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1. Introduction

Problems on the hydrodynamics of sea waves and vessels 
employ a transition from linear theories and ratios to the 
non-linear ones. Such a transition is justified for wind waves 
with a maximum steepness in deep water, for long waves 
in considerable shallow waters, and in the zone of wave de-
struction. 

A significant part of the Ukraine’s sector of the Black 
Sea water area is relatively shallow. In the coastal zone 
where ports are located one observes steep and large waves, 
especially during winter.

Waves arriving from the open sea deep-water regions 
are transformed in shallow waters in a complex way. This 
process is affected by local weather conditions and a seabed’s 
relief. Three-dimensional waves are converted almost into 

the two-dimensional ones. Big waves are reduced while the 
small ones increase in length and height [1]. 

Multi-tonnage vessels stay in shallow-water open har-
bors for partial loading, unloading, or bunkering. These 
vessels are exposed to the action of waves incident from the 
sea. At the same time, vessels prevent the propagation of 
waves. Secondary transformation zone of sea waves is formed 
around a vessel at outer anchorage. Such a wave field is a 
superposition of the incident and the diffracted sea waves.

Determining the characteristics of sea waves around 
vessels at outer anchorage is necessary for planning the op-
eration of auxiliary ships, specifically: tugboats, bunkering 
barges, pilot and inshore boats, oil garbage collectors and 
boom crafts. The operation of these ships is linked to safe 
navigation (transfer of people and cargo from one ship to 
another) and environmental safety (elimination of oil spills). 
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Судна на мiлководнiй рейдовiй стоянцi є пiд впли-
вом складної системи хвиль. Ця система – результат 
дифракцiї на суднi хвилювання, що набiгає з моря. 
При переходi на мiлководдя тривимiрнi хвилi стають 
двовимiрними. Довжини хвиль зменшуються, перiо-
ди зберiгаються. Гребенi хвиль стають вище й заго-
стрюються. Навколо судна на рейдовiй стоянцi вини-
кає зона трансформацiї, де хвилювання знову стає 
тривимiрним. Визначення характеристик трансфор-
мованого судном хвилювання важливо для прове-
дення робiт з лiквiдацiї аварiйних розливiв нафти. 
Буксири, нафтосмiттєзбiрачи, бонопостановники 
повиннi працювати в будь-якiй точцi навколо аварiй-
ного судна, зокрема з боку набiгання. Тому розмiри 
зони трансформацiї хвилювання й висоти хвиль у цiй 
зонi визначають безпеку експлуатацiї допомiжних 
суден. Iснуюче рiшення лiнiйної дифракцiйної задачi 
повинне бути перероблене для використання нелiнiй-
ної теорiї хвиль.

Наведене рiвняння хвильового профiлю в заданих 
точках спостереження навколо нерухомого подовже-
ного судна на значному мiлководдi. Рiвняння отрима-
не з виразу для потенцiалу швидкостей дифрагованого 
хвильового руху, викликаного набiганням косих регу-
лярних хвиль кiнцевої амплiтуди. Характеристики 
хвиль, що набiгають, визначенi по теорiї Стокса п'я-
того порядку. Нелiнiйну задачу перетворено до ком-
бiнацiї п'яти лiнiйних. Рiшення виконано методом 
зрощуваних асимптотичних розвинень (ЗАР).

По отриманих формулах виконанi розрахунки 
хвильових профiлiв у заданих точках навколо судна в 
заданi моменти часу. Варiюються глибина акваторiї, 
крутiсть хвиль, курсовий кут хвилювання. Наведенi 
приклади профiлiв нелiнiйних i лiнiйних хвиль у пло-
щинi перетину судна. Показанi подiбнiсть i вiдмiн-
ностi лiнiйних i нелiнiйних хвиль навколо судна на 
мiлководнiй рейдовiй стоянцi

Ключовi слова: дифракцiя нелiнiйних хвиль на 
суднi, метод зрощуваних асимптотичних розвинень, 
значне мiлководдя
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Of special importance is the operational specificity of 
rescuer tugboats, oil garbage collectors and boom crafts un-
der conditions of outer anchorage. It is necessary to be able 
to predict the safe motion trajectories and reasonable mo-
tions of auxiliary vessels at complex three-dimensional sea 
waves. It is also required to take into consideration that the 
height of waves is one of those parameters based on which 
the movement of an oil spot is predicted at oil spill [2].

Operation of auxiliary vessels significantly depends on 
the height and length of waves. Defining the characteristics 
of waves at outer anchorage is necessary for safe operation of 
auxiliary vessels, therefore, it is a relevant task.

2. Literature review and problem statement

Paper [3] reports a solution to the linear diffraction 
problem for an actual elongated vessel in shallow waters. 
The sea waves are incident to the vessel under an arbitrary 
angle. The work’s results are the established wave fields 
around a vessel at different values for the depth of a water 
area and the length of waves. These results show the way the 
sea waves are transformed around a multi-tonnage vessel at 
outer anchorage. However, when applying a linear theory, it 
is impossible to take into consideration the relationship be-
tween the height of a wave and its length. Thus, one needs to 
find a solution to the problem on diffraction using the theory 
of waves with finite amplitude and to compare the results.

Most existing solutions to the nonlinear diffraction 
problem over recent years have addressed assessing the im-
pact of waves on fixed or floating offshore structures.

Study [4] considers the basic equations that make it 
possible to define the transformation of waves in a coastal 
zone. The range under consideration varies from the linear 
periodic waves to the nonlinear random waves. The authors 
provided the systematic review of theories related to steady 
periodic waves (Stokes and cnoidal). They specified the 
scope of application of these theories. For random waves, a 
method is given for estimating the rectified spectra. They 
gave wave equations for the estimation of combined refrac-
tion and diffraction of linear periodic waves. They provided 
equations for calculating the nonlinear wave transforma-
tions in shallow waters. They showed the wave profiles de-
fined by different theories. The results are given for several 
values of water depths, periods, and heights of waves. The 
authors explored sea waves in a harbor with a gently sloping 
bottom and near an underwater breakwater.

Diffraction of the cnoidal waves at vertical cylinders 
under conditions of shallow water was dealt with in [5]. The 
wave forces and moments were determined using the Bouss-
inesq and Green-Naghdi equations for a single cylinder and 
a group of cylinders arranged in a row. 

Solving the diffraction problem is important for devices 
and equipment, which utilize the energy of ocean waves to 
generate electricity, Oscillating Water Column (OWC). 
Paper [6] reports an analytical solution of first order to the 
diffraction problem of ocean waves against a hollow vertical 
cylinder in the ocean of a finite depth. For the same object, 
the authors in [7] determined a wave field created by a 
swinging cylinder. In addition, this work solved the com-
bined problem on diffraction-radiation.

Research [8] addressed the interaction between non-
linear waves and a vertical cylinder and a group of four 
cylinders. The authors used the method of finite differences 

(FDM), the finite element methods (Weakly Nonlinear and 
Weakly Dispersive FEM, Fully Nonlinear and Weakly Dis-
persive FEM). At propagation and collisions of single waves, 
they defined a rise of the free surface and the coefficients of 
hydrodynamic forces. They gave results from calculations 
and comparison with experimental data. 

Article [9] considers vertical movement of the vertical 
circular cylinders. To solve the potential problems of the 
first and second orders, the authors used the method of finite 
elements. For a single cylinder and for groups of two and four 
cylinders, they defined wave fields and wave loads.

A nonlinear diffraction problem was considered in work 
[10]. The authors gave a complete analytical solution of sec-
ond order to this problem for two-dimensional stationary 
rectangular cylinders at the free surface of a liquid with a fi-
nite depth. They defined the magnitudes for the vertical and 
horizontal forces of the first and second orders. Comparison 
between experiments and calculations by other authors has 
confirmed the probability of the solution. 

It is worth noting that papers [6] and [10] employ the 
same system of inherent functions as is the case in work [3].

Operation of tension leg platforms (TLPs) requires 
solving a problem on the impact of waves on the groups of 
vertical cylinders. Numerical modelling of the interaction 
between nonlinear waves and a system of two vertical cir-
cular cylinders is described in article [11]. One cylinder is 
rigidly fixed at the bottom while a second one floats. The au-
thors identified characteristics for wave forces and moments, 
as well as for the displacement of a floating cylinder. 

Diffraction and refraction of waves in a fluid with a fi-
nite depth are explored in [12]. The problem was solved by 
a finite element method using the discrete non-local (DNL) 
boundary conditions. The studied objects included a channel 
of rectangular cross section, a circular cylindrical island 
with a parabolic bottom around it. The characteristics for 
sea waves were given.

Interaction between waves and a vertical cylinder was ad-
dressed in article [13]. The authors explored numerical model-
ling (CFD) of this process. They solved the Reynolds equation 
for the averaged turbulent fluid flow (Reynolds Averaged 
Navier-Stokes, RANS). They simulated the regular and irreg-
ular sea waves with a small and finite amplitude (second-order 
Stokes) at a numerical experimental pool. The work’s results 
are the characteristics for waves and a wave force. 

Experimental research into the influence of waves on a 
floating cylinder was reported in paper [14]. Ocean waves 
are modeled at a wave tray (small-sized wave flume). The 
authors studied the interaction between waves and a floating 
cylinder moored to the shore. They gave the characteristics 
for sea waves and the motions of a floating body.

Work [15] investigated the interaction (reflection and 
transmission) between a floating dock and the nonlinear 
water waves under conditions of shallow water. The authors 
gave wave amplitudes for several combinations of sizes of 
dock and water area depth (the amplitudes of the nonlinear 
reflected and transmitted waves). Theoretical solutions 
(analytic and using the method of matched-eigen function 
expansions) were confirmed by experiments. 

Solution to a problem on the diffraction of monochro-
matic and bichromatic waves against a stationary horizontal 
cylindrical body that crosses a free surface is given in paper 
[16]. The depth of a fluid is infinite; the incident sea waves 
are lateral or arbitrary. The authors used a diffraction poten-
tial to determine the forces acting on a floating oil storage 
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unit (a body with half-elliptic waterlines in the bow part, 
rectangular frames in the middle part and a prismatic stern).

It should be noted that the examined objects from papers 
[5–15], namely the vertical and horizontal cylinders with 
a circular or rectangular cross-section and the floating oil 
storage unit from work [16], are of simplified shapes. The 
characteristics of waves around objects, reported in these 
studies, are hard to compare to the sea waves around bodies 
of a vessel-like shape. First, the rectangular and circular 
cross-sections of cylinders differ from the bubble, U- and 
V-like ship frame cross sections. Second, the shape of the 
fore and aft edges of a vessel differ considerably from the 
cylindrical shape.

In problems on vessel hydrodynamics, a diffraction 
problem is considered relatively rarely. In a general case, the 
region that is occupied by a fluid is non-stationary; a bound-
ary condition at the free surface is nonlinear. Therefore, it is 
a difficult task to estimate the interaction between a vessel 
and such sea waves. In addition, it is known from [17] that 
in order to determine the hydrodynamic forces acting on a 
motion vessel it would suffice to derive a solution to a simpler 
problem on radiation.

Assessment of the vessel performance under strong and 
extreme sea waves was given in [17]. The authors accounted 
for a wetted surface and the relationships between different 
kinds of oscillations. They used a model of the elongated 
vessel; the velocity is limited (Fr<0.3). The total potential 
is composed of the potential of the incident free waves with 
a finite amplitude and the potential of the linear disturbed 
motion of a fluid, caused by the presence of the vessel in it. 
The authors linearized the boundary problem and the dis-
tribution of hydromechanical forces. Diffracted forces at an 
instantaneous wetted surface are determined by using the 
solution to a problem on radiation. 

Solving the diffraction problem for specific cases needs 
clarification and the specialization of boundary conditions.

For vessels, the diffraction problem is solved when deter-
mining the wave loads in deep water or for determining the 
hydrodynamic forces during vessel’s motions in shallow water. 

The potential of radiation and the diffraction potential 
at longitudinal pitching of a vessel that moves in consider-
able shallow waters are defined in article [18]. The authors 
used the matched asymptotic expansions method (MAEM). 
For motion in a quiet sea, they determined the potentials of 
radiation for surging, heaving, and pitching. In addition, the 
authors gave an expression for the components of diffraction 
potential for pitching.

Paper [19] reports a solution, derived using the numerical 
method, for a three-dimensional potential problem on vessel 
motions in the limited depth liquid. The authors investigated 
the influence of change in the depth on the value for added 
masses and damping coefficients; and gave the results from 
calculating these magnitudes for different types of vessels. 

Oscillation of a frame contour in the limited depth flu-
id was investigated in study [20]. The authors considered 
a two-dimensional non-linear potential problem. Boundary 
conditions for the frame contour and the free surface of the 
fluid are non-linear. The nonlinear forces are determined to the 
second order accuracy. Calculations were performed for differ-
ent frame contours. The authors investigated the influence of 
change in relative depth on the value for nonlinear forces.

Papers [17–20] examined vessel behavior during vessel’s 
motions, but did not consider the profiles of waves around 
a ship.

Worth noting is the characteristics of waves around a 
vessel moving in deep water, reported in article [21]. The 
solution was derived using the improved matching method. 
The region, which is occupied by the fluid, is divided into a 
near-field and a far-field. The far field employs a radiation 
condition. Boundary condition at the free surface is linear. 
A vessel is replaced with the system of singularities. The 
characteristics for these singularities and the potential of 
velocities for the near field are determined using a double 
technique. A first one implies the use of conditions at the free 
surface and on a body in the near field. A second one employs 
the continuity of velocity potential and its normal derivative 
when traversing the matching surface. Such a technique is 
close to the one used in work [3].

The nonlinear models of wind waves during storm and the 
nonlinear hydromechanical loads on a vessel’s hull were con-
sidered in [22]. The problem on interaction between a vessel 
and the moderately linear and irregular waves was solved by 
using a perturbation theory. The desired velocity potential of 
the disturbed fluid flow was expanded into a series based on 
powers of the small parameter. The expansion retained the 
assigned number of first terms in the series. Following the 
substitutions and transforms, the boundary value problem, 
nonlinear initially, was brought to a series of linear boundary 
value problems for the components of the potentials.

The scientific literature describes no efficient direct 
methods to solve problems on the interaction between ves-
sels and the sea waves of finite amplitude in shallow waters. 
Approximated solutions are in one way or another related to 
the linearization of boundary conditions, specialization of a 
vessel hull’s shape. 

A wave field is transformed around multi-tonnage vessels 
at outer anchorage. Sea waves near a ship significantly differ 
from sea waves at a significant distance from the vessel.

3. The aim and objectives of the study

The aim of this study is to investigate the characteristics 
of a wave field around a vessel that floats without running 
at shallow outer anchorage under the influence of oblique 
waves with a finite amplitude. This would make it possible to 
determine the dimensions of the zone of sea waves transfor-
mation and the height of the waves in this zone. Such char-
acteristics must be considered when estimating the safety of 
operation of auxiliary (relatively small) vessels.

To accomplish the aim, the following task has been set: 
to build, by using the method of matched asymptotic ex-
pansions, the wave profile equation at the assigned points 
around a vessel exposed to the incident oblique sea waves 
with a finite amplitude in considerable shallow waters.

4. Materials and methods to study characteristics of  
a wave field around a vessel in considerable shallow waters 

4. 1. Substantiation of the choice of a wave theory
When solving wave problems, the most often assigned 

are the depth of a water area and the period of a wave. Ac-
cording to statistical data [1], the average periods and dis-
tributions of wind sea waves during a transition from deep 
water to shallow water almost never change. The length, 
height, and other characteristics of waves are defined by the 
chosen wave theory type, namely small or finite amplitude. 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/5 ( 100 ) 2019

42

In the problems on vessel dynamics at sea waves, the 
essential characteristics are the length and height of a wave 
at a given depth of a water area. The period and other charac-
teristics are to be defined depending on the chosen theory of 
waves. Thus, to solve the diffraction problem, it is important 
to conveniently assign the equation of the profile of a wave 
with finite amplitude.

A significant portion of the Ukraine’s sector of the 
Black Sea has a depth of less than 100 m; and the average 
depth of the sea exceeds 1,200 m. In the Black Sea, the pe-
riod of wind waves typically does not exceed 9 s. The length 
of such a wave under conditions of deep water is l=126.5 m.  
The repeatability of 6 m waves and larger is less than 1 %, 
of 5 m ones and larger is less than 2 %. The steepness of 
such waves is h/l=1/21 and h/l=1/25, respectively (h is 
the height of a wave). 

Breaking of waves starts at critical depth Hcr=2h. The 
smaller initial slope of the deep water waves causes the great-
er waves’ height and the smaller relative depth when waves’ 
destruction begins.

At water depth of 0.5l>H>Hcr (H is the water depth), 
calculations employ the theory of nonlinear waves of finite 
amplitude. For example, the fifth order Stokes theory is 
used in [23]. The characteristics of waves in that article 
were determined from formulae reported in [24]. For a very 
small depth (H<0.1l), it is necessary to apply the theory of 
cnoidal waves. 

The concept of “shallow water” in relation to a vessel is 
associated with the distance between the bottom of a vessel 
and the bottom of a water reservoir. It was shown in [23] that 
even under conditions of moderate (relative to a ship) shallow 
water, a wave length, when compared with the length of the 
ship, is five or more times larger the depth of the water area.

Let us accept that at a given depth the incoming sea 
waves do not break. We obtain then quite a range of lengths 
and heights of waves [23], for which the profile of an incident 
wave is quite accurately determined from the fifth order 
Stokes theory. We shall solve a diffraction problem for such 
values of lengths and heights of waves.

4. 2. Statement of the diffraction problem
Consider the interaction between a stationary vessel that 

floats in shallow water of depth H with sea waves of a finite 
amplitude that is incident at an arbitrary angle. We believe 
that the waves do not reach the breakage stage. Denote the 
length of a wave λ, the height of a wave h, the wave propaga-
tion velocity c. 

Introduce two rectangular coordinate systems: motion-
less Oξ0η0ζ0 that characterizes the motion of a fluid, and 
a vessel-associated one Oxyz (Fig. 1). The direction of the 
Oξ0 axis coincides with a velocity vector of the incident sea 
waves. The course angle of the incident sea waves β (between 
the Ox and Oξ0 axes) varies from 0 to 360°, positive direction 
is counterclockwise from Oξ0 to Ox. 

A wave profile equation, according to [24], is given in 
the form:

( ) ( )
5 5

1 1

1
cos ,j

w jj
j j

a b j
k= =

ς = ς = θ∑ ∑ 	 (1)

where k=2π/λ is the wave number (shape frequency); a is the 
parameter for a wave height, determined from ratio:

( )3 5
33 35 552 ,kh a a B a B B = + + +  	 (2)

where bj are the dimensionless coefficients that depend on the 
depth of a water area and the length of a wave; B33, B35, B55 are 
the wave profile parameters, determined according to [24];

( )0 0 .k ct k tθ = ξ − = ξ − s

Note that paper [17] stated a non-linear problem of ves-
sel’s motions. The authors assigned the potential of incident 
sea waves’ velocities as the sum of a large number of harmon-
ics of irregular sea waves. In equation (1) directions for the 
propagation of all components are the same.

Fig. 1. Coordinate systems and characteristics of sea waves

A liquid is considered to be ideal, heavy and incom-
pressible; its motion is potential. In a coordinate system 
associated with the vessel where 0 cos Sin ,x yξ = b + b  ξ0=z, 
the disturbed fluid movement is described by the potential 
of velocities ΦE(x, y, z, t). The domain for determining it E 
is limited by the water area bottom D, the vessel’s wetted 
surface S, and the free surface of a liquid Σ. Represent the 
potential ΦE as the sum

( ) ( ) ( )*, , , , , , , , , ,E dx y z t x y z t x y z tΦ = Φ + Φ 	 (3)

where Φ*(x, y, z, t) is the potential of the incident sea waves 
velocities; Φd(x, y, z, t) is the potential of velocities of a dif-
fracted wave motion. 

The potential of the incident sea waves’ velocity, accord-
ing to the chosen notation of a wave profile, is recorded in the 
Oxyz coordinate system in the form [24]

( )

( )( ) ( )

5
* *( )

1

5

2
1

, , ,

ch sin cos sin ,

j

j

j
j

j

x y z t

a A jk z H j kx ky t
k

=

=

Φ = Φ =

s  = − b + b − s 

∑

∑    (4)

where Aj are the parameters for a wave potential (dimension-
less functions that depend on kH). 

The relationship between a wave number and the sea 
wave frequency σ=kc is determined from formula

( ) ( ) ( )2 2 4 *
1 2th 1 th ,kg kH a C a C kg kH Cs = ⋅ ⋅ + + = ⋅ ⋅ 	 (5)

where C1, C2 are the parameters for a wave frequency deter-
mined from [24]. 

We shall assume that the diffraction of all ζ( j) against 
a vessel’s hull occurs mutually independently. Such an as-
sumption can be accepted given the nature of the sea waves 
components in formula (1), as well as the expressions of po-
tentials in the form (3) and (4). 
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The potential of first order is determined from formula

( )
( ) ( )

*
*(1) 1

2 sh

ch ( ) sin cos sin ,

A
a

k kH

k z H kx ky t

s
Φ = ×

   × − ⋅ b + b − s    	 (6)

where *
1A  is a parameter for a wave potential, determined 

from [24]. 
The solution to the diffraction problem for oblique waves 

of small amplitude r=h/2 that are incident to the actual ship 
under conditions of shallow waters, is given in work [3]. 

The corresponding incident sea waves potential takes 
the form:

( )
( ) ( )

*(1) 1
ch

ch sin cos sin .

rg
kH

k z H kx ky t

Φ = ×
s

 × − ⋅ b + b − s  	 (7)

The structure and dimensionality of expressions (6) 
and (7) are identical. Only the form of recording a dimen-
sional multiplier is different. Formula (6) can be rewritten 
in the form:

( ) ( )
( )

( )

*
1*(1)

ch

ch

sin cos sin ,

r g k z H
K

kH

kx ky t

 − Φ = ×
s

× b + b − s 	 (8)

where ( )
* *

11r aA k=  is the amplitude coefficient of wave of 
first order; 

( )
2

th
K

kg kH
s

=  

is the auxiliary factor. 
Coefficient K is the same for all components of the poten-

tial in formula (4). We obtain for the waves of second order 
and higher

( )
( )
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* *
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j j
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where *
jA  are the parameters for a wave potential, deter-

mined from [24].
Then

( ) ( )

( ) ( )

( )
( ) ( ) ( )

( )
( )

*

5
*

1

5

1

, , ,
ch

ch

sin cos sin

ch

ch

sin cos sin .

j
j

j j

j

g K
x y z t

kH

r jk z H

j kx ky t t

r gK jk z H

jkH

j kx ky t t

=

=

Φ = ×
s

 × − × 

 × b + b − s = 
 − = ×

s

 × b + b − s 

∑

∑
	 (10)

The form of recording of all the components in the inci-
dent sea waves’ velocity potential coincides with that used 
in [3]. In order to solve a diffraction problem, it is possible 
to apply a procedure given in [3]. Let us represent potential 
Φd(x, y, z, t) in the form

( ) ( ) ( ) ( ) ( )
5

* **

1

, , , cos sin ,j j
c s

j

x y z t j t j t
=

 Φ = Φ s + Φ s ∑ 	 (11)

where the amplitude functions are equal to

( )

( )

( ) ( ) ( )
( )

( )
( )

*

*

sin Cos sinch
,

ch cos Cos sin

j
c

j
s

j j
j kx kyr gK jk z H

jkH j kx ky

 Φ  = 
Φ  

  b + b −     =  s  − b + b   
.	 (12)

For each *( ),jΦ  1, , 5,j = …  we determine the corre-
sponding potential of velocities of the diffracted wave move- 
ment ( ).d jΦ

Boundary problems for all components of the diffrac-
tion potential include harmony condition and the following 
boundary conditions:

– at the free surface of a liquid Σ; 
– at the wetted surface of a vessel S; 
– at the bottom of a water reservoir D.
There is also a condition for the attenuation of diffracted 

waves at an infinite distance from the ship. In addition, each 
potential ( )d jΦ  must satisfy the principle of radiation. Rep-
resent ( )d jΦ in the form of a sum

( ) ( ) ( ) ( ) ( ) ( ), , , cos sin .d j d j d j
c sx y z t j t j tΦ = Φ s + Φ s 	 (13)

Then the amplitude functions ( )d j
cΦ  and ( )d j

sΦ  must sat-
isfy the following differential systems:

( ) ( )
2 2 2

,2 2 2 , , 0,d j
c s x y z

x y z

 ∂ ∂ ∂
+ + Φ = ∂ ∂ ∂ 

 ( ), , ;x y z E∈ 	 (14)

( ) ( ) ( )
2

, , ,0 0,d j
c s

j
x y

z g

 s∂
+ Φ = ∂ 

 ( ), ,0 ,x y ∈S 	 (15)

( ) ( ), , ,
0,

d j
c s x y H

z

∂Φ
=

∂
 ( ) ] [, ; ;x y ∈ −∞ ∞ 	 (16)

( ) ( )( ), , , 0,lim
d j
c s

r
grad x y z

→∞
Φ =  

( ), , ,x y z E∈  2 2 ;r x y= + 	 (17)

( ) ( ) ( ) ( )*
, ,, , , ,

,
d j j
c s c sx y z x y z

N N

∂Φ ∂Φ
= −

∂ ∂
 ( ), . .x y x S∈ 	 (18)

Hereafter, index “d” in the descriptions of diffraction 
potentials is omitted. 

We assume the ship to be an elongated body. Refine 
the form of a normal derivative from the potential at wet-
ted surface S. Similar to the way it was performed in [3], 
we obtain:

( ) ( ) ( ) ( ), ,
;

j
EV j OD jc

C C

x y z
B B

N

∂Φ
= +

∂
	

( ) ( ) ( ) ( ), ,
 .

j
EV j OD js
S S

x y z
B B

N

∂Φ
= +

∂
	 (19)
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( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )
( )

sh
ch

sin cos sin
cos , ;

cos cos sin

EV j
j jc

EV j
s

r gK jkB
jk z H

jkHB

j kx ky
N z

j kx ky

    = − ×   s  
  − b + b  ×  

 b + b   
	 (20)

( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )
( )

sin
ch

ch

cos cos sin
cos , .

sin cos sin

OD j
j jc

OD j
s

r gK jkB
jk z H

jkHB

j kx ky
N y

j kx ky

  b   = − − ×   s  
  b + b  ×  

 b + b   
	 (21)

Thus, each diffraction potential Φ( j) is equal to the sum 
of four components:

( ) ( )
4

1

.j j
i

i=

Φ = Φ∑ 	 (22)

Diffracted potentials Φ( j) (each separately) are de-
termined by the matched asymptotic expansions method 
(MAEM) as shown below.

4. 3. Determining the potentials of a diffracted wave 
motion

According to the procedure for applying MAEM, we 
shall conditionally divide the region occupied by a fluid 
into zones: external, where (y/L)=O(1), and internal, where 
(y/L)=O(e), e<<1.

 A boundary transition ε→0 at y and z fixed in the 
external zone converts a vessel hull into a segment 
D={–L/2£x£L/2, y=z=0}. Region E converts into region 

0E  (a layer of liquid 0£z£H with a cut-out segment D). 
Free surface S converts into plane 0S  (plane z=0 with a 
cut-out segment D). In the external zone, edge problems 
do not include the boundary conditions at the wetted 
surface of a vessel.

In the internal zone, we introduce elongated coordinates 
Y=y/e, Z=z/e, ε<<1. The movement of a liquid at accuracy of 
up to small O(e) is considered to be two-dimensional. The 
region occupied by the liquid is a band with the omitted 
frame contour L(x). This problem has no boundary condition 
at the infinite distance from the ship. 

In each zone, individual edge problems are stated. Their 
solutions are asymptotically matched at the zones’ interface. 
The derived approximated solution is uniformly suitable 
across the entire region occupied by a liquid. 

The final expressions for the components of the diffrac-
tion potential are recorded as follows:
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∫ 	 (23)
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∫ 	 (24)
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where ξ is the variable of integration lengthwise a vessel;

( )2 2 ;R x y= − ξ +  

( ) ( )
( )

ch
;

2 sh 2

jkH
V jkH

jkH jkH
=

+

J0, N0 are the Bessel and Neumann functions of zero or-
der for a real argument;

J1, N1 are the Bessel and Neumann functions of first order 
for a real argument, respectively. 

Functions Pc,s and Qc,s are determined when solving 
problems in the internal zone.

Calculation formulae using the external variables are 
given below. When computing functions Pc,s and Qc,s, we 
used, respectively, ( )EV j

CB  for Qc; 
( )EV j

SB  for Qs; 
( )OD j

CB  for Pc; 
( )OD j

SB  for Ps. 
The detailed determination of the potential of velocities 

of the diffracted wave motion of a fluid at a random course 
angle of sea waves is given in work [25].

4. 4. Determining the characteristics of sea waves 
near a vessel

The above theoretical solution to a diffraction problem 
was used to determine the profiles of waves at the assigned 
points around the hull of a floating immovable vessel in 
shallow water. 

The equation of a wave profile is recorded as follows:

( )

( ) ( )

( ) ( )

5 4
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1 1

5
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1
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, ,0,

1
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idt
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g

x y t x y t
g

r j t r j t

= =

=

ς = − Φ =

   = − Φ + Φ =  
   

 = s + s 

∑ ∑

∑ 	 (27)

where the components of a wave profile are assigned by 
formulae:

( )
4

( ) ( )
( ) ( ) ( )

1

cos cos sin ;j j
c j j s i

i

r r K j kx ky
=

 = b + b + ς  ∑
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4

( ) ( )
( ) ( ) ( )

1

sin cos sin .j j
s j j c i

i

r r K j kx ky
=

 = b + b − ς  ∑ 	 (28)

The components of diffracted sea waves ( ) ( )
( ) ( ), ,j j

c i s iς ς ( ) ( )
( ) ( ), ,j j

c i s iς ς  1 4, 1 5i j= ¸ = ¸ 
1 4, 1 5i j= ¸ = ¸  taking into consideration substitution z=0 and 
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the parity of functions ch( jkH), are determined from 
formulae:

( ) ( ) ( )
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+

When performing calculations, each frame contour L(x) 
is assigned in the form of sets of points. The points divide 
the contour into rather small elements, each of which is 
considered as a straight segment. Calculation formulae are 
converted considering a transition from integration to sum-
mation along points. 

Functions Pc,s and Qc,s are computed for each frame con-
tour L(x), that is for fixed x:
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∫ 	 (37)

where b(x) is the width of a frame contour L(x); u is the 
variable of integration along width; η0(u) is the equation of 
contour L(x); 

( ) ( ) ( )( )
1 1 ;j d u

T jkA u B u
du

 h
= + +  

 
	 (38)

( ) ( )0( )
2 .j d u

T jkA u
du

h
= 	 (39)

Formulae (38) and (39) include the value for a velocity 
potential A(u) and the normal derivative from potential B(u) 
along contour L(x) for each component of the diffraction 
potential from formula (13). Indexes are omitted to simplify 
the notation. Values for the normal derivatives are defined 
by boundary conditions (19) to (21). Potentials along a 
contour are unknown, since these potentials are a solution 
to the problem. In accordance with the practice of applying 
the Cochin functions for wave problems, A(u) in formu- 
lae (38) and (39) is substituted with a value for the potential 
at infinite frequency. 

It should be noted that the applied estimation proce-
dures are not oriented towards any special shape of frame 
contours.

5. Results of research into the wave field  
near a vessel 

When solving a linear diffraction problem in work [3], 
the most essential changes in the characteristics of waves 
were observed from the incident side. It should be borne 
in mind that oil garbage collectors and boom crafts must 
operate at any place near a ship in emergency. Therefore, 
while solving a nonlinear diffraction problem, we must first 
analyze the waves from the side of incidence.

Compared with work [3], the number of variable pa-
rameters was reduced. We have chosen the two smallest 
values for the depth of a water area, because considerable 
shallow water is considered. Single smallest wavelengths 
of those reported in work [3] was chosen because one 
observed the largest height of standing waves for it. For 
the selected values of H/T and λ/L, the magnitude for 
the Ursella number [1] NURS=Hλ2/h3 is less than 26; it 
helps assess the suitability of theories of wave formation. 
Therefore, calculations may employ the fifth order Stokes 
theory.

In accordance with the practice for determining the 
heights of waves with a finite amplitude, we accepted: 
h/λ=1/20, 1/30, 1/40, that is the respective heights h= 
=5.04 m, h=3.36 m, h=2.52 m. According to [26], in the 
Ukraine’s sector of the Black Sea the wave height of 
h3 %=5 m is seldom exceeded. This value for h3 % is matched 
with the height of “significant” waves h3 %=hs=3.76 m or 
average height 2.37h = . For such heights, at λ=100.8 m, 
the slope would be h/λ=1/27 and h/λ=1/42, accordingly. 
Thus, the values fit the assigned range. It should also be 
noted that for auxiliary vessels the assigned wavelength 
is rather large.

Based on the above formulae, we calculated wave pro-
files at the assigned points of observation near a vessel. The 
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selected points of observation are the same that were used 
when applying a linear theory in paper [3]. 

These points form a grid. The coordinates of the points 
are within |x |£L, |y|£(L+B/2). Points inside the contour of 
the waterline of the vessel are excluded. A step along the 
grid’s abscissas and ordinates is 0.0125L. Such an arrange-
ment of points was selected according to the results from 
numerical experiments. This provided satisfactory accuracy 
of subsequent calculations while the amount of source data 
is the smallest.

We determine the cosine and sinus components ( )j
cr  and 

( )j
sr  (28) in the grid, which are further used for the calcula-

tion of wave profiles (27).
Similarly to work [3], the selected research object was 

a wave field around a bulk carrier, the type of “Zoya Kos-
modemyanskya”. Basic dimensions of the vessel are: length  
215.4 m, length between perpendiculars L=201.6 m, width 
B=31.8 m, draught T=11.73 m. 

Taking into consideration results from work [3], we cal-
culated wave profiles for the relative wavelength λ/L=0.5. 
Other variable parameters are as follows:

– the relative depth of a water area H/T=1.1, 1.3; 
– the course angles of the incident sea waves β=90°, 120°, 

135°, 150°; 
– time moments t/τ= 0.25, 0.5, 1.0.
Based on the results of calculations, we have derived the 

relative wave profiles for all combinations of source data

( ) ( )2 , , / ., ,w w x hx y yt t= ζς

As an example, below are the wave profiles for x=0 (a 
plane of the middle cross section of a vessel) at different 
time moments, from the incidence side. Fig. 2 shows the 
influence of wave steepness on the wave profile at a con-
stant depth. Fig. 3 shows the impact of change in depth 
on the wave profile at transverse incidence of waves of the 
same steepness. Fig. 4 demonstrates the impact of change 
in depth on the wave profile at oblique incidence of waves 
with the same steepness. In all figures, y=0 coincides with 
the ship’s side.

Fig. 2. Wave profiles around a vessel’s hull 	
(the incidence side) at different values of	
 wave steepness H/T=1.1, t=τ, β=90°: 	

1 – linear theory; 2 – h/λ=1/20, 	
2 – h/λ=1/20, NURS=23.8; 3 – h/λ=1/30, NURS=15.9; 	

4 – h/λ=1/40, NURS=11.9

For comparison, all figures show the results from cal-
culating the corresponding wave profiles using a linear 
theory.

Fig. 3. Wave profiles around a vessel’s hull 	
(the incidence side) at different values of the water area 

depth t=τ/4, β=90°: 1 – H/T=1.1, linear theory; 	
2 – H/T=1.1, h/λ=1/30, NURS=15.9; 	

3 – H/T=1.3, linear theory; 4 – H/T=1.3, h/λ=1/30, 
NURS=9.6

Fig. 4. Wave profiles around a vessel’s hull 	
(the incidence side) at different values of the water area 

depth t=τ/2, β=135°: 1 – H/T=1.1, linear theory; 	
2 – H/T=1.1, h/λ=1/30, NURS=15.9; 	

3 – H/T=1.3, linear theory; 	
4 – H/T=1.3, h/λ=1/30, NURS=9.6

6. Discussion of results from determining the wave field 
near a vessel

When comparing the wave profiles determined by using 
the linear and nonlinear theories, the following common and 
different features have been established. 

Common features:
– standing waves occur near a vessel from the side of 

incidence (Fig. 2–4); 
– at antinodes, the heights of waves increase in compari-

son with the height of the waves far from the vessel (Fig. 2–4); 
– the antinodes of waves are at a distance from each 

other that roughly equals a half the wavelength (Fig. 2–4); 
– the arrangement of antinodes depends on the course 

angle of sea waves (Fig. 3, 4);
– the arrangement of wave antinodes changes little with 

a water area depth (Fig. 3); 
– zones of the decreased oscillations are between the 

antinodes (Fig. 2–4).
Different features:
– an increase in the relative heights of crests of the non-

linear standing waves is more pronounced (from 10 to 20 %) 
than that for the linear waves (Fig. 2);
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– the absolute heights of crests of the nonlinear standing 
waves are larger than those for the linear waves (Fig. 2), as 
expected;

– the antinodes of nonlinear waves occur closer to 
a vessel’s hull in proportion to the steepness of waves  
(Fig. 2); 

– the antinodes of nonlinear waves are closer to a vessel’s 
hull than the antinodes of linear waves (Fig. 2).

The above common features of the linear and nonlinear 
wave profiles are observed at all frame cross sections. The 
different features are fully dependent on the arrangement of 
a frame cross section lengthwise a vessel. 

Thus, the use of a nonlinear theory makes it possible to 
more accurately take into consideration those changes that 
a vessel introduces when it stays in considerable shallow 
waters to the wave field of outer anchorage. The current re-
search allows the determination of the size and configuration 
of the zone of sea waves transformation around a vessel, as 
well as the height of waves in this zone.

It should be noted that the characteristics for a wave 
transformation zone depend mostly on the sea waves course 
angle. Therefore, at oblique incidence, it is necessary to 
increase the size of the grid, formed by the points of obser-
vation; the grid’s limits should equal |x |£2L, |y|£(2L+B/2). 

 The limitations in the current research are associated 
with the use of the Stokes theory of waves of fifth order for 
the selected values of a water area depth. In particular, for 
depth H=12.90 m the wave length λ=100.8 m is the biggest 
permissible. For longer waves and other depths, one should 

apply a cnoidal theory of waves or the Stokes theory of high-
er orders waves. Choosing a calculation procedure and the 
verification of results for long waves are implied at the next 
stage of our work.

7. Conclusions

We have given the equations of a wave profile at the as-
signed points around a vessel, derived by using the method 
of matched asymptotic expansions. The oblique sea waves 
of finite amplitude are incident on an elongated stationary 
vessel in considerable shallow waters. A technique for ap-
plying an existing solution to the linear diffraction problem 
for waves with finite amplitude has been devised. We have 
performed calculations of wave profiles at fixed points of 
time at the assigned points of observation in line with the 
nonlinear and linear theories. The varied parameters are 
the depth of water, the slope of wave, and the course angle 
of sea waves. The examples of relative wave profiles have 
been given. It has been shown that the linear and nonlin-
ear wave fields near a vessel are qualitatively similar. The 
relative heights of crests of the nonlinear standing waves 
increase by 10–20 % in comparison with those for the 
linear waves. The relative heights of crests of the resulting 
standing wave do not exceed the relative heights of crests 
away from a vessel. Quantitative differences are more likely 
related to the influence of wave steepness, and to a lesser 
extent to the depth of water.
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