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3anpononosano eapiauiiiHull 1uceavbHO-aHa-
aAimunnuii memoo (nazeanuii RVR-memooom)
PO3PAXYHKY MIUHOCMI Ma HCOPCMKOCMI cma-
MUYHO HABAHMANCEHUX HEMOHKUX OPMOmMpPOn-
HUX 000JI0HK0BUX KOHCMPYKUill, nocaadienux
omeopamu (KoHueHmpamopamu HanpyrceHs)
dosinvrux opm i posmipie. Teopemuuro 06-
TpyHmoeanuil Hoeuil Memoo 3ACHOBAHUU HA
sapiauiunomy npunuyuni Peiiccnepa i memo-
0i I. M. Bexya (memodi posxnadanns wyxa-
Hux Qyuxuii y paou Dyp’e no opmozonans-
Hum noainomax Jlexcanopa wo0o xoopounamu
Y3006%1c nocmitinoi moswunu odoaonxu). Ipu
UbOMY BUKOPUCMAHHA 6 3ANPONOHOEAHOMY
RVR-memo0i 3azanviux pisnsis mpusumipHux
3a0au ninitinoi meopii npyscHocmi 00360J1€
8U3HAMUMU NOSHUL HaANPYHCEHO-0eopmosa-
Hull cman npysxcroi obononku (30kpema, naac-
munu) 3 omeopamu. B moii sce uwac 3a dono-
Mo2010 R-Qynxuiii na ananimuunomy pieui
8PAX0BYEMBCS 260 MeMPUUHA THPOPMAUIL Kpa-
tiosux zadau 0ns Gazamose’asnux obaacmei
1 0yoyromvCcsa cmpyKmypu po3e’a3kie, aKi mouno
3A00601bHAIOMb PIZHUM 6aAPIAHMAM 2PAHUMHUX
YMo08. 3acmocysanns npu 00Cai0xcenni amima-
HUX eapiauiiinux 3a0a1 npoepammo 30uicHI06a-
HO020 anzopummy 060CMOPOHHBOI iHMe2PaAILHOL
OUIHKU MOUHOCMI HAOTUNCEHUX PO36°A3Ki6 003~
80JIS1E€ ABMOMAMU3YBEAMU NOUWYK MAKOL KIILKOC-
mi anpoxcumauiil, npu aKomy npouec 3oixcHocmi
P036’°a3Kie nabdyeae cmiiixoz0 xapaxmepy.

Jns opmomponnozo i izomponnozo mame-
pianie moxcaueocmi RVR-memooy noxasani
6 MUCENbHUX NPUKAAOaAx pPo3e6’sA3anHs 6iono-
810HUX Kpauosux 3a0a4u po3paxyHKy KoHUueH-
mpauii Hanpyxcenv 6 UUTTHOPUUHIL 000J10H-
Ui 3 eninMuUUHUM AOO NPAMOKYMHUM OMEOPOM
npu ocvoeomy nasaumascenni. 06z06openo
pesyavmamu 6uKoHAHUX 00CAI0NCEHD T 0COONU-
eocmi, w0 xapaxmepui 0 108020 Memooy,
aKul modce 3Haimu epexmusne 3acmocy8anms
npu npoexmyeanti 6i0no6i0aNbHUX NAACMUN-
yacmux i 00010HKOBUX eNleMeHmi6 KOHCMPYK-
Uil 8 Pi3HUX 2aNY3AX CYUACHOT MEXHIKU

Knwuosi cnosa: opmomponna obononxa
3 OmEoOpamMu, KOHUEHMPAUIsL HANPYIHCEHb, NPUH-
uun Peiiccuepa, meopis R-pynxuii

0 0

1. Introduction

Elastic shells, weakened by holes (openings), are widely
used in modern engineering practice as the most crucial struc-
tural elements the strength and rigidity of which often depend
on the performance and reliability of the structure as a whole.

Estimation of stress concentration near the holes in
non-thin shells involves calculating their stress-strained
state based on the solutions of the corresponding boundary
problems of the three-dimensional theory of elasticity. The
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solution of such problems in spatial formulation is usually
associated with significant mathematical and computational
difficulties that must be overcome in the process of perfor-
ming specific calculations. As is known, the effectiveness of
numerical methods is determined primarily by the possibility
of obtaining reliable results. Therefore, the improvement of
existing and the development of new methods for investi-
gating anisotropic shells of arbitrary thickness weakened by
holes is still an urgent and practically significant scientific
problem in the mechanics of a deformable solid matter.




In this regard, it is primarily essential to use modern com-
puters to create reliable, fairly universal and algorithmically
simple methods for calculating non-thin shell elements of
structures with openings.

2. Literature review and problem statement

Understanding the significant effect of holes (stress con-
centrators) on the bearing capacity of shell structures is very
important when designing them. In [1], it is shown that in
a linear placement of elastic plates, the stress concentration
factors do not depend on the size of the holes. However, when
calculating these coefficients in shells, it is necessary to take
into account the relative dimensions of the holes compared to
the dimensions of the shell. The stress distribution near the
holes in the elastic shells has been thoroughly studied on the
basis of the classical Kirchhoff-Love theory. In many prac-
tical cases, this theory gives results that are consistent with
experimental data and are the initial approximation for three-
dimensional problems. Thus, studies of the stress-strained
state of thin shells with holes based on the use of experimen-
tal data and analytical methods are presented in [2]. Besides,
several variational methods, which are becoming increasingly
widespread in the construction of direct approximate algo-
rithms for solving boundary problems of the theory of shells,
are described in detail in the work by K. Washizu [3]. How-
ever, the application of the considered methods to calculate
stress concentration in shells (especially non-thin) with holes
of complex shapes can lead to unreliable results.

The limitations of exact analytical solutions to the prob-
lems of the mechanics of a deformable body have led to the in-
tensive development of approximate methods. These methods,
as a rule, are based on the direct integration of the correspon-
ding differential equations, on the use of variational approa-
ches, and also on discrete methods, among which the most
common is the finite element method (FEM). In particular, to
analyse the stress-strained state of thin shells, a comparison is
made in [4] of the effectiveness of algorithms for using stiffness
matrices of finite elements of different dimensions. In this case,
using the example of calculating a cylinder clamped along the
ends, it is shown that the two-dimensional formulation in the
calculations of thin shells is adequate and allows obtaining
acceptable results with optimal expenditure of machine time.

In [5], on the basis of FEM, a scaling technique is de-
veloped for static and dynamic analysis of cylindrical shells,
which is used to provide an accurate representation of the
shell boundaries within the framework of the three-dimen-
sional linear theory of elasticity. In [6], the main attention is
paid to obtaining a new finite element of a thin-walled shell,
the practical application of which is promised to be presented
in further publications. Moreover, the numerous examples
that are presented in [7] illustrate difficulties and uncer-
tainties associated with the regular analysis of buckling of
thin-walled elements with holes. Thus, the direct use of FEM
in solving a number of problems in the mechanics of elastic
shells is associated not only with obvious achievements but
also with certain problems.

For the mechanics of a deformable solid body, the prob-
lems associated with solving three-dimensional formulations
of boundary value problems for anisotropic shells of arbitrary
thickness weakened by apertures are still relevant. A detailed
review and comparative analysis of the diverse, often contra-
dictory, variants of the refined theories of shells known in

scientific literature is given in the monograph [8]. The same
work presents a new variational numerical-analytical method
(called the RVR method) for calculating the strength and
stiffness of statically loaded non-thin orthotropic shells with
openings of arbitrary shapes and sizes.

The theoretically grounded method is based on the
E. Reissner principle [9—-11], the 1. N. Vekua method [12]
(the method of decomposing the desired functions in Fourier
series in Legendre polynomials relative to the coordinate
along the shell thickness). In this case, the use of general
equations of three-dimensional problems of the linear theory
of elasticity in the proposed RVR method [13] helps de-
termine the full stress-strained state of an elastic shell (in
particular, a plate) with holes.

Success in the calculations of shells with holes is deter-
mined not only by the capabilities of the adopted refined
shell model but also by the level of implementing the method
used in the study of specific structural elements in various
fields of technology. The effectiveness and capabilities of the
proposed RVR method are confirmed by solving a three-
dimensional formulation of a number of complex applied
problems for various types of static loads applied to shell
objects. Thus, calculations of a cylindrical structure under
the action of a local load and centrifugal loads are presented,
respectively, in [14] and [15], and calculations of a spherical
structure loaded with internal pressure are given in [16].

However, the less studied problem of using effective
methods for determining the stress-strained state of non-thin
orthotropic shells, weakened by holes of arbitrary shapes and
sizes, still requires solving. Moreover, it is important to note
that in the case of calculating the stress concentration in such
shells, it is necessary to use the basic relations of the three-
dimensional theory of elasticity.

3. The aim and objectives of the study

The aim of the study is to determine the level of stress con-
centration in statically loaded cylindrical elements of struc-
tures with holes, using the numerical-analytical RVR method.

To achieve the aim, the following objectives were set
and done:

— to build such structures of solutions that exactly satisfy
all the boundary conditions of the studied elastic region of
a shell with holes of arbitrary shape;

— to use the RVR method for obtaining numerical results
to assess the effect of anisotropy of the shell material on the
stress concentration on the contour of an elliptical or rectan-
gular hole in an orthotropic cylinder.

4. Materials and methods for the study of stress
concentration in orthotropic cylindrical shells with holes

4. 1. Obtaining an analytical expression for the Reiss-
ner variational equation for orthotropic cylindrical shells

In order to increase the accuracy of solving boundary value
problems, it is advisable to determine independently the pa-
rameters of the stressed and deformed states when constructing
refined models of the shell, which can be implemented using
the Reissner variational principle. An alternative approach
with respect to the classical Lagrange and Castigliano func-
tionals I; and I¢ is associated with the Reissner functional I
with independent approximation of the displacement vector



of an arbitrary point of the region u and the stress tensor ©.
It should be noted that by virtue of the independence of
displacements and stresses, the Reissner variational equation
I;=0 leads to a system of first-order differential equations for
the unknown quantities. However, the equations correspon-
ding to the classical variational formulations have a higher dif-
ferential order, require the implementation of time-consuming
mathematical operations when solving them, and significantly
complicate the structures of solutions that exactly satisfy the
boundary conditions of the problem.

In computational engineering practice, more and more
attention is paid to mixed variational formulations, which are
devoid of the well-known deficiencies inherent in the classical
Lagrange and Castigliano functionals and are based mainly
on the Reissner functional. The numerical implementation
of such a variational statement was significantly hampered
by difficulties in estimating the accuracy of solutions caused
by the absence of an extremum at the stationarity point I.
This problem was solved by the theorem proved in [8, 17]:
«...the sequences of the Ritz method coincide with the exact
solution of the boundary value problem formulated on the
Reussner principle if the structures of the solutions exactly
satisfy all the boundary conditions».

Therefore, using the R-functions theory [18, 19], the pro-
posed RVR method at the analytical level takes into account
the geometric information of the studied boundary-value
problems for multiply connected domains and constructs
solution structures that precisely satisfy diverse variants of
the boundary conditions.

For a particular analytical representation of the Reissner
variational equation (stationary conditions for the functional
Ir), let us consider the problem of the stress-strained state of
an elastic length 2L and a constant thickness 4 weakened by
a hole. We introduce an orthogonal curvilinear coordinate
system {sy, $o, z} with the origin at the centre of the hole in the
middle surface Q; of the radius R of the cylinder under study
(—L<s1<L, and sy is the arc length of the parallel circle of the
cylinder). In this case, the coordinate line z (—h/2<z<h/2)
is perpendicular to the surface Qg (z=0), and the coordinate
lines s; and s, coincide with the elastic-equivalent directions
of the orthotropy of the cylinder material. With the symme-
try of the hole shape and the load with respect to the planes
s1=0 and s,=0, the calculation of the shell is reduced to the
study in terms of the elastic region Q (at L=OE), which is pe-
riodic along the sy line (Fig. 1). This area is a cylindrical pa-
nel ADEFG with an elliptical hole (Fig. 1, @) with semi-axes
r1=0D and 7,=0A, or a panel ABCDEFG with a rectangular
hole (Fig. 1, b) with rounded corners of the radius r.

The hole dimensions are considered arbitrary, since in
the proposed RVR method [8], there are no limitations for
the value of p= ro/m, where r9=(b+d)/2), for typically
used and widely published scientific methods of calculating
multiply connected shells [2].

In the coordinate system {sy, so, z} for orthotropic cylin-
drical shells, we represent the Reissner variational equation
in the following form:
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where Vis, Va1, Vi3, V31, Va3, and v3s are Poisson’s coefficients;

Ej, Ey, and E3 are Young’s moduli in the main directions of
the shell orthotropy; and Gys, Gi3, and Ga3 are shear moduli:

x=1+2/R; v, /E, =V, [E,;

V13/E1 = V31/E3; Vz:}/Ez = V:;z/E3~ 2)

In this case, in equation (1), the factor y is necessary
because non-thin shells are considered, and contour integrals
are absent because the structure of the solutions exactly
satisfies all specified boundary conditions of the problems
when using the RVR method.

4. 2. Construction of solutions structures for boundary
value problems under study

Suppose that axial forces P with intensity
p=P/(2nRh) are applied to the end surfaces T,

o

3

IR

Fig. 1. The calculated periodic elastic area of a shell:

a — with an elliptical hole; b — with a rectangular hole

(Fig. 1) of the cylinder, whereas the surface T,
and the front surfaces of the cylinder are free
from external forces and moments. The boundary
conditions formulated through the components
of the vector u and the tensor ¢ have the form:

6,=0,6,.=0,6,=0on I';

6,=p,6,,=0,6,,=0 on T, (at |x|=L);p (3)

AT

0,,=0,0,,=0,0,,=0 at |z|=h/2.

In addition, on the marginal surface I',, de-
termined on the coordinate line sy by the dis-
tance mR/n (where 7 is the number of holes along



the guide of the cylinder), the periodicity conditions must be
met as follows:

u,=0, 6,=0, 6,,=0o0onT,. (4)

Let us present the desired components of displacements w;
and stresses 6j;, which are independently varied in the Reuss-
ner functional I and exactly satisfy boundary conditions (3)
and (4), in the form of finite series:
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In this case, the valid analytical expressions are the fol-
lowing:
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where u’", G‘;f‘ g”‘ (p, s=1,2,3; g=1, 2) are the desired
values; Ci(s1), Ci(s2) and Si(s1), Si(s2) are the even and
odd approximating functions of the coordinates s; and so;
Pi() denotes the Legendre polynomials ({=2z/k); and n;=
=[k(mi+1)+p](t+1)+r+1; ni—nj.

It is noteworthy that ¢ = p when the cylinder is stretched,
and g=-p when the cylinder is compressed. In this case, /1
and f, are the values of the direction cosines of the normal v
to the hole contour (Fig. 1, @) and, according to the R-func-
tions theory [18, 19], they are calculated by the formulae:
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and are necessary for the fulfilment of conditions (3) on T,
since the formulae connecting the stresses in the main and
inclined areas of the elastic shell are of the form:
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The function Qq for an elliptical hole is determined by
the formula:

@, :(31/71)2"'

For a cylinder weakened by a through (n=2) rectangular
orifice with rounded corners (Fig. 15), we introduce the no-
tation (with 7, j=2):
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The equations on the boundary surfaces ', (g=0, 1, 2) of
—0 and

are determined by the functlons Q4, Qy, (6), and Qo
@, = ((‘Dm No (”03)\/0 ((Doz Vo Oy )) No
/\o(wnvo Wy Vo Wy Vg “)22)’ (11)

where A¢ and v are symbols of R-operations of the R-func-
tions theory [18, 19].

In the structures of (5), the numbers /;, [; (i,j=1,2) of
the approximations of the desired displacements and stresses
through the thickness of the construction determine the
selected shear model of the shell when specifying a combina-
tion of values (f;, Is, [, [j3, I33). In this case, /; is the number of
terms retained in the expansion in the transverse coordinate
z of the tangential displacements w;; I3 is for the normal dis-
placement us; I is for the tangential stresses oy; ;3 is for the
transverse tangential stresses 6i3; and /33 is for the transverse
normal stress o33.

If the combination of the parameters (I; fs, [, li3, I33) is
specified, it allows the software complex to switch automa-
tically to various refined two-dimensional theories that esti-
mate the stress-strained state of the shells with a given accu-
racy. At the same time, such a procedure can be used as a basis
for creating a consistent and logically coherent classification
(as to the order degree of approximations) of the variety of
shear models of shells existing in the scientific literature.

In particular, in the case of /=1l the value of N=/—-1
can be considered as a kind of parameter characterizing
the order of the Nth approximation (in the terminology of
I. V. Vekua [12]) of the shell theory under consideration.
In the proposed RVR method, the method of reduction of
three-dimensional problems of the theory of shells with the
algorithm of regular refinement of the shear model of the
shell is used. For example, the variant (2, 1,2, 1,0) corre-
sponds to the theory of thin shells with finite shear stiffness
like Tymoshenko’s [13], and (4, 3, 4, 1, 2) relates to the ap-
plied theory of shells [20].



5. The research results of the formulated boundary
value problems

After substituting the structure of solutions (5) into vari-
ational equation (1) and integrating the triple integrals nu-
merically, the boundary problem is reduced to solving a sys-
tem of linear algebraic equations for the desired constants uﬁk ,
o’ and Tg’]"’ . The found values are used to determine all the
characteristics of the stress-strained state of the calculated
elastic shell region.

In this case, the matrix of the system of equations has
a tape structure, and the tape width depends on the order of
indexation of the desired components of the displacement
vector u and the stress tensor G.

The numerical implementation of the problem for a shell
with an elliptical hole (with 7/7=0.5) was performed for
cylinders of different materials in the case of using the third
approximation shift model (4, 3, 4, 3, 2) of the applied theo-
ry [20]. For an isotropic cylindrical shell (at E;=26.18 MPa;
v;;=0.3), Table 1 presents (in the denominator, the results
of [2]), the values of the coefficients of the concentration
of membrane k =c*/p and maximum bending k, =c*"'/p
stresses in the thickness. In this case, the numerical values of
ki and ky were obtained for the most loaded point A (¢=m/2)
of the contour of a large hole (u=2.5) (Fig. 1, a).

Table 1
The values of the stress concentration factors k1 and k;
r1/1) 0.5 1571 | 137! 1 1.3 1.5 2
A 8.619 | 7.275 | 6.448 5.400 4.556 | 4.148 | 3.503
! 8.667 | 7.090 | 6.376 | ~ 4.337 | 3.965 | 3.455
b —2.522|=1.921 | -1.731 1195 —1.006 | =0.855 | =0.757
22517 -1.992 | -1.754| —1.081(-0.959 | -0.796

For an orthotropic shell (with p=1.667; v=0.4), the
graphs of the distribution of the coefficients & and ky are
shown in Fig. 2 for different values of the ratio of the elastic
moduli in the axial E; and circumferential E» directions of

the cylinder.
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Fig. 2. The distribution of the coefficients k4 and k;
in the area 0<@<m/2: a — with an elliptical hole;

b — with a rectangular hole; — at £,/£1=0.2;
—at 5/E=1;— at £,/E,=1.5

Fig. 3 shows the results of the study of the effect of the
anisotropy of the shell material on the stress concentration
at the points of the contour of the hole.
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Fig. 3. The effect of the anisotropy on the values
of the coefficients k1 and k, on the contour 'y of the elliptical
hole (Fig. 1, @): — in point A (with ¢=m/2);
—— in point D (with ¢=0)

The numerical implementation of the boundary va-
lue problem was also performed for a non-thin cylinder
(h/R=1/3) weakened by two (n=2) through-going rec-
tangular holes (Fig. 1,b) with the following geometrical
parameters (in mm): £=9; R=27;, L=50; y=n/4; b=12.5;
and r=3. The calculations were performed both for an iso-
tropic material (E;=26.18 MPa; v;=0.5) and for orthotropic
fiberglass with elastic characteristics: vi3=0.15; v93=0.31;
V31 20.08; E1= 1.79 E(); E2= 1.31 E(); E3=0.43 Eo; G12:0.28 Eo;
Gy3=G31=0.24 Ey; Fyp=9.81 MPa. Fig.4 shows the distri-
bution of the reduced displacements u=u3E5/pR and stres-
ses 0=01;/Cy (Oy=—p) on the contour T'; of a rectangu-
lar hole with z=—%/2 and z=h/2 (with «~, o~ and u", ¢",
respectively).
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Fig. 4. The graphs of the distribution of the desired values
on the contour Iy (Fig. 1, b): — for an isotropic shell;
—— for an orthotropic shell

It is noteworthy that the presented graphs were obtained
in the case of applying a refined fourth-order approximation
shift model, first proposed in [21].

6. Discussion of the results of calculating
the stress concentration in a cylindrical shell with
a hole under axial load

In the study of the considered boundary-value problems,
a software-implemented algorithm of the a posteriori inte-
gral estimation of the accuracy of approximate solutions of
mixed variational problems was used [22]. This enabled us



to automate the search in structure (5) of such a number of
approximations in which the process of convergence of
solutions is stable and the final results become reliable. Pre-
sented in the numerators of Table 1, the numerical results of
the calculation of a shell with a large elliptical hole (u=2.5;
r1/r,=0.5) practically do not differ from those in the denomi-
nators of the results of [2]. In particular, Fig. 2, a shows a sat-
isfactory agreement of the theoretical values of ky (red line)
with the experimental data from [23] (indicated by circles)
for an isotropic (with Ey/E{=1) cylinder.

From the graphical results (Fig. 3) of the study of the
influence of the anisotropy of the shell material on the stress
concentration value, it can be seen that a change in the
Ey/E; value over the entire considered interval significantly
affects the stress state of the elastic shell.

When calculating a non-thin orthotropic shell with two
rectangular holes, in follows from the graphs of Fig. 4 that
the maximum stresses o, occur in the vicinity of point B
(Fig. 1) of the angular zone of the hole. In particular, it con-
cerns an isotropic cylinder with o =2.872 at z=—h/2 and

max

o;.. =2.382 at z=h/2 (experimental data from [24]: 2.9 and
2.4, respectively).

One of the advantages of the proposed method is also the
possibility to use it for studying shells that are heterogeneous
in thickness and made of composite materials, which provides
wide opportunities for improving the existing critical struc-
tures of various purposes. In addition, the RVR method used
in this study also allows solving three-dimensional problems
in the theory of multiply connected anisotropic shells of ar-
bitrary Gaussian curvature.

Regarding the limitations of this study, we should note
that the proposed RVR method is used for statically loaded
elastic shells with holes. However, in the future, there is the
possibility of using this method to calculate the stress con-

centrations in non-thin shells weakened by holes during their
dynamic loading.

The shells studied by the RVR method are widely used
in many fields of modern engineering, including aerospace
engineering, shipbuilding, and automotive.

7. Conclusions

1. On the basis of the Reissner principle, a variational
formulation of three-dimensional boundary value problems
of the statics of elastic shells of arbitrary thickness is formu-
lated and an analytical expression is presented in a mixed
Reiussner variational equation for the orthotropic cylindrical
shell under study.

Structures of solutions are constructed to satisfy all the
boundary conditions of the studied elastic region of a shell that
is weakened by holes of arbitrary shapes. On the basis of the
mathematical apparatus of the R-functions theory [18, 19],
the study has specified the functions that determine the
equations for the boundary surface of an orifice of a complex
shape (in particular, a rectangular orifice with curves).

2. Tabular and graphical data of numerical calculations
were obtained, which is of interest for engineering practice
in evaluating the influence of the degree of anisotropy of the
shell material on the stress concentration on the hole contour
in an orthotropic cylinder. The reliability of the results was
established by comparing them with numerical and experi-
mental data known in the scientific literature [22, 23]. The
analysis of the obtained results confirms the efficiency of using
the RVR method [8] when solving complex three-dimen-
sional boundary value problems for elastic shells with holes
the stress concentration near which can significantly affect
the bearing capacity of the related constructions.
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