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Modepnizosanuii enepzemuunuii memoo 0ocnioicenns ouna-
Mixu pomopie. Memood 3acmocosnuii 0as1 pomopis na izompon-
HUX NPYHCHO-8 A3KUX ONOPAX, KOJIU 00 pOmMopa npuconani miaa,
Ha axi npu 6i0nocHoMyY pyci 0itomv npydicHi i 6°a3xi cuau. Memoo
npusHauenuil 015 NOWYKY, GUIHAMEHH YMOB ICHYEAHHA | OUIHKU
cmitikocmi cmayionaprux pyxie pomopnoi cucmemu. Ha cmauio-
HApHUX pYxXax 6i0HOCHI pYXy NPUCOHAHUX MIN NPUNUHAIOMBCS,
i cucmema obepmaemoca sk 00He yije HABKONO 0Ci 0bepmanis,
ymeopenoi onopamu.

Egexmusnicmv memody npoinocmposana na npuxaaoi
naockoi modeni pomopa 3 asmobanrancupom 3 6azamoma éam-
mascamu y 6uznaoi Kyav, pOaUKi6 i MAAMHUKIE.

Bcmanosneno, wo sax npu nasemocmi, max i eiocymmocmi
demnpipysanns 6 onopax, npu docmammiii Ganancyeanvhii
eMHOCMI aemobaNaHCcUpa cucmema Mae Cim’io OCHOBHUX PYXi6
(a nux pomop 36anancosanuii).

IIpu éidcymmocmi demnpipysanns 6 onopax cucmema mae:

— NpuU HASBHOCMI HEBPIBHOBANCEHOCMI POMOpa — 1301b08aHI
no6iuni pyxu (Ha nux pomop Hezb6anancoeanuil) , 6 AKUX yeHmpu
Mac eanmadicie éioxuneni 6 ik neepisrnosasicenocmi aéo 6 npo-
munexcuuii 6ix;

— npu eidcymnocmi Hespienosadcenocmi pomopa — 00HO-
napamempuuni cim’i noGIMHUX PYXie, 6 AKUX UEHMPU MAC 6aH-
mavoicie Jexcamv Ha 00Hil npamiil.

IIpu nasenocmi demnpipyeanns 6 onopax:

— NpU HASABHOCMI HEBPIBGHOBANCEHOCHI POMOPA CUCHEMA MAE
130/1b06aHT NOOTUHI PYXU, 6 AKUX UEHMPU MAC 6AHMAIICIE JIEHCAMD
Ha 00HIU NpAMiiL, i NPAMA YMEOPIOE 3 6EKMOPOM HEBPIBHOBAICE-
HoCmi Kym, wo 3anexcums 6i0 weuoxocmi obepmanus pomopa;

— npu eidcymnocmi HespieHoBaANCEHOCMT POMOPA NOGIHHUX
PYXi6 He icHYE.

IIpu eidcymnocmi demnpipyeanns é onopax nobiuni pyxu
i o6aacmi ix icnyeanns ne 3anexcamv 6i0 KYymogoi weuoxocmi
obepmanns pomopa, a npu HAL6HOCMI — 3aJeXNcambv.

Sk npu nasenocmi, max i npu éidcymuocmi demnpipysanns
6 onopax:

— Ha 0ope30HancHux weuodKocmsx odepmanns pomopa cmiii-
KuM Modice Gymu minoku moi nooiuHuil pyx, Ha AKOMY CYMAPHA
HeepisHosadicenicmb pomopa i anmadicie nabdinvua;

— HA 3aPe30HANCHUX WEUOKOCMAX 00ePMANH POMOPa MoJHce
Oymu cmitixa minbKu cim’s 0CHOBHUX PYXi6

Kniouoei cioea: pomop, izomponna onopa, asmoobanancup,
cmayionaprull pyx, CmidKicmos pyxy, pi6HAHHS YCMAaieHoz0 pyxy
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Loads (balls, rollers, pendulums, etc.) balance the rotor at the

so-called main steady motions but not at the secondary ones.

Passive auto-balancers are used to balance high-speed
rotors [1-3]. The motion of such systems sets in over time.

From a mathematical point of view, for the auto-balancer
to be operable, it is necessary and sufficient that the main




motions were stable and the secondary ones unstable. There-
fore, the analytical theory of passive auto-balancers searches
for all possible steady motions of systems and studies their
stability [1-17].

In cases of isotropic supports, when using a coordinate
system rotating synchronously with the rotor, equations of
motions and a part of steady motions are stationary. Sta-
bility is studied using the theory of stability of stationary
solutions of systems of nonlinear autonomous differential
equations [2-5, 813, 16—17].

The search for and study of stability of steady motions
of a rotor - auto-balancer system is a complex mathematical
problem [1-17]. The problem gets much more complicated
for auto-balancers with many loads when damping in the
rotor supports is taken into account, at a spatial rotor motion,
when balancing the rotor with several auto-balancers, etc.

The energy method [5, 10] is most effective in searching
for all stationary motions, in determining conditions of their
existence and assessing their stability. The method was set
forth and applied to rotors with auto-balancers mounted
on isotropic elastic supports (without taking into account
damping in supports). In conventional auto-balancers, vis-
cous resistance forces act on loads during relative motion.

Damping takes place in supports of actual rotor systems.
Devices in which viscous and elastic forces act on the loads can
balance the rotor and damp or suppress its oscillations [16, 17].
Therefore, it is important to extend the energy method to the
rotors mounted on isotropic viscous-elastic supports in the
case when other bodies on which elastic and viscous forces act
at relative motion are attached to the rotor. It is important to
demonstrate effectiveness of the method on a concrete example.

2. Literature review and problem statement

Design and principle of operation of ring, ball, pendulum
(classical) auto-balancers are described in [1]. The issues of
designing classical auto-balancers are considered and exten-
sive patent information on designs of auto-balancers of the
above-mentioned type is given in [2]. So-called non-classical
auto-balancers with loads in the form of bodies of certain
shapes having a fixed point on the longitudinal axis of the
rotor were studied in [3] along with classical auto-balancers.

Within the framework of the general theory of passive
auto-balancers, all possible stationary motions of systems are
sought for and their stability is assessed. Load motions relative
to the rotor cease at stationary motions and the system rotates
as a single whole around the axis formed by supports. The
system is balanced at the so-called main motions but not at
the secondary motions. In order that the auto-balancers were
operable, it is necessary that the main motions were stable and
the secondary motions unstable at working speed of the rotor.

Let us consider the results obtained in the framework
of a flat model of a rotor mounted on isotropic bearings and
balanced with a two-ball (two-pendulum) auto-balancer.

Ring, pendulum, and ball auto-balancers are described
in [1]. A rotor mounted on isotropic elastic supports is consi-
dered. It was shown that in the case of an auto-balancer
having sufficient balancing capacity, the rotor always has one
isolated main motion and three isolated secondary motions.
Based on the rotor self-centering phenomenon, it was con-
cluded that solely the secondary motion at which balls deflect
to the heavy side of the rotor is stable at sub-resonant rotor
speeds and the main motion is stable at super-resonant speeds.

An analytical theory based on the theory of stability of
stationary motions of nonlinear autonomous systems was
developed in [4]. Generalized coordinates describing rotor
motion in a coordinate system rotating together with the
rotor and generalized coordinates describing motion of balls
relative to the rotor were used. Differential equations of the
system motion were derived. All stationary motions were
found. Their stability has been studied using the first Lyapu-
nov’s method. The results obtained in [1] were confirmed
in general. However, it was found that damping in supports
narrows the domain of existence of secondary motions. It has
been established under some simplifying assumptions that
the main motion becomes asymptotically stable at velocities
slightly exceeding the resonant frequency of the rotor ro-
tation. Labor-intensiveness of such an approach to creation
of a general theory should be noted. Thus, it is necessary to
derive differential equations of the disturbed motion and
a characteristic equation and study its roots for each station-
ary motion. However, this approach is the most accurate since
it allows one to find necessary and sufficient conditions of sta-
bility of stationary motions. Implementation of the approach
becomes much more complicated in the case of auto-balancers
with many loads, at a spatial motion of rotors, when balancing
the rotor with the help of several auto-balancers, etc.

An analytical theory for a rotor mounted on isotropic
elastic supports was built in [5] based on the energy ap-
proach. Generalized coordinates describing rotor motion
in a coordinate system rotating together with it and gen-
eralized coordinates describing motion of balls relative to
the rotor were used. A generalized potential was found for
the system. The potential was studied for the conditional
extremum: it was assumed that some equations of steady
motion corresponding to the generalized coordinates of the
rotor are executed. As a result, conclusions on stability of
stationary motions made in [1] were confirmed. The smallest
laboriousness of the approach should be pointed out. Diffe-
rential equations of the system motion are not derived but
a generalized potential is sought in the approach. The condi-
tions necessary for stability of steady motion are determined
proceeding from the condition of minimum of the generalized
potential at a steady motion. In a number of cases relevant to
practice, the obtained necessary conditions for stability are
close to sufficient ones. There is no general description of an
approach suitable for rotors mounted on isotropic supports
and the procedure of accounting for damping in supports was
not described in this paper.

A method of synchronization of dynamic systems was
used in [6] to elaborate a general theory. A rotor mounted
on isotropic elastic supports was considered. The results
obtained in [1, 5] were confirmed. The approach is less time
consuming than that used in [4]. In contrast to the earlier
described approaches, the synchronization method makes
it possible to analytically analyze stability of main motions
in the case of anisotropic supports [7]. However, stability is
studied in a smallness (according to Lyapunov) using a small
parameter. This reduces accuracy of determining boundaries
of stability domains. The approach gets much more laborious
in the presence of damping in supports.

Stability of the main motion was analytically studied
in [8] most completely. The approach described in [4] was
applied. A characteristic equation corresponding to the main
motion was obtained. Its roots were decomposed in powers of
a small parameter at various smallness ratios between param-
eters. Dependence of boundaries of the stability domains on



imbalance and internal and external forces of viscous resistance
was found. It was also found that there are one or three critical
speeds in the vicinity of the resonant speed of the rotor. The
main motion is stable: in the case of one critical speed (when
it is exceeded in the case of three critical speeds) between the
first and the second and above the third critical speed. It is es-
sential that when the small parameter is zero, all critical speeds
coincide with the resonant speed of the rotor. This allows one
to conclude that the method of synchronization of dynamic
systems and the energy method of critical speeds (upon their
transition, the motion stability changes to instability or vice
versa) were found in a «zero» approximation.

Let us consider the analytical results obtained in the
framework of a flat model of the rotor mounted on isotropic
elastic-viscous supports in the case of auto-balancers with
many identical loads (balls, rollers, pendulums).

Stability of a family of main motions was studied ana-
lytically in [9]. The approach used in [4, 8] was applied.
The zeros in the characteristic equation were attributed to
a multiparameter family. The study of nonzero roots in the
characteristic equation has found boundaries of the stability
domains. It has been established that the number of loads
does not exert an essential effect on these boundaries.

The approach considered in [4, 8] was applied in [3].
A method for studying stability of families of main motions
proceeding from generalized rotor coordinates and unbalance
parameters was proposed. Main and secondary motions of
the system and conditions of their existence were found.
A characteristic equation was derived for each motion (a family
of motions) and its roots were studied. It has been established
that when the family of main motions is stable, secondary mo-
tions are unstable or do not exist at all. It should be noted that
despite the modernization, the approach remains considerably
laborious. Its application becomes much more complicated in
the case of different loads, spatial motion of the rotor, when
balancing the rotor with several auto-balancers, etc.

The energy approach previously used in [5] was genera-
lized in [10] for rotors mounted on isotropic elastic supports.
Main assumptions for the rotor system were formulated and
main stages of the approach were described. Effectiveness
of the approach is illustrated by an example of a rotor with
a fixed point balanced with a passive auto-balancer. The
modernized approach does not take into account damping
in supports. Nevertheless, this is the least time-consuming
method for creating an analytical theory of stability of sta-
tionary motions of rotors with auto-balancers.

An attempt was made in [11] to construct a bifurcation
theory of stationary motions of a multi-ball auto-balancer
within the framework of a flat model of a rotor mounted on iso-
tropic supports. However, to construct a (complete) bifurca-
tion theory, it is necessary to know all possible steady motions
of the system and the conditions for their existence [12]. Then,
if we take angular velocity of the rotor as a bifurcation parame-
ter, we can determine from the bifurcation points which steady
motions will lose and which ones will acquire stability with
an increase in the rotor angular velocity. For example, such
a theory was built for an isolated system consisting of a carry-
ing body and two pendulums [13] since only stationary steady
motions are possible in such a system. The rotor with auto-
balancers also has non-stationary steady motions caused by:

— sticking (lagging behind the rotor) of balls [3] or pen-
dulums [14];

— excitation of parametric oscillations of loads in the vi-
cinity of a relative equilibrium position [15].

Therefore, it is impossible to create a bifurcation theory
of rotors with auto-balancers according to steady motions
alone. However, the study of stationary motions is a neces-
sary stage in construction of such a theory.

Damping in supports is present in actual rotor systems
and is used. The bodies attached to the rotor can be oscilla-
tion dampers, dynamic oscillation dampers, auto-balancers,
parts of a composite rotor, etc. During relative body motion,
they can be affected by elastic and viscous forces such as in
a ball-rod auto-balancer with springs [17] or in a ball auto-
balancer with springs [18]. Therefore, it is important to
extend the energy approach to such rotor systems. It is also
relevant to illustrate effectiveness of the approach using
a concrete example.

3. The aim and objectives of the study

The study aim is to determine features of application of
the energy method of studying stationary motions to the
systems consisting of a rotor mounted on isotropic elastic-
viscous supports and bodies attached to it and subjected to
viscous and elastic forces during relative motion. This will
make it possible to assess operability of the devices attached
to the rotor (auto-balancers, dampers, dynamic oscillation
dampers, etc.) with minimum labor input.

To achieve this aim, it is necessary to solve the following
tasks:

1) to determine main stages of application of the energy
method of studying stationary motions to the considered
rotor systems;

2) using this method, to study stationary motions within
the framework of a flat model of a rotor mounted on isotropic
elastic-viscous supports and balanced with an auto-balancer
having many corrective loads attached, for what:

— to construct a model and find stationary motions of the
rotor system and the conditions for their existence;

— to find the conditions necessary for stability of statio-
nary motions of the rotor system;

— to assess the effect of damping in supports on the sys-
tem dynamics.

4. The methods used in studying stationary motions
of the rotor with attached bodies

Holonomic mechanical systems with stationary restraints
are considered. Differential equations of motion of such sys-
tems can be obtained using the Lagrange equations of the
second kind in the form [18]:

d oL JL oD —
77._7"—7.:07 /j=17N/v (1)
dtdq; dq; 9q;

where ¢ is time; L=T -V is the Lagrange function in which
T is kinetic energy and V is potential energy of the system;
q; is the generalized coordinate, ¢, is the generalized velo-
city number j; N is the number of degrees of freedom in the
1& . o L .
system; D= 52[3;}? is the dissipative function in which n
i=1

is the number of material points in the system; B, is the coef-
ficient of viscous friction forces acting on the i point; v, is the
modulus of velocity of the i point.



In the general case, kinetic energy and dissipative func-
tion will not explicitly depend on time and will have free,
linear and quadratic terms relative to generalized velocities:

T=T,+T,+T,; D=D,+D,+D,. (2)

The generalized coordinates will be constant at statio-
nary steady motions:

/ji=LN/. (3)

q; = const,
In this case, the generalized velocities are zero and:
d oL oL __0dL,
oq,’

J
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Introduce the generalized potential:
M=V-T, (4)
Then, the equations of steady motions take the form:
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These equations are used to search for stationary steady
motions (3) of the system.

According to the Lagrange-Dirichlet theorem, a neces-
sary condition for stability of some stationary steady mo-
tions (3) consists in that the generalized potential has at
least a non-isolated minimum at it.

The theory is defined concretely for the mechanical sys-
tems that include a rotor and bodies attached to it.

5. The study of stationary motions of the rotor
with attached bodies

5. 1. The energy method of searching for and asses-
sing the stability of stationary motions of the rotor with
attached bodies

Let us consider a holonomic mechanical system. The
system includes a rotor mounted on isotropic elastic-viscous
supports. The rotor rotates at a constant angular velocity .
Bodies are attached to the rotor. Newton’s resistance forces
and linear elastic forces act on the bodies in their relative
motion. L

Denote generalized coordinates of the rotor as z;, /i=1,n, /,
where 7, is the number of degrees of freedom of the rotor.
Denote generalized coordinates of the attached bodies as y i
/j=1n,/, where n, is the number of degrees of freedom of
the attached bodies. Note that n, + n, = N. Then, the genera-
lized coordinates will be constant at stationary motions:

z,=const, /i=1n,/; y; =const,,, , Ji=ln, /. (8)

The equations of stationary motions will be divided into
two groups.

B, =i s 24 22
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Assume that motions of the system are divided into fast
and slow. At fast motions, the rotor takes a position corre-

sponding to the current total imbalance (imbalance from the
attached bodies and imbalance of the rotor itself). At slow
motions, the attached bodies slowly take the position of their
relative balance. Restrain the rotor motions,

oIl aD,
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2, VeV, ) =0, /j=1n /. (10)

Under the restraints, the rotor instantly takes the posi-
tion corresponding to total imbalance.

Solve the equations of constraints (10) relative to the
generalized coordinates of the rotor and obtain:

z; :Zi(\'jﬁ"”\'!nb)’ /i:m/‘ (11)

Elimination of generalized rotor coordinates from the
generalized potential and the linear part of the dissipative
function by using equations (11) gives the following:

0 =11y y,)0 Dy =D (W, W, ). (12)

The equations of steady motions of bodies (in the new
system with imposed constraints):
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For stability of some stationary motion (8) of the rotor
system, it is necessary that the transformed reduced poten-
tial (12) at this motion had at least a non-isolated minimum.

The method is applied in the following sequence:

1) physical-mathematical model of the rotor with at-
tached bodies is described;

2) generalized potential and dissipative function are
derived;

3) equations of stationary motions are set up; all possible
stationary motions are sought and conditions for their exis-
tence determined;

4) using the equations of stationary motion of the rotor,
generalized coordinates of the rotor (or total imbalances) are
excluded from the generalized potential;

5) necessary stability conditions for each stationary mo-
tion are determined from the condition of minimum of the
transformed generalized potential.

5. 2. Application of the method in the framework of the
flat model of the rotor and the auto-balancer with many
corrective loads

5. 2. 1. Description of the flat model of the rotor and
the auto-balancer

Diagrams explaining the system motion are shown in
Fig. 1. To describe the system motion, the following is used:

— fixed axes, E, H, (Fig. 1, @) coming from the fixed cen-
ter of rotation, the K point;

— moving X, Y axes coming from the K point and rotat-
ing synchronously with the rotor with a constant angular
velocity, o;

—moving axes, Xp, Yo coming from the rotor center
(O point) and parallel to the X, Y axes.

The rotor motion is defined as a sum of two motions
(Fig. 1, b): arotational motion together with the X and Y axes
and a translational motion together with the Xp, Yo axes.
Translational motion of the rotor and position of its center of
mass determine the x, y coordinates.
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Fig. 1. A flat model of a rotor and an auto-balancer: a rotor mounted on isotropic elastic-viscous supports (a);
kinematics of motion of a rotor, an unbalanced mass and a ball or a roller (6); kinematics of motion of a pendulum (c)

The rotor is held by elastic-viscous isotropic supports
with the coefficient of stiffness, ¢, and the coefficient of vis-
cosity, b.

The static imbalance of the rotor is caused by the point
mass g located at a distance /y from the longitudinal axis of
the rotor (the O point). Assume without loss of generality
that the point mass is located on the X axis.

The auto-balancer consists of #;, identical loads: pendu-
lums, balls or rollers. The mass of the auto-balancer body is
referred to the mass of the rotor. As is customary in the theory
of passive auto-balancers, assume that the loads on the track
do not interfere with each other’s motion [1-14]. Neglect the
effect of gravity on motion of the loads. Mass of one load is m;.
The center of mass of the load number j moves along a circle
of radius /; with its center located on the longitudinal axis of
the rotor (Fig. 1, b). Position of the load relative to the rotor
sets angle y; between the X axis and the radius of the center
of mass of the load, /j=1,n, /. Motion of the load number j
relative to the body of the auto-balancer (rotor) is hampered
by some force of viscous resistance b/, [\, |, where b; is the
coefficient of force of viscous resistance.

The following are expressions for the system mass, the
total imbalance of the rotor in the projections on the moving
axes X and Y and the resonant frequency of the rotor rota-
tion, respectively:

ny,
M, —M+Zj:0mj,
,
s, =myl,+ 2]_:1 ml;cosy

_ n, .
Sy _Zj:1mjlj Sy,
W, =,/c/ M.

The following expressions are projections of velocity of the
center of mass of the rotor on the X and Y axes, respectively,

(14)

Vg =X —OY, 0, =Y+ 0.

(15)

Assume that the balancing capacity of the auto-ba-
lancer is enough to balance static unbalance of the rotor

(z:i1m,.li >myl,). It can be said that all loads are different
if Vi,je{l,2,...,n,} ml, ;tmjl]. and all loads are the same if

Vi, je{l,2,...,m} ml; = mjl]-.

5.2.2.The generalized potential and the dissipative
function
Potential energy for the considered system:

H:%c(x2+y2). (16)

Relative motions of loads cease at steady motions. The
system behaves like an absolutely rigid body rotating at
a constant angular velocity, o. Its kinetic energy does not
contain generalized velocities and can be represented as:

T,=1,0"/2, (17)

where I is the axial moment of inertia of the system relative
to the axis of rotation.

In turn, it is the sum of the following axial moments of
inertia relative to the K point:

- of the rotor: 1{? =1+ M(x* +y*);

— of the point mass causing imbalance:

IO =my[(x+1,) +y* |= ml; +my(x* + y*)+ 2myl x =

=19 +my(x” +y*)+2myl x;
— of the load number j:

Y 218)+mj[(x+leOS\|lj)2+(y+lj siny;)*]=
=1 +ml} +m(x* +y*)+2ml (xcosy, +ysiny, )=

=1 +m(x* +y*)+2ml (xcosy, +ysiny ).
Thus,

Le=I0+ 3" 1P =10+ 37 19+ M (2 +y*)+
+2xsx+2ysy:IO+MZ(x2+y2)+2xsx+2ysy, (18)
where I,=1{’ +Z:';01f)j) is the axial moment of inertia of
the system relative to the longitudinal axis of the rotor pas-

sing through the O point.
Then the generalized potential (3) takes the form:

1 , , ,
M=V =T = (e~ M0")(x" +y") -

2
® )
- I()7—0)l(xsx +ys,).



This function generalizes analogue of the potential en-
ergy obtained in [5, 6] and extends it to the case of auto-ba-
lancers with an arbitrary number of different loads: pendu-
lums, rollers, balls.

The dissipative function:

1 1 "y
=§bvé +§;bju]2 =

1, . . 1& .
:Eb[(x—myf+(y+wx)2]+52bjsz§ (20)
j=1

The component which is linear relative to the generalized
velocities:

D, = bo(-xy + yx). 21)
5. 2. 3. Stationary motions of the system

The equations of stationary motions (9) for the system in
question take the form:
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3, a% =m;l,0°(xsiny; —ycosy;)=0,/j=1n, /. (22)

This is a system of (7,+2) nonlinear algebraic equa-
tions relative to (1,+2) unknowns x,y, y;, /j=1n, /.

Stationary motions are solutions of the system of algeb-
raic equations (22).

The system may have the following stationary motions:

— a family of main motions (at n>3) at which the auto-
balancer balances static unbalance of the rotor and there is
no deviation of the longitudinal axis of the rotor from the
axis of rotation:

x=0, y=0,

”h
s, = 2‘7_:1 m 1 cosy; +myl, =

s, = ZL ml siny; =0; (23)

— secondary motions at which the auto-balancer does not
balance static imbalance of the rotor and there is a deviation
of the longitudinal axis of the rotor from the axis of rotation.

Let us find secondary motions. The following is found
from the first two equations (22):

x=A /A y=A,/A (24)
where

A=(M,0" —c)* + b,

8, ==0"| (M, 0" ~)s, ~bos, |,

A, = =0’ [(Myo" —c)s, +bws, ] (25)

The following is obtained from the last n;, equations in (22):

xsiny; —ycosy ;=0 < A;siny; —A,cosy; =0,

/i=in, /. (26)
Equations (26) can simultaneously be satisfied provided
there is such a certain 8 angle that if:

v, =04k om k0, /j=1n,/, (27)

then 6=arctan(y / x)=arctan(A, / A,).

Notice that:

—a concrete secondary motion is characterized by the
ny-bit binary number £k, ,....k, and the 8 angle corresponding
to the motion;

—at this secondary motion, the centers of mass of the
loads lie on the same U axis which forms the 6 angle with
the X axis;

—when k;=0, then load j is deflected in positive di-
rection of the U axis and when kj =1, it is deflected in the
negative direction;

— the binary number kk,,...k, can take 2" values from
00,..,0to 11..., 1;

-0, 1, 2,... values of the 6 angle can correspond to one
binary number kk,,....k, ;

— different secondary motions correspond to one binary
number kk,,...k, and two different values 64, 6, of the 6
angle provided that tan6, #tan®,.

Find all possible values of the q angle corresponding to
the binary number kk,,....k, and the conditions for existence
of corresponding secondary motions.

Introduce a decimal number £ corresponding to the bina-
ry number kk,,...k, :

m "

k=Y k2 ke{0...,2" 1), (28)

Values of k; are determined by the decimal number %
according to thc following recurrent formulas, &,

=int(k/2"™")

k, mt[( -3k, 2 2 ] (29)
where int(x) is the integer part of x.
Substitute (27) into (14) and obtain:
5.(k)=s,,(R)cosO+myl,, s,(k)=s,,(R)sin6,  (30)
where
su(=3" (D" m], (31)

is a projection on the U axis of the total imbalance caused by
the loads.

Transform the second equation in (26). Substitute A,, A,
from (25) into it and obtain:

—(M,0* —c)s, —bws, |sin6+

+[(My0* —c)s, +bws, ]cos6 =0.



Substitute s, s, from (30) and obtain the following after
transformations:

—myly(M;0* —c)sin®+ bws ., (k) + bom,l,cos0=0. (32)

Values of the 6 angle are determined from this equation
(for any ®>0).

1) The case of absence of damping in supports. In the
absence of damping in supports, b=0 and equation (32) takes
the form:

—myl,(M,0" —c)sin8=0. (33)

If my,#0, then find 6={0,x,2x,...} from (32). However,
there is only one essentially different value:

0=0. (34)

Thus, the U axis coincides with the X axis directed to-
wards the mass causing imbalance. When kj =0, the center
of mass of the load j is deflected to the heavy side of the rotor
(along the X axis) and when &, =1, then it is deflected to the
light side (against the X axis).

If all loads are different, then the system has 2™ different
secondary motions. If all loads are the same, then there will
be only (n+1) fundamentally different secondary motions.

At the first secondary motion, all loads are deflected in
the direction of the vector of static imbalance of the rotor
and, consequently, total imbalance of the rotor and loads is
the greatest:

S
Stnax = j=0 mj J*

If myl, =0, then the 6 angle becomes an undefined param-
eter. Assume that 8€[0,m). In this case, 2" one-parameter
families of secondary motions are obtained. The U axis forms
any angle 0¢e[0,m) with the X axis in each family. A part of
loads in the family number £ is directed along the U axis and
apart against it which is determined by the numbers &; in the
binary number corresponding to the decimal .

Note that the 6 angle does not depend on angular velocity
of the rotor in absence of damping in supports.

2) The case of presence of damping in supports. Let
us study behavior of the q angle in the presence of damping
forces in supports. When the rotor speed o tends to zero from
above (0—+0), equation (32) takes the form:

(35)

mylycsin®=0. (36)
There is only one essentially different value of the 6 angle:
0=0. Classify secondary motions as if there were no damping
in supports, only at ®—+0.
Using trigonometric identities:

sinG:%, cose=tzz, u=tan(6/2), (37)
reduce equation (32) to the following form:

©b[s 5 (k) —myl, u* +

+ 2m, 1, (c = M0 Yu+wb[s ., (k) +myl, ] =0. (38)

Denote it through:
D(ky=ml[}(M;»* —c)*+
+ 0*b*[mil; = 3, (B)] = ml Mio' ~

— (2emiEM g + b7 [s5, (k) —mI2 Yw® + P mlL]. (39)

Then the roots of equation (38):

molo(Mz(’)z —-c)xD(k)

RO = s (B =y ]

(40)

Two angles correspond to two roots u,,:

8,,(k,0)=2arctan[y, ,(k,w)]=

= 2arctan{mUlU(MZw2 —)*D(k) }

(Db[SAB (k) - molo]

(41)

It can be seen from (41) that in the presence of dam-
ping in supports, the 8 angle depends on angular velocity of
the rotor.

For small :
M(ky(l)): _Wﬂ),
0%0
2cm, [,
u,(bo)=———"—200 .
2 wbls/m(k)— molol
0,(k,®)~ _Ww,
00

bls 5 (R)—myl, | ®

0,(k,w)=—m-sgn[s,;(k)—ml, |+ )
cmyl,

Thus, only one value of 6 tends to 0 when ®—+0:

0(k,w)=06,(kn)=

et {mOlO(MEm2 —¢)++D(k) }

D[ s, (k) —myl, |

(42)

Note that if my/, #0, then:
— at the resonant rotor speed:

(22— % (F
6k, ) = 2-arctan Yok =S k), (43)

845 (R)=myl,
— at high super-resonant rotor speeds:

>0, 0(kw)=n-sgn[s,,(k)—myl,|-

_ b[SAB(k)_mOIO]. (44)
myl, Mo
a) The case when 0<|s,,(k)|<m,,. In this case, loads at
the secondary motion cause a total imbalance less than the
rotor imbalance. It can be seen from (39) that D(k)>0 for
any rotor speed. Therefore, there is an angle 8(k,®) for any
speed. Since:



0(k,+0)=—0;

[ 22 2
G(k,mo):—Q-arctanM 0;

< b
myly =315 (R)
0(k,m — +oo) = -1 +0,
then the U axis on which centers of mass of the loads lie, lags
behind the X axis on which the unbalanced mass lies. The lag
grows with an increase in ®. Dependence of the 0(k,®) angle

on o is shown in Fig. 2. Calculations were performed at the
following values of parameters:

n,=3; m,=0.05kg; [,=0.1m,
i=01,..,n,; m;=0.03 kg, j=1,...m,;

n,=3; ¢=10000 N/m; M, =4 kg;

M:ME—Z:" m; b=40 N-s/m;

=0 J’

®,=+/c/ M, =50 rad/s.

Note that at the stationary motion number (2" —1-£) at
®=+0, the centers of mass of the loads are deflected oppo-
site to their deviations at the motion number £. At these mo-
tions, s,,(k)=-s,,(2" —1-k).

0
—T/4 : l

0(O\ROQ2™ —1-k)
—1t/2 \

S N\
_ -7 g

0 =50 100 (0]

Fig. 2. Dependence of angles 6(k), 6(2™ —1- k) on angular
velocity o of the rotor, A=1

b) The case when |s,,(k)[>my,>0. In this case, the
loads at the secondary motion create a total imbalance grea-
ter than imbalance of the rotor. There are two positive real
roots in the equation D(k)=0.

(01/2(/8):

R B O N S 2

M, oMZ| miE | oM,
= L) (4))

2 2 2 2
X<{A24C+ 2?\42 |:SA52(I}§) _1:|H:SAI~52(IIZ) _1:|>
z =L Molo Myty

Wherein:
0<o,(k)<w,<o,(k),

and secondary motions determined by angles 6, ,(w,k) exist
at such rotor speeds:

0 € (0, 0, (k) (@,(k), +).

If all loads are the same, then there will be only 2(n;+1)
fundamentally different secondary motions.

It can be seen from the form of (45) that critical speeds
®, ,(k) depend on s%,(k). Therefore, motions & and 2" —1—k
have the same critical speeds and two motions merge and
disappear at the o,(k) point and originate and split at the
o, (k) point (Fig. 3).

Calculations were performed for the same values of pa-
rameters as in the previous case for £=0.

T 1 T
f f_

/2 : ¥
| 02" —1-k)

0 . ;

0(k) B

-7/2 \‘: .

.

0 ®, ©, O, 100 ©

Fig. 3. Dependence of angles 8(k), 6(2" —1— k) on angular
velocity of the rotor, , k<=0

c¢) The case when my/,=0 and s,,(k)#0. In this case,
equation (32) has no solutions. Therefore, in the presence of
damping in supports, there are no one-parameter families of
secondary motions.

3. 2. 4. Reduced potential when imposing restraints

Let us exclude generalized coordinates of the rotor from
the reduced potential. The following is found from the first
two equations in (22):

_ o’[(c—M,0%)s, +bos |
(c-M;0*) +b°0’

)

_ o’[(c—M;0%)s, —bos, |

46
(c—=M0*)* +b’0’ (46)

Substitute (46) into (19) to obtain the transformed ge-
neralized potential in the form:

o' (M,0" -c)s’ o’

TA(c-M,0 ) +0'0Y] ° 2

; (47)

where s=/s+s? is the module of total static imbalance of

the rotor and loads.
Exclude the rotor imbalances from the reduced potential.
The following is found from the first two equations in (22):

s, = —[(My®® —c)x +boy] / ®°,

s, =-[(M,0" —c)y —box] / . (48)

Substitute (48) into (19) to obtain the transformed ge-
neralized potential in the form:

:(ME(L)Q—C)(XZ'F‘T/Z)_[ 0')72 (49)

IT



3. 2. 5. Assessing stability of stationary motions

The following conclusions on stability of existing statio-
nary motions can be drawn from the form of (47):

1) s has a minimum at an isolated main motion or at
a family of main motions and this motion or family of motions
can be stable at super-resonant rotor speeds (®>®,);

2) s has a maximum at the secondary motion correspon-
ding to the highest total static imbalance of the rotor and the
loads and this motion can be stable at the sub-resonant rotor
speeds (w<®,);

3) s has a non-extremal value (neither minimum nor
maximum value) at the remaining secondary motions and
these motions are unstable at any speeds of the rotor.

6. Discussion of the results obtained
in the study of stationary motions of the rotor with
attached bodies

In the modernized method, damping in supports is taken
into account through the linear part of the dissipative func-
tion and elastic forces acting on the attached bodies are taken
into account through the potential energy.

Thanks to the modernization, the method has become
applicable to the study of stationary motions and in the cases
when the attached bodies are parts of a composite rotor and
form dampers or suppressors of oscillations, etc.

The method still makes it possible to find and assess
stability of stationary motions of the rotor systems under
consideration without setting up differential equations of
motion. This makes the method the least time consuming,

Effectiveness of the method and the main stages of
its application were illustrated in the framework of a flat
model of a rotor mounted on isotropic supports with a num-
ber of attached loads in the form of balls, rollers and
pendulums.

As a result of analytical studies, it was confirmed that
when there are no isotropic elastic supports (no viscosity),
the rotor has a single critical speed which coincides with the
natural frequency. Auto-balancing can only occur at super-
critical rotor speeds.

The method enables taking into account the effect of
damping in supports on stationary motions. It was estab-
lished that this damping:

— does not affect existence and domain of stability of the
main motions;

— affects both secondary motions proper and the domains
of their existence.

In the absence of damping in supports, secondary motions
do not depend on the angular velocity of the rotor.

In the presence of damping in supports, both secon-
dary motions and the domains of their existence depend
on the angular velocity of the rotor. The angular velo-
cities at which bifurcation of secondary motions occurs are
also the velocities at which non-stationary steady motions
can arise.

The method has drawbacks inherent to approximate
methods designed for studying stability of motion according
to Lyapunov. The method gives approximate boundaries of
the domains of stability of main and secondary motions. Also,
it does not make it possible to study non-stationary steady
motions of the system and transient processes.

In the future, it is planned to obtain (by means of ap-
plication of the energy method) conditions for the onset of

auto-balancing for rotors both with different kinematics and
different attached bodies.

7. Conclusions

1. The described energy method is applicable to rotors
mounted on isotropic elastic-viscous supports when other
bodies are attached to the rotor and affected by viscous and
elastic forces during relative motion. The method is aimed
at searching for stationary motions of the rotor system, de-
termining conditions of their existence and assessing their
stability. Peculiarity of the method consists in the fact that
stationary motions of the system determine the generalized
potential and the linear part of the dissipative function.
Stability of motions is assessed through their study for the
conditional extremum of the generalized potential. The
equations of stationary motion set up for the generalized
coordinates of the rotor serve as conditions.

2. Effectiveness of the method was demonstrated by
the example of a flat model of a rotor mounted on isotropic
supports with many loads in the form of balls, rollers or pen-
dulums.

2. 1. It has been established that the system has a multi-
parametric family of main motions, both with and without
damping in supports at a sufficient balancing capacity of the
auto-balancer.

In the absence of damping in supports, the system has:

—isolated secondary motions at which centers of mass
of the loads are deflected to the side of imbalance or in
the opposite direction in the presence of imbalance in
the rotor;

— one-parameter families of secondary motions in which
centers of mass of the loads lie on one straight line in the
absence of the rotor imbalance.

In the presence of damping in supports, the system has:

— isolated secondary motions at which centers of mass of
the loads lie on one straight line and this straight line forms
an angle with the imbalance vector depending on rotor speed
in the presence of the rotor imbalance;

—secondary motions do not exist in the absence of the
rotor imbalance.

2. 2. It has been established that both in the presence and
in the absence of damping in supports at super-resonant rotor
speeds, only the family of main motions can be stable.

In the absence of damping in supports at sub-resonant
rotor speeds, only the secondary motion at which all correc-
tive loads are deflected to the heavy side of the rotor can be
stable.

In the presence of damping in supports at sub-resonant
rotor speeds:

— all existing stationary motions are unstable in the ab-
sence of the rotor imbalance;

— only the secondary motion at which total imbalance of
the rotor and the loads is greatest can be stable, however, if
such a motion exists in the presence of the rotor imbalance.

2. 3. It was established that damping in supports:

—does not affect conditions of existence of a family of
main motions;

— affects both the secondary motions proper and the con-
ditions of their existence.

In the absence of damping in supports, the secondary
motions do not depend on the rotor speed but they depend
on it in the presence of damping.
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