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Запропоновано варіаційний чисельноана
літичний метод (названий RVRметодом) 
розрахунку міцності та жорсткості ста
тично навантажених нетонких ортотроп
них оболонкових конструкцій, послаблених 
отворами (концентраторами напружень) 
довільних форм і розмірів. Теоретично об
ґрунтований новий метод заснований на 
варіаційному принципі Рейсснера і мето
ді І. М. Векуа (методі розкладання шука
них функцій у ряди Фур’є по ортогональ
ним поліномах Лежандра щодо координати 
уздовж постійної товщини оболонки). При 
цьому використання в запропонованому 
RVRметоді загальних рівнянь тривимірних 
задач лінійної теорії пружності дозволяє 
визначити повний напруженодеформова
ний стан пружної оболонки (зокрема, плас
тини) з отворами. В той же час за допо
могою Rфункцій на аналітичному рівні 
враховується геометрична інформація кра
йових задач для багатозв’язних областей  
і будуються структури розв’язків, які точно 
задовольняють різним варіантам граничних 
умов. Застосування при дослідженні зміша
них варіаційних задач програмно здійснюва
ного алгоритму двосторонньої інтегральної 
оцінки точності наближених розв’язків доз
воляє автоматизувати пошук такої кількос
ті апроксимацій, при якому процес збіж ності 
розв’язків набуває стійкого характеру. 

Для ортотропного й ізотропного мате
ріалів можливості RVRметоду показані 
в чисельних прикладах розв’язання відпо
відних крайових задач розрахунку концен
трації напружень в циліндричній оболон
ці з еліптичним або прямокутним отвором 
при осьовому навантаженні. Обговорено 
результати виконаних досліджень і особли
вості, що характерні для нового методу, 
який може знайти ефективне застосування 
при проектуванні відповідальних пластин
частих і оболонкових елементів конструк
цій в різних галузях сучасної техніки

Ключові слова: ортотропна оболонка 
з отворами, концентрація напружень, прин
цип Рейсснера, теорія Rфункцій

UDC 539.3
DOI: 10.15587/1729-4061.2019.169631

1. Introduction

Elastic shells, weakened by holes (openings), are widely 
used in modern engineering practice as the most crucial struc-
tural elements the strength and rigidity of which often depend 
on the performance and reliability of the structure as a whole.

Estimation of stress concentration near the holes in 
non-thin shells involves calculating their stress-strained 
state based on the solutions of the corresponding boundary 
problems of the three-dimensional theory of elasticity. The 

solution of such problems in spatial formulation is usually 
associated with significant mathematical and computational 
difficulties that must be overcome in the process of perfor-
ming specific calculations. As is known, the effectiveness of 
numerical methods is determined primarily by the possibility 
of obtaining reliable results. Therefore, the improvement of 
existing and the development of new methods for investi-
gating anisotropic shells of arbitrary thickness weakened by 
holes is still an urgent and practically significant scientific 
problem in the mechanics of a deformable solid matter.
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In this regard, it is primarily essential to use modern com-
puters to create reliable, fairly universal and algorithmically 
simple methods for calculating non-thin shell elements of 
structures with openings.

2. Literature review and problem statement

Understanding the significant effect of holes (stress con-
centrators) on the bearing capacity of shell structures is very 
important when designing them. In [1], it is shown that in 
a linear placement of elastic plates, the stress concentration 
factors do not depend on the size of the holes. However, when 
calculating these coefficients in shells, it is necessary to take 
into account the relative dimensions of the holes compared to 
the dimensions of the shell. The stress distribution near the 
holes in the elastic shells has been thoroughly studied on the 
basis of the classical Kirchhoff–Love theory. In many prac-
tical cases, this theory gives results that are consistent with 
experimental data and are the initial approximation for three- 
dimensional problems. Thus, studies of the stress-strained 
state of thin shells with holes based on the use of experimen-
tal data and analytical methods are presented in [2]. Besides, 
several variational methods, which are becoming increasingly 
widespread in the construction of direct approximate algo-
rithms for solving boundary problems of the theory of shells, 
are described in detail in the work by K. Washizu [3]. How-
ever, the application of the considered methods to calculate 
stress concentration in shells (especially non-thin) with holes 
of complex shapes can lead to unreliable results.

The limitations of exact analytical solutions to the prob-
lems of the mechanics of a deformable body have led to the in-
tensive development of approximate methods. These methods, 
as a rule, are based on the direct integration of the correspon-
ding differential equations, on the use of variational approa-
ches, and also on discrete methods, among which the most 
common is the finite element method (FEM). In particular, to 
analyse the stress-strained state of thin shells, a comparison is 
made in [4] of the effectiveness of algorithms for using stiffness 
matrices of finite elements of different dimensions. In this case, 
using the example of calculating a cylinder clamped along the 
ends, it is shown that the two-dimensional formulation in the 
calculations of thin shells is adequate and allows obtaining 
acceptable results with optimal expenditure of machine time.

In [5], on the basis of FEM, a scaling technique is de-
veloped for static and dynamic analysis of cylindrical shells, 
which is used to provide an accurate representation of the 
shell boundaries within the framework of the three-dimen-
sional linear theory of elasticity. In [6], the main attention is 
paid to obtaining a new finite element of a thin-walled shell, 
the practical application of which is promised to be presented 
in further publications. Moreover, the numerous examples 
that are presented in [7] illustrate difficulties and uncer-
tainties associated with the regular analysis of buckling of 
thin-walled elements with holes. Thus, the direct use of FEM 
in solving a number of problems in the mechanics of elastic 
shells is associated not only with obvious achievements but 
also with certain problems.

For the mechanics of a deformable solid body, the prob-
lems associated with solving three-dimensional formulations 
of boundary value problems for anisotropic shells of arbitrary 
thickness weakened by apertures are still relevant. A detailed 
review and comparative analysis of the diverse, often contra-
dictory, variants of the refined theories of shells known in 

scientific literature is given in the monograph [8]. The same 
work presents a new variational numerical-analytical method 
(called the RVR method) for calculating the strength and 
stiffness of statically loaded non-thin orthotropic shells with 
openings of arbitrary shapes and sizes.

The theoretically grounded method is based on the 
E. Reiss ner principle [9–11], the I. N. Vekua method [12] 
(the method of decomposing the desired functions in Fourier 
series in Legendre polynomials relative to the coordinate 
along the shell thickness). In this case, the use of general 
equations of three-dimensional problems of the linear theory  
of elasticity in the proposed RVR method [13] helps de-
termine the full stress-strained state of an elastic shell (in 
particular, a plate) with holes.

Success in the calculations of shells with holes is deter-
mined not only by the capabilities of the adopted refined 
shell model but also by the level of implementing the method 
used in the study of specific structural elements in various 
fields of technology. The effectiveness and capabilities of the 
proposed RVR method are confirmed by solving a three- 
dimensional formulation of a number of complex applied 
problems for various types of static loads applied to shell 
objects. Thus, calculations of a cylindrical structure under 
the action of a local load and centrifugal loads are presented, 
respectively, in [14] and [15], and calculations of a spherical 
structure loaded with internal pressure are given in [16].

However, the less studied problem of using effective 
methods for determining the stress-strained state of non-thin 
orthotropic shells, weakened by holes of arbitrary shapes and 
sizes, still requires solving. Moreover, it is important to note 
that in the case of calculating the stress concentration in such 
shells, it is necessary to use the basic relations of the three- 
dimensional theory of elasticity.

3. The aim and objectives of the study

The aim of the study is to determine the level of stress con-
centration in statically loaded cylindrical elements of struc-
tures with holes, using the numerical-analytical RVR method.

To achieve the aim, the following objectives were set  
and done:

– to build such structures of solutions that exactly satisfy 
all the boundary conditions of the studied elastic region of  
a shell with holes of arbitrary shape;

– to use the RVR method for obtaining numerical results 
to assess the effect of anisotropy of the shell material on the 
stress concentration on the contour of an elliptical or rectan-
gular hole in an orthotropic cylinder.

4. Materials and methods for the study of stress 
concentration in orthotropic cylindrical shells with holes

4. 1. Obtaining an analytical expression for the Reiss-
ner variational equation for orthotropic cylindrical shells

In order to increase the accuracy of solving boundary value 
problems, it is advisable to determine independently the pa-
rameters of the stressed and deformed states when construc ting 
refined models of the shell, which can be implemented using  
the Reissner variational principle. An alternative approach 
with respect to the classical Lagrange and Castigliano func-
tionals IL and IC is associated with the Reissner functional IR  
with independent approximation of the displacement vector 
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of an arbitrary point of the region u and the stress tensor σ.  
It should be noted that by virtue of the independence of 
displacements and stresses, the Reissner variational equation 
IR = 0 leads to a system of first-order differential equations for 
the unknown quantities. However, the equations correspon-
ding to the classical variational formulations have a higher dif-
ferential order, require the implementation of time-consuming 
mathematical operations when solving them, and significantly 
complicate the structures of solutions that exactly satisfy the 
boundary conditions of the problem.

In computational engineering practice, more and more 
attention is paid to mixed variational formulations, which are 
devoid of the well-known deficiencies inherent in the classical 
Lagrange and Castigliano functionals and are based mainly 
on the Reissner functional. The numerical implementation 
of such a variational statement was significantly hampered 
by difficulties in estimating the accuracy of solutions caused 
by the absence of an extremum at the stationarity point IR. 
This problem was solved by the theorem proved in [8, 17]:  
«…the sequences of the Ritz method coincide with the exact 
solution of the boundary value problem formulated on the 
Reussner principle if the structures of the solutions exactly 
satisfy all the boundary conditions».

Therefore, using the R-functions theory [18, 19], the pro-
posed RVR method at the analytical level takes into account 
the geometric information of the studied boundary-value 
problems for multiply connected domains and constructs 
solution structures that precisely satisfy diverse variants of 
the boundary conditions.

For a particular analytical representation of the Reissner 
variational equation (stationary conditions for the functional 
IR), let us consider the problem of the stress-strained state of 
an elastic length 2L and a constant thickness h weakened by 
a hole. We introduce an orthogonal curvilinear coordinate 
system {s1, s2, z} with the origin at the centre of the hole in the 
middle surface Ωs of the radius R of the cylinder under study 
(–L ≤ s1 ≤ L, and s2 is the arc length of the parallel circle of the 
cylinder). In this case, the coordinate line z (–h/2 ≤ z ≤ h/2) 
is perpendicular to the surface Ωs (z = 0), and the coordinate 
lines s1 and s2 coincide with the elastic-equivalent directions 
of the orthotropy of the cylinder material. With the symme-
try of the hole shape and the load with respect to the planes 
s1 = 0 and s2 = 0, the calculation of the shell is reduced to the 
study in terms of the elastic region Ω (at L = OE), which is pe-
riodic along the s2 line (Fig. 1). This area is a cylindrical pa-
nel ADEFG with an elliptical hole (Fig. 1, a) with semi-axes 
r1 = OD and r2 = OA, or a panel ABCDEFG with a rectangular 
hole (Fig. 1, b) with rounded corners of the radius r.

The hole dimensions are considered arbitrary, since in 
the proposed RVR method [8], there are no limitations for 
the value of µ = r0 R h , where r0 = (b+d)/2), for typically 
used and widely published scientific methods of calculating 
multiply connected shells [2].

In the coordinate system {s1, s2, z} for orthotropic cylin-
drical shells, we represent the Reissner variational equation 
in the following form:
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where ν12, ν21, ν13, ν31, ν23, and ν32 are Poisson’s coefficients; 
E1, E2, and E3 are Young’s moduli in the main directions of 
the shell orthotropy; and G12, G13, and G23 are shear moduli:
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In this case, in equation (1), the factor χ is necessary 
because non-thin shells are considered, and contour integrals 
are absent because the structure of the solutions exactly 
satis fies all specified boundary conditions of the problems 
when using the RVR method.

4. 2. Construction of solutions structures for boundary 
value problems under study

Suppose that axial forces P with intensity 
p = P/(2πRh) are applied to the end surfaces Γ1 
(Fig. 1) of the cylinder, whereas the surface Γ0 
and the front surfaces of the cylinder are free 
from external forces and moments. The boundary 
conditions formulated through the components 
of the vector u and the tensor σ have the form:
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In addition, on the marginal surface Γ2, de-
termined on the coordinate line s2 by the dis-
tance πR/n (where n is the number of holes along 
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Fig.	1.	The	calculated	periodic	elastic	area	of	a	shell:		
a	–	with	an	elliptical	hole;	b	–	with	a	rectangular	hole
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the guide of the cylinder), the periodicity conditions must be 
met as follows:

u2 0= ,  σ12 0= ,  σ23 0=  on Γ2 .  (4)

Let us present the desired components of displacements ui 
and stresses σij, which are independently varied in the Reuss-
ner functional IR and exactly satisfy boundary conditions (3)  
and (4), in the form of finite series:
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In this case, the valid analytical expressions are the fol-
lowing:
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where up
ijk , σ ps

ijk , Tg
ijk  (p, s = 1, 2, 3; g = 1, 2) are the desired 

values; Сi(s1), Сj(s2) and Si(s1), Sj(s2) are the even and 
odd approximating functions of the coordinates s1 and s2; 
Pk(ζ) denotes the Legendre polynomials (ζ = 2z/h); and ni =  
= [k(mi+1)+p](ti+1)+r+1; ni→nij.

It is noteworthy that q = p when the cylinder is stretched, 
and q p= −  when the cylinder is compressed. In this case, f1 
and f2 are the values of the direction cosines of the normal ν 
to the hole contour (Fig. 1, a) and, according to the R-func-
tions theory [18, 19], they are calculated by the formulae:
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and are necessary for the fulfilment of conditions (3) on Γ0,  
since the formulae connecting the stresses in the main and 
inclined areas of the elastic shell are of the form:
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The function Ω0 for an elliptical hole is determined by 
the formula:

w0 1 1

2

2 2

2
1= ( ) + ( ) −s r s r .  (9)

For a cylinder weakened by a through (n = 2) rectangular 
orifice with rounded corners (Fig. 1b), we introduce the no-
tation (with i, j = 2):
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The equations on the boundary surfaces Γ g  (g = 0, 1, 2) of 
the studied region Ω (Fig. 1, b) have the form wg

gΓ
=0 and 

are determined by the functions Ω1, Ω2, (6), and Ω0:

w w w w w

w w w w
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01 03 02 04

11 12 21 22 ,  (11)

where ∧0 and ∨0 are symbols of R-operations of the R-func-
tions theory [18, 19].

In the structures of (5), the numbers li, lij (i, j = 1,2) of 
the approximations of the desired displacements and stresses 
through the thickness of the construction determine the 
selected shear model of the shell when specifying a combina-
tion of values (li, l3, lij, li3, l33). In this case, li is the number of 
terms retained in the expansion in the transverse coordinate 
z of the tangential displacements ui; l3 is for the normal dis-
placement u3; lij is for the tangential stresses σij; li3 is for the 
transverse tangential stresses σi3; and l33 is for the transverse 
normal stress σ33.

If the combination of the parameters (li, l3, lij, li3, l33) is 
specified, it allows the software complex to switch automa-
tically to various refined two-dimensional theories that esti-
mate the stress-strained state of the shells with a given accu-
racy. At the same time, such a procedure can be used as a basis 
for creating a consistent and logically coherent classification 
(as to the order degree of approximations) of the variety of 
shear models of shells existing in the scientific literature.

In particular, in the case of li = lij, the value of N = li–1 
can be considered as a kind of parameter characterizing 
the order of the Nth approximation (in the terminology of 
I. V. Vekua [12]) of the shell theory under consideration. 
In the proposed RVR method, the method of reduction of 
three-dimensional problems of the theory of shells with the 
algorithm of regular refinement of the shear model of the 
shell is used. For example, the variant (2, 1, 2, 1, 0) corre-
sponds to the theory of thin shells with finite shear stiffness 
like Tymoshenko’s [13], and (4, 3, 4, 1, 2) relates to the ap-
plied theory of shells [20].
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5. The research results of the formulated boundary  
value problems 

After substituting the structure of solutions (5) into vari-
ational equation (1) and integrating the triple integrals nu-
merically, the boundary problem is reduced to solving a sys-
tem of linear algebraic equations for the desired constants up

ijk ,  
σ ps

ijk  and Tg
ijk . The found values are used to determine all the 

characteristics of the stress-strained state of the calculated 
elastic shell region.

In this case, the matrix of the system of equations has  
a tape structure, and the tape width depends on the order of 
indexation of the desired components of the displacement 
vector u and the stress tensor σ.

The numerical implementation of the problem for a shell 
with an elliptical hole (with r1/r2 = 0.5) was performed for 
cylinders of different materials in the case of using the third 
approximation shift model (4, 3, 4, 3, 2) of the applied theo-
ry [20]. For an isotropic cylindrical shell (at Ei = 26.18 MPa; 
νij = 0.3), Table 1 presents (in the denominator, the results 
of [2]), the values of the coefficients of the concentration 
of membrane k pk

1
0= =σττ  and maximum bending k pk

2
1= =σττ  

stresses in the thickness. In this case, the numerical values of 
k1 and k2 were obtained for the most loaded point A (j = π/2) 
of the contour of a large hole (μ = 2.5) (Fig. 1, a).

Table	1

The	values	of	the	stress	concentration	factors	k1	and	k2

r1/r2 0.5 1.5–1 1.3–1 1 1.3 1.5 2

k1
8.619 
8.667

7.275 
7.090

6.448 
6.376

5.400
4.556 
4.337

4.148 
3.965

3.503 
3.455

k2
–2.522 
–2.517

–1.921 
–1.992

–1.731 
–1.754

–1.125
–1.006 
–1.081

–0.855 
–0.959

–0.757 
–0.796

For an orthotropic shell (with μ = 1.667; ν = 0.4), the 
graphs of the distribution of the coefficients k1 and k2 are 
shown in Fig. 2 for different values of the ratio of the elastic 
moduli in the axial E1 and circumferential E2 directions of 
the cylinder.

 
 

 

a

b
Fig.	2.	The	distribution	of	the	coefficients	k1	and	k2		

in	the	area	0 ≤ j ≤ π/2:	a	–	with	an	elliptical	hole;		
b	–	with	a	rectangular	hole;	  

 
 

	at	E2/E1 = 0.2;		 
 
 
	at	E2/E1 = 1;	

 
 
 	at	E2/E1 = 1.5

Fig. 3 shows the results of the study of the effect of the 
anisotropy of the shell material on the stress concentration 
at the points of the contour of the hole.

 

Fig.	3.	The	effect	of	the	anisotropy	on	the	values		
of	the	coefficients	k1	and	k2	on	the	contour	Г0	of	the	elliptical	

hole	(Fig.	1,	a):	
 
 
 
	in	point	A	(with	j = π/2);		

 
 
 	in	point	D	(with	j = 0)

The numerical implementation of the boundary va-
lue problem was also performed for a non-thin cylinder 
(h/R = 1/3) weakened by two (n = 2) through-going rec-
tangular holes (Fig. 1, b) with the following geometrical 
parameters (in mm): h = 9; R = 27; L = 50; ψ = π/4; b = 12.5; 
and r = 3. The calculations were performed both for an iso-
tropic material (Ei = 26.18 MPa; νij = 0.5) and for orthotropic 
fiberglass with elastic characteristics: ν12 = 0.15; ν23 = 0.31; 
ν31 = 0.08; E1 = 1.79 E0; E2 = 1.31 E0; E3 = 0.43 E0; G12 = 0.28 E0; 
G23 = G31 = 0.24 E0; E0 = 9.81 MPa. Fig. 4 shows the distri-
bution of the reduced displacements u = u3E3/pR and stres-
ses σ = σττ/σst (σst = –p) on the contour Γ0 of a rectangu- 
lar hole with z = –h/2 and z = h/2 (with u–, σ– and u+, σ+,  
respectively).

 

Fig.	4.	The	graphs	of	the	distribution	of	the	desired	values		
on	the	contour	Г0	(Fig.	1,	b):	

 
 
 
	for	an	isotropic	shell;		

 
 
 	for	an	orthotropic	shell

It is noteworthy that the presented graphs were obtained 
in the case of applying a refined fourth-order approximation 
shift model, first proposed in [21].

6. Discussion of the results of calculating  
the stress concentration in a cylindrical shell with  

a hole under axial load

In the study of the considered boundary-value problems, 
a software-implemented algorithm of the a posteriori inte-
gral estimation of the accuracy of approximate solutions of 
mixed variational problems was used [22]. This enabled us 
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to automate the search in structure (5) of such a number of  
approximations in which the process of convergence of 
solutions is stable and the final results become reliable. Pre-
sented in the numerators of Table 1, the numerical results of 
the calculation of a shell with a large elliptical hole (μ = 2.5;  
r1/r2 = 0.5) practically do not differ from those in the denomi-
nators of the results of [2]. In particular, Fig. 2, a shows a sat-
isfactory agreement of the theoretical values of k1 (red line) 
with the experimental data from [23] (indicated by circles) 
for an isotropic (with E2/E1 = 1) cylinder.

From the graphical results (Fig. 3) of the study of the 
influence of the anisotropy of the shell material on the stress 
concentration value, it can be seen that a change in the  
E2/E1 value over the entire considered interval significantly 
affects the stress state of the elastic shell.

When calculating a non-thin orthotropic shell with two 
rectangular holes, in follows from the graphs of Fig. 4 that 
the maximum stresses σmax occur in the vicinity of point B 
(Fig. 1) of the angular zone of the hole. In particular, it con-
cerns an isotropic cylinder with σmax .− = 2 872 at z = –h/2 and 
σmax

+ = 2 382.  at z = h/2 (experimental data from [24]: 2.9 and 
2.4, respectively).

One of the advantages of the proposed method is also the 
possibility to use it for studying shells that are heterogeneous 
in thickness and made of composite materials, which provides 
wide opportunities for improving the existing critical struc-
tures of various purposes. In addition, the RVR method used 
in this study also allows solving three-dimensional problems 
in the theory of multiply connected anisotropic shells of ar-
bitrary Gaussian curvature.

Regarding the limitations of this study, we should note 
that the proposed RVR method is used for statically loaded 
elastic shells with holes. However, in the future, there is the 
possibility of using this method to calculate the stress con-

centrations in non-thin shells weakened by holes during their 
dynamic loading.

The shells studied by the RVR method are widely used 
in many fields of modern engineering, including aerospace 
engineering, shipbuilding, and automotive.

7. Conclusions

1. On the basis of the Reissner principle, a variational 
formulation of three-dimensional boundary value problems 
of the statics of elastic shells of arbitrary thickness is formu-
lated and an analytical expression is presented in a mixed 
Reiussner variational equation for the orthotropic cylindrical 
shell under study.

Structures of solutions are constructed to satisfy all the 
boundary conditions of the studied elastic region of a shell that 
is weakened by holes of arbitrary shapes. On the basis of the 
mathematical apparatus of the R-functions theory [18, 19],  
the study has specified the functions that determine the 
equations for the boundary surface of an orifice of a complex 
shape (in particular, a rectangular orifice with curves).

2. Tabular and graphical data of numerical calculations 
were obtained, which is of interest for engineering practice 
in evaluating the influence of the degree of anisotropy of the 
shell material on the stress concentration on the hole contour 
in an orthotropic cylinder. The reliability of the results was 
established by comparing them with numerical and experi-
mental data known in the scientific literature [22, 23]. The 
analysis of the obtained results confirms the efficiency of using  
the RVR method [8] when solving complex three-dimen-
sional boundary value problems for elastic shells with holes 
the stress concentration near which can significantly affect 
the bearing capacity of the related constructions.
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