Input_Output_Checking check data.

As in the examples discussed above, form the input se-
quence on the basis of the current value of the system’s input 
signal UzЕ(k) and the input signal delayed by one step of dis-
creteness, UzЕ(k–1), as well as two output signals delayed by 
one and two steps, that is, ωm(k–1) and ωm(k–2), respectively.

Any text editor, such as the debugger of m-files of the 
MATLAB system can be used to form arrays of the above 
data. Text of the Form_Inp_Outp.m m-file for formation 
of arrays of training, testing and checking data is shown 
in Fig. 15. These arrays are saved in the files named In-
put_Output_Training.dat, Input_Output_Testing.dat and 
Input_Output_Checking.dat, respectively.

These arrays have 5 columns. The first 4 columns corre-
spond to the values of the input signals of the model (UzЕ(k), 
UzЕ(k–1), ωm(k–1), ωm(k–2)) and the 5th column corre-
sponds to the value of the output signal, ωm(k).

Next, the formed arrays are loaded into the ANFIS edi-
tor. When loading the training data in the editor window, a 
graph of the system output signal ωm(t) is displayed for the 
above data (Fig. 16). When loading testing or checking data, 
this graph is supplemented by corresponding points.

To create a hybrid network, it is necessary to specify the 
number and type of membership functions for the input and 
output variables in the appropriate window that appears 
when clicking the Generate FIS button. These parameters 
cannot be determined in advance, so they are initially taken 
roughly and then refined in the modeling process. For this 
example of development of a neuro-fuzzy model of a two-
mass electromechanical system, satisfactory identification 
accuracy was obtained when specifying 4 to 6 triangular 
membership functions for input variables (for the sake of 
clarity, structure of the fuzzy inference system with 2 func-
tions is shown in Fig. 17). A linear function is specified as a 
membership function of the output variable.

Fig. 15. The m-file text for formation of arrays of training, 
testing and checking data

Fig. 16. The graph of the output signal of the system

The neural net is trained by the method of inverse dis-
tribution. The course of the training process is displayed in 
the window shown in Fig. 18. The number of training cycles 
after which the training error is practically unchanged is 
250 to 350.

If the change of the number and type of membership 
functions does not result in a satisfactory accuracy of identi-

 
Fig. 14. The schematic diagram of a two-mass system model used for formation of the network training data

clear;clc;echo on;

Dim_Uz_Wm=dlmread('E:\Fuzzy_Neural_Work\Uz_Wm.dat');

for i=1:3 
if i==1 
 n=1; k=1000; j=1000; 
 File_Name='E:\Fuzzy_Neural_Work\Input_Output_Training.dat';
elseif i==2 
 n=1001; k=1500; j=500; 
 File_Name='E:\Fuzzy_Neural_Work\Input_Output_Testing.dat';
else
 n=1501; k=2000; j=500; 
 File_Name='E:\Fuzzy_Neural_Work\Input_Output_Checking.dat';
end
 Uz_k(1:j,1)=Dim_Uz_Wm(n:k,1); 
 Uz_k_1(1,1)=0; 
 Uz_k_1(2:j,1)=Dim_Uz_Wm(n:k-1,1); 

 Wm_k(1:j,1)=Dim_Uz_Wm(n:k,2); 
 Wm_k_1(1,1)=0; 
 Wm_k_1(2:j,1)=Dim_Uz_Wm(n:k-1,2); 
 Wm_k_2(1:2,1)=0; 
 Wm_k_2(3:j,1)=Dim_Uz_Wm(n:k-2,2); 

 Dim_Input_Output=[Uz_k Uz_k_1 Wm_k_1 Wm_k_2 Wm_k]; 

 dlmwrite(File_Name, Dim_Input_Output, ' ');
end
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fication, it is necessary to form new training data and repeat 
the training process.

Fig. 17. Structure of the created hybrid network

Fig. 18. The graphs of change of the training and checking 
errors

Because the fuzzy inference system of the Sugeno type 
is the model of the hybrid network in the MATLAB system, 
then, if necessary, its correction and study can be done by 
means of the FIS editor.

With the help of the Test FIS button, the created 
network can be checked along with displaying graphs for 
making training, testing and checking samples. These 
graphs were plotted in the course of the study and it was 
found that values of signals at the output of the two-mass 
electromechanical system and the output of the fuzzy 
model of the hybrid network coincided almost completely. 
However, testing in the ANFIS editor is performed using 
the input signals that were used it the network training. 
For a more accurate checking of the results of identifica-
tion of a two-mass electromechanical system by means 
of a hybrid network, the schematic diagram shown in  
Fig. 12 can be used. In doing this, it is necessary to specify 
name of the generated neuro-fuzzy inference system in 
the Fuzzy Logic Controller unit window in which param-

eters are specified. The modeling results are presented in  
Fig. 19, 20.

Fig. 19. The results of checking the neuro-fuzzy model: the 
specified speed value (1); speed at the output of the two-

mass system model (2); output coordinate of the neuro-fuzzy 
model (3)

Fig. 20. The graph of identification error of the neuro-fuzzy 
model

Fig. 19 shows the graphs of the output coordinate of the 
two-mass electromechanical system, ωm(t). Graph 1 corre-
sponds to the specified speed value, graph 2 corresponds 
to speed at the output of the model of the two-mass system 
and graph 3 corresponds to the output coordinate of the 
synthesized neuro-fuzzy model. As can be seen, graphs 2 and 
3 practically coincide.

Fig. 20 shows the graph of difference of the above speeds, 
ε(t), that is, the graph of the identification error. As it fol-
lows from analysis of the graphs, when the mechanism speed 
changes from +40 s-1 to −60 s-1, the value of ε(t) is in the 
range from +1.5 s-1 to − 1.5 s-1, that is, identification error 
does not exceed 4 %.

7. Discussion of the results obtained in studying 
synthesis of neural-network and fuzzy models of 

multimass electromechanical systems

Effectiveness of the created systems of real object control 
depends to a large extent on quality of the mathematical 
models applied. They should most fully reflect properties of 
the object under study and be convenient for implementation 
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of control algorithms. The lack of complete information on 
operation conditions and properties of the objects necessi-
tates application of an adaptive approach to their control 
which allows the use of simplified, in particular, linear mod-
els. However, such an approach may not provide necessary 
qualitative control indicators in solving practical problems 
since the model constructed on the basis of assumption of the 
system linearity may not reflect its actual properties.

A possibility of using artificial neural nets for identifica-
tion of multimass electromechanical systems was considered 
in this study as an alternative to the conventional approach-
es to identification. Construction of mathematical models of 
multimass electromechanical systems presents considerable 
difficulties because of the lack of exact quantitative charac-
teristics of all elements and connections. Knowledge of the 
exact system structure and parameters is not a prerequisite 
when using neural-network identification. The system model 
in a form of a two-layer neural net of direct propagation with 
delayed input and output signals is constructed based on the 
known input signals and the signals measured at the system 
output. As a result of the study, it has been established that 
neural nets can be successfully applied to construct models 
of multimass electromechanical systems (Fig. 7). This is 
due to the fact that the neural-network models are based on 
approximation of the nonlinear operator of transformation 
of input signals into output signals by some system of basis 
functions. In this case, the identification object is represent-
ed as a neural net containing one or more hidden layers in ad-
dition to the input and output layers. Each layer consists of a 
certain number of neurons that implement the specified basis 
function. The purpose of identification consists in the choice 
of the network structure and training based on presentation 
of training couples. Measured values of the input variables 
and corresponding output variables serve as these pairs. 
As a result of the studies conducted using the MATLAB 
system, parameters that have the most significant impact on 
identification quality were identified and recommendations 
given on the optimal value of these parameters in order to 
achieve the highest accuracy of identification. Type of the 
neural net, number of neurons in the hidden layer, number 
of delay cycles for the input and output signals at the input 
of the neural model, parameters of the training data were 
determined for the neural-network model. Accuracy of iden-
tification was 2 %.

A model of a two-mass electromechanical system was 
synthesized with the use of methods of present-day tech-
nology, that is, the technology of fuzzy modeling. As noted, 
conventional methods of model construction do not give 
satisfactory results when initial description of the problem 
to be solved is inaccurate or incomplete. The fuzzy methods 
are specially oriented on construction of the models that 
take into consideration incompleteness and inaccuracy of 
initial data. When the fuzzy model of a two-mass electro-
mechanical system was constructed, structure of the fuzzy 
inference system, number and parameters of membership 
functions of the input signals and the signal at the output 
of the system, number and content of fuzzy inference rules 
were determined. However, the results of modeling the fuzzy 
model (Fig. 13) have shown that the identification accuracy 
was not high. It is rather difficult to achieve high accuracy 
of identification using a fuzzy system since it is impossible 
to determine in advance the required number and structure 
of the fuzzy inference rules as well as optimal parameters of 
membership functions for input variables.

The study results show (Fig. 19) that the promising line 
of solving the problem of identification of electromechanical 
systems with complex kinematic connections consists in 
the use of fuzzy models of hybrid networks implemented as 
adaptive neuro-fuzzy inference systems. This is determined 
by the fact that hybrid networks are the structures that 
combine the best properties of methods of neural-networks 
and fuzzy logic and at the same time they are free from their 
problems. Hybrid networks are the decision making systems 
that realize the idea of fuzzy cogitation together with the 
ability to training inherited from the neural nets. In the 
process of synthesis of the model of a two-mass electrome-
chanical system in a form of a hybrid network, the number 
and parameters of the membership functions for the input 
variables and the number of hybrid network training cycles 
ensuring accuracy of identification of 4 % were determined.

Disadvantages of constructing models of multimass elec-
tromechanical systems with application of neural-network 
technologies and fuzzy modeling are as follows. The method 
of designing neural-network, fuzzy, and neuro-fuzzy models 
is based more on intuition than on existing laws. Until now, 
an algorithm for calculating the number of network layers 
and the number of neurons in each layer for specific appli-
cations is unknown for neural-network models. Orders of 
delays of incoming and outgoing signals are pre-selected on 
the basis of a priori knowledge about the object of identifica-
tion (if any) and the researcher’s experience and then refined 
experimentally in the process of constructing the neuro-
model through multiple modeling. The same applies to the 
choice of the number and structure of fuzzy inference rules, 
determination of parameters of the membership functions of 
the input variables and other parameters during synthesis of 
fuzzy and neuro-fuzzy models. Synthesis of neural-network, 
fuzzy and neuro-fuzzy models requires a deep knowledge and 
high qualification of the researcher. In addition, the choice of 
parameters requires a considerable amount of time.

However, the use of neural-network technologies and 
fuzzy logic opens up wide opportunities for controlling com-
plex multimass systems. Knowledge of exact system struc-
ture and parameters is not a prerequisite for implementation 
of control algorithms since the model of the system in a form 
of a neural net or a system of neuro-fuzzy inference is built 
on the basis of known input signals and signals measured at 
the system output.

It is advisable to continue studies on identification of 
multimass electromechanical systems taking into consid-
eration nonlinear dependences of external friction and 
clearance in kinematic links, external perturbing effects and 
obstacles in measuring the regulated coordinates.

The study results can be used in synthesis of regulators 
for systems with complex kinematic connections to ensure 
high system performance.

8. Conclusions

1. A neural-network model of the electromechanical sys-
tem with complex kinematic connections was synthesized by 
the NNTool interface of the MATLAB system. A two-layer 
neural-network has been created and the optimal number of 
hidden neurons was determined (8‒12 neurons) which is the 
main factor for ensuring high accuracy of identification. It 
was established that the number of delay cycles for the input 
and output signals at the input of the neuromodel should be 
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within the range of 1‒2 and 2‒5, respectively. By means of 
varying the training data parameters in a wide range, values 
were defined that provide minimum errors of the neural-net-
work training. The number of training data must be at least 
8,000‒100,000, the interval between successive data read-
ing must be 0.03‒0.05 s and the training data must contain 
only the acceleration phases. Computer modeling has shown 
that the identification error did not exceed 2 %.

2. A possibility of solving the problem of system identifi-
cation using an approximating fuzzy system using the Fuzzy 
Logic Toolbox package was considered. Structure of a fuzzy 
system of Sugeno type with 4 input signals was established. 
It has been found by means of multiple simulations that the 
optimum number of membership functions of the input sig-
nals and the signal at the output of the system was within 10  

to 15. A base of the fuzzy inference rules was formed. The 
number of rules should be 20 to 25. As a result of the study, it 
was found that an instant identification error reached 40 %, 
that is, it is difficult to obtain high accuracy of identification 
using a fuzzy system.

3. A hybrid network was synthesized as a model of two-
mass electromechanical system with the use of the ANFIS 
editor of the Fuzzy Logic Toolbox package. The order of for-
mation of the hybrid network training sequence was given. 
It was determined that satisfactory identification accuracy 
is achieved with 4 to 6 triangular membership functions for 
input variables. The number of training cycles after which 
the training error was virtually unchanged was 250 to 350. 
The error of identification of a two-mass electromechanical 
system using a hybrid network did not exceed 4 %.
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