u] =,

Y npoueci npoexmyeanns xoncmpyxuii i3 HeoOHOPIOHUX
Mamepianie eunuxae HeoOXiOHicmb no0y0oeéu OUCKpemHux
Modeiell, AKi 6pAX06YIOMb 0COOIUBOCHT 2e0MeMPUUHOT Popmu
nidoonacmei 3 pisnux mamepianie. Ilepuwum emanom mooenio-
8aHHS MAKUX KOHCMPYKUI € po3podKa 2eomempuunoi mooeni.
s onucy @opm HeoOHOPIOHUX KOHCMPYKUIL 3ANPONOHOBAHO
dynxuionanvHuil nioxio, AU TPYHMYEMbCA HA BUKOPUCTMAHHT
cucmem neasnux pynxuiii ma R-pynxuii. llepwa neasna pymnx-
uia eusnauvae Qopmy xoncmpyrxuii. Heseni pynxuyii nouunarouu
3 Opyeoi eusnauaromo popmu nidodaacmeil, medxci AKUX Heo0-
xioHo epaxyeamu npu nodydosi ouckpemnoi modeni. Koxcna
HeasHa Pynkyia y cucmemi Givlua HYAs Y GHYMPIUHIX MOUKAX
610n06i0Hoi o61acmi abo nido6aacmi, piena Hy0 HA MedxiCi ma
MeHwa HYAa Y 308HIMHIX mouKax. Y pe3yavmami MojcHa onu-
camu popmu ooaacmeii ma nidoéracmeni 008iNbHOI CKAAOHOCTA.

Pospooneno memod mpianeynauii xoncmpyxuii i3 Heo-
OHopioHux mamepianie, popma axux zadana QYHKUIOHANLHO.
Po3pooaenuii memoo 00360as€ 8paxosyeamu opmy nidoéaac-
meii 3 pi3nux mamepiania, Ki GUKOPUCMOBYIOMCA Y KOHCMPYK-
uii. OcrosHa ides Memooy noszae y nocaidosHiil Kopexuii Koop-
dunam 6y3nie nouamxoeoi mpianeyaauii ooacmi. Ilowamxosa
mpianeynsuis moxce dymu 006iabHOI0, Ajle NOBUHHA NOBHICMIO
exatouamu 0o cede koncmpyxuyiro. Ha xoxcnomy xpoui na mesicy
KoHcmpyKuyii ado nidodaacmi 3 neenozo mamepiany nepemiugy-
emvcs 8Y30.71, HallOAUNCUULL 00 8i10n06i0H0i epanuyi. ITicas nepe-
MIUEHHS KOIHCHOZ0 Y3714 KOOPOUHAMU CYCIOHIX 8Y3J1i6 00UUCTIO-
10MbCA WAAXOM MIHIMI3AUIT PYHKUIOHATY eKCnOHeHm NIOUWUH
inyudenmnux enemenmis. Boonouac ons enemenmis, inyudenm-
HUX Y 6Y31ax, KoOpouHamu axux 0yJjo 3MiHeHo, nepesipsecmo-
¢ euxonanns ymoeu Jlenone i 3a HeoOXiOHOCMI 6UKOHYEMBCS
onepauis 3minu diazonani <flip>. Ilicas eudanennsn 306HiwHIxX
8y3nie Oyoe ompumano QUCKpemuy Mooev, Y AKil MeHci KOH-
cmpyxuii ma nido6aacmeii 3 pisHUX mMamepiaiie anpoxcumMosa-
HO 8Y3J1aMu ma pedpamu enemenmie

Kntouosi cnosa: mpianeyaauis, ouckpemna mooenv, QyHk-
uionavHe NOOAHHS, HeA6HA PYHKUIL, MPUKYMHUK, HEOOHOPIO-
Ha obaacmv
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1. Introduction

Designing new equipment with rational characteristics
often employs the structures consisting of heterogeneous
domains (for example, multilayer structures, composite ma-
terials, etc.). The process of designing such structures is
associated with the need to numerically analyze their perfor-
mance. Consequently, that necessitates the construction of
appropriate discrete models (meshes).

It is possible to account for differences in the charac-
teristics of domains in discrete models by using a macro- or
micro-approach. Under a macro-approach, a discrete model
must adequately represent the geometry of the structure,
while accounting for the heterogeneities employs different
models for averaging (homogenization) the characteristics of
domains, which typically leads to compromised accuracy. A
micro-approach is based on the explicit modelling of hetero-
geneities at domains via the elements of the discrete model,
making it possible to improve modelling accuracy; however,
it complicates the process of discretization.

The first step in building a discrete model of an object is
to describe its shape. Functional representation is one of the
most universal ones to represent the shape of objects. Such
a representation makes it possible to describe the shape of an
object of arbitrary complexity using implicit functions.

An implicit function representing a structure’s shape can
be derived constructively using the R-functions theory [1, 2].
Such a function makes it possible to check if an arbitrary
point in space belongs to the structure.

Objects of constant thickness can be regarded as two-di-
mensional. The construction of discrete models for the
shapes of two-dimensional objects most frequently employs
triangular elements. Their choice is predetermined by the
availability of simple effective procedures that make it pos-
sible to build high-quality meshes. At the same time, existing
methods [3-8] do not make it possible to triangulate the
heterogeneous regions represented functionally. Therefore, it
is a relevant task to construct methods for triangulation con-
sidering the geometric patterns and boundaries of domains,
as well the boundaries of heterogeneous subdomains.



2. Literature review and problem statement

The Delaunay triangulation is one of the most common
procedures for constructing discrete models. Such a triangu-
lation warrants that the circle that enclosures an arbitrary
triangle does not capture those nodes that do not belong
there. One of its properties is the possibility to derive models
without «bad» triangles (with angles that are too sharp).
There are effective methods for constructing the Delaunay
triangulation with constraints for the regions assigned by
polygons [3]. The parallel Delaunay triangulation meth-
ods are being actively developed that have constraints for
domains set by planar graphs [4—6]. The parallel Delaunay
triangulation with constraints implies «ear clipping» a poly-
gon [4]. To increase the rate of triangulation, there are pro-
tocols for a simultaneous insertion of nodes and edges into
initial triangulation [5]. There are the algorithms developed
for a graphic processor to enable the faster execution of
common operations [6]. However, representation of domains
of complex shape in the form of polygons or planar graphs
is not always convenient. At the same time, transition from
the functional to the boundary representation in the form of
a planar graph is a separate task.

Current methods for building discrete models of the
domains assigned functionally [7, 8] make it possible to con-
struct models that rather accurately approximate boundaries.
It is possible, in order to triangulate an arbitrary region, set
functionally, to apply a background mesh. One eliminates all
outer nodes and elements in a background mesh, and then
fills the near-boundary layer of space [7]. For parallel tri-
angulation, a background mesh can be divided into pairs of
disjoint parts [8]. In methods based on the background mesh,
positions of inner nodes are defined by the coordinates of
nodes at the background mesh. As a result, when simulating
heterogeneous regions, the geometric features of subdomains
might not be approximated by the internal nodes and edges.

Paper [9] constructed a method to triangulate surfaces
that are assigned by implicit functions. The authors sug-
gested minimizing the error in the surface representation to
search for geometric patterns. However, a Laplace smooth-
ing, used in that work, weighted for the areas of adjacent
elements, does not necessarily eliminate triangles with sharp
angles.

Studies [10, 11] suggested using the hierarchical struc-
tures (quadtree) to split the two-dimensional regions, set by
using a boundary representation (brep), into quadrangles,
taking into account the geometrical features of subdomains.
Under a given method, the background cells that overlap
the subdomains, are recursively divided into parts. Next,
one performs the nodes’ coordinate correction so that there
are no sections of boundaries that are close to them. At the
final step, one finds the points of intersection between edges
and boundaries, and recovers the topological mesh correct-
ness. The method was generalized for a three-dimensional
case [12] to build meshes of hexagons. Its main disadvan-
tage is the large number of nodes and elements near the
boundaries (a consequence of the application of hierarchical
structures), as well as a possibility to obtain blunt angles in
elements (larger than 160°).

Paper [13] devised a method for constructing discrete
models taking into account the directions of composites’
orthotropy using micro-tomography. The disadvantage of
this method is the impossibility to use it for heterogeneous
domains, which include disparate subdomains.

Thus, our analysis of publications suggests that there are no
identified effective methods to triangulate the functionally as-
signed domains considering the heterogeneity of the materials.

3. The aim and objectives of the study

The aim of this study is to devise a method for the tri-
angulation of functionally assigned heterogeneous domains,
whose application would result in that that boundaries of
inner subdomains are approximated by edges of the inner
elements. That would improve accuracy of modeling the per-
formance of inhomogeneous domains by taking into account
the shape of subdomains representing different materials.

To accomplish the aim, the following tasks have been set:

— to construct an algorithm for the initial triangulation of
a functionally-assigned domain;

—to construct an algorithm for the adaptation of initial
triangulation to the boundaries of subdomains representing
different materials;

— to verify the constructed algorithms.

4. Functional approach to representing the shape
of inhomogeneous structures

In a general case, one can assume that an arbitrary
two-dimensional domain Q is assigned functionally if there
is a defined function F that is greater than zero only at the
inner points of Q. In this case, function F equals zero at the
boundary of Q and is less than zero at outer points of Q. Ac-
cordingly, the following set is defined:

Q={(x,y)eR*|F(x,y)20}. (1)

Domains of a simple shape can be described using ele-
mentary functions. For complex regions, one can build the
compositions of implicit functions using the operations of
disjunction, conjunction, and negation. Such operations are
proposed in the R-functions theory [1, 2] in the form of sys-
tems, one of the most common of which is:

LV = ht L1
finfo=ht =N+ 1
ﬁfi:_‘fi’

where fi and fy are the values for implicit functions. For
example, a rectangular domain can be represented as a con-
junction of two bands:

rectangle(x, y)=
= band(x—x0 —%, w)/\band(y—yo —g,h),
where

2
band(x,a)= 1—4%
a

is the band of width a orthogonal to the coordinate axis;
(x0, o) are the coordinates of the bottom-left angle of the
rectangle; w is the width of the rectangle; /4 is the height of
the rectangle.



To represent the geometric structure of a heterogeneous
domain that includes heterogeneous subdomains, it is pos-
sible to apply the system of sets in form (1):

0, ={(x.y)eR*| w,(x,y)20},
o, ={(x, v)eR?| w(x, y)zo}, o

o, :{(x, y)eR’| w,(x,y)> 0},

where 7 is the number of subdomains; wy is the implicit func-
tion that represents the initial domain Qq; wy, ..., w, are the
implicit functions representing the subdomains Q, ..., Q,,
in this case, QyNQ;#J, if 1<i<n, and QN Q;=0, if 1<i<n,
1<j<n and i#j. That is, the first function describes the do-
main, and the rest — sub-domains.

Hereafter, we assume that a set is assigned if the appro-
priate implicit function is defined. Accordingly, a heteroge-
neous domain with subdomains will be defined by the system
of functions. For example, system:

w,(x,y)= band(x—xo —%,M)Aband(y—yo —g h)

w,(x,y)=(y—y,)w—(x—x,)h

A3

describes a rectangular region of width w, height 4, centered
at point (xy, o), which includes a subdomain (Fig. 1) loca-
ted above the diagonal with top (xo, yo).

wylx, y)=(y—yo)w—{x=—x,)h
yI=(y=o) \)

[
Wwolx, y):band(x—xo—%, w)/\band(y—yo—g, h)

Fig. 1. Functionally-assigned rectangular domain with
subdomain: xp=0, y=0, w=4, h=3

Thus, a system of implicit functions can be applied to
describe the shape of an arbitrary heterogeneous structure
and its subdomains.

3. Algorithm for constructing the initial
triangulation of a domain

Let some two-dimensional inhomogeneous domain be
assigned in form (2). Triangulation of a heterogeneous re-
gion, taking into account the subdomains, can be performed
using a background mesh of triangles. A background mesh of
triangles, for example, might be structured, but it should fully
incorporate the domain.

The basic idea of the algorithm implies the iterative dis-
placement of nodes, closest to the boundaries of domain and
subdomains, by validating the Delaunay condition and by
optimizing coordinates for neighboring nodes. The method’s
algorithm is as follows.

1. Generate for a background mesh a set of edges that are
intersected by the domain’s boundary Qg (the roots of func-
tion Qg are available):

E={ex=((,1; Yr1), (Xr2; Y2))| @wo(Xn 1, Yr1) %0

and

wo (X2, Yr,2) 20,

and

sign(w@o(xe,1, Yr,1)) #si80(@Wo (X2, Yr,2))}-

2. While Ez&:
2. 1. Find edge

ei=((x;,1; Yj1), (%52 y;2)) € E,

for which the distance from one of its vertices to the point of
intersection of this edge by boundary Q is minimal.

2. 2. Displace the closest node to the point of intersection
between edge e; and boundary €.

2. 3. For each node v,, which is adjacent to any node at
the vertices of edge ¢; while wy(v.)#0, the coordinates are
computed as a result of minimizing the functional:

. — T, X, =T, X, =T, X, 9
Ue=argm1n2|:e G213 g pT 28T s r‘s,z:I7 (4)

v, )
C tou,

where v, =v, -0, i#j, i=1,3, j=1,3 is the norma-
lized vectors, which are defined along the sides of triangles,
incident to node v,, T is the parameter, which, to account for
the size of the model, can be considered equal to 1/ (ois the
mean area of a triangle).

2. 4. For the triangles incident to the nodes processed
at step 2. 3, check meeting the Delaunay condition and, if
necessary, perform the procedure «flip» to shift the diagonal.

2. 5. Renew the set of edges at discrete model E.

3. Remove those nodes and elements that are outer rela-
tive to Q.

4. For each boundary node v; (wy(vp)=0), perform the
smoothing by minimizing the following functional:

kY flo—g +
vedA
v, =argmin

v + 2

vedA

2 0
vto,

2

0to
3 b,wo(x,y))

—projection (

where « is the method parameter; 8A is the set of boundary
nodes adjacent to vp; projection(p, wy(x, y)) is the projection
of some point p onto the boundary of the domain, assigned
by function Q.

5. The end of the algorithm.

When searching for the edge’s vertices closest to the
boundary at step 2. 1, in order to improve the speed of algo-
rithm execution, one can use a linear approximation.

At step 2.2, in order to find the intersection of boun-
dary Q by the edge, one can apply a binary search (func-
tion Qq at the edge’s vertices accepts values with diffe-
rent signs).

For each node at step 2. 3, a set of triangles adjacent to it
is considered. For each triangle, one determines the sum of
exponents of the vector products of vectors that are defined
at its vertices (Fig. 2). For each i-th vertex, value of s;=a;xb;
(i=1, 3) would be positive if the angle at this vertex varies
from 0° to 90°, and negative — if the angle varies in the range



from 90° to 180°. As shown in [14], the minimization of func-
tional (4) makes it possible to eliminate degenerate elements
and ensure an even distribution of angles in the elements.

Fig. 2. Scheme for constructing vectors at the sides
of a triangle

At step 2. 4, one applies the operation «flip» to change
a common edge between triangles [9]. If the circle that enclo-
sures one triangle includes all vertices form the neighboring
vone, their shared edge is changed (Fig. 3). The «flip» ope-
ration makes it possible to ensure that the Delaunay criterion
is met locally.

~—_—

Fig. 3. The «flip» operation that changes the shared edge

At the fourth step of the algorithm, smoothing the boundary
nodes employs the minimization of the functional, which takes
into account the distance to the boundary section approximated
by the edge. In order to find a minimum of this functional, it is
possible, for example, to use a conjugate gradient method.

The result of the algorithm execution is the built initial
discrete model of a domain.

6. Algorithm for the adaptation of initial triangulation
to the boundaries of subdomains

Adaptation of the initial triangulation to the boundaries
of subdomains can be divided into two stages. The first step
implies performing the adaptation of boundary edges to the
projection of intersection points onto a domain’s boundary.
The second stage implies the adaptation of inner edges. Thus,
on can use the following algorithm.

I. For each sub-domain Q; (i=1, ..., n), assigned by impli-
cit function w;:

1. Generate a set of boundary edges that are intersected
by the boundary of subdomain €; (the roots of function w;
are available):

Bi={er=((k1; Y1), (25 Y£2))| 0o (Xt 1, Y#1)=0
and

wo (X2, Y£,2)=0,

and

©i(Xp1, Yr,1) 20,

and

©i(Xp2, Yi2) %0,

and

sign(@i(xp 1, Y,1)) #SIgn(wi(Xp2, Yr.2))}-

2. While B;#J:

2.1. For edges from set B; — follow steps 2. 1-2. 5, de-
scribed for constructing the initial triangulation. In this case,
at step 2. 2, find the projection of the intersection point be-
tween edge ej and boundary €; onto a domain’s boundary €,
next, move the closest node.

3. Build a set of inner edges that are intersected by the
subdomain’s boundary Q;:

Ei={ex=((0n1; Yr1), (n2; Yr2))| (@o(xp1, Ya,1) %0

or

wo(Xk2, Yr2)20),

and

©i(xp1, Yr,1) 20,

and

©i(Xp2, Yr,2) 20,

and

sign(wi(xe,1, Yi,1)) #Sign(wi(xr,2, Y.2))}-

4. While E;#@:

4. 1. For edges from set E; — follow steps 2. 1-2.5, de-
scribed for constructing the initial triangulation.

5. Perform the smoothing of the nodes’ coordinate at the
subdomain’s boundary.

For each boundary node vj, from subdomain Q; (w;(v)=0),
perform the smoothing by minimizing the following func-
tional:
2y

<Y Jo-v,

vedA;

2

- 0to,
0, =argmin — — \
o, 2
>
vedA;

N v
i pl"Q]eCthIl(

+ U[;

wfxg)re () _

where « is the method parameter; 8A; is the set of boun-
dary nodes from subdomain Q; adjacent to v, projec-
tion(p, w(x,y)) is the projection of some point p onto
the domain’s boundary set by function w. In this case,
one searches for the projection of the point onto the
boundary of intersection between domain €y and sub-
domain Q;.
I1. The end of the algorithm.



7. Results of applying the method of triangulation
of inhomogeneous domains

It is possible to use, for the triangulation of a non-uni-
form rectangular domain, assigned by formula (3), the struc-
tured background mesh (Fig. 4). For example, one can use
a background mesh built for a square of 4x4, which contains
121 nodes and 200 elements (Fig. 4, a, color shows the dis-
tribution of values for function wjy in formula (3)). The ini-
tial triangulation would involve 95 nodes and 156 elements
(Fig. 4, b). The result of the adaptation to the boundary of
the sub-domain takes the form shown in Fig. 4, c.

0:3.5) (4:3.5 (0;3.5) (4;3.5)[(0;3.5) 4:3.5)
0.58579
0.34786
0.10993
-0.12799
10.36592
10.60385
i
131763 <
155556
(0;-0.5 (4;-0.5) (0; -0.5) (4; -0.5)[ [(0; -0.5) (4:-0.5)
a b c

Fig. 4. Triangulation of a rectangular
domain with a subdomain: @ — background discrete model;
b — elementary discrete model; ¢ — resulting discrete model

For example, in order to determine the mechanical proper-
ties of fibrous composites, it is necessary to model the perfor-
mance of an elementary cell. An elementary hexagonal cell in
a heterogeneous composite consisting of a matrix element with
around fiber (Fig. 5) can be assigned by the following formula:

{wo (x, y) = regular(x,y,R), 5)

wi(x, y)=r2—x2 —yQ,

where R is the radius of the circle described around a hexa-
gon; 7 is the radius of the circular subdomain; function:

regular(x, y, R)=

= hplane(x, ¥, R, 0, RCOS(%), Rsin(g)) A
X, Y, RCOS(E), Rsin (E),
3 3
Rcos(25),Rsin(2£)
3 3

XY, RCOS(SE), Rsin (SE),
A hplane 3 3) |

Rcos(2m), Rsin(2r)

A hplane

If one uses the unstructured grid that contains 210 nodes
and 333 elements as the initial one (Fig. 5, a, color shows the
distribution of values for function wy), the result of adapta-
tion would take the form shown in Fig. 5, b.

The friction disk of a transmission assembly is a complex
domain with a hole and ten round subdomains (Fig. 6). Its
shape can be assigned by an implicit function describing the
point symmetry of the cyclic type:

w, (x, y) = clutch(x, y, S, R, 1, h, n),
[cos (u(n, 9)) - F]2 +

2y (6)
+ [sin(u(n, 9))]2 ( Y )

wi(x, y)ch—

where S, R, r, h, ¢ and F are the dimensions, indica-
ted in the drawing (Fig. 6,a); n is the number of teeth;
clutch(x, y, S, R, r, h, n) is the function of form:

clutch(x,y, S, R, 7, h,n)=

_ (h2 —sin? (u(n, 0)yx*+y’ ))/\

At —x? =

(rz x’ yz);
2 _ 42 R —x%—

/\(S x? 2 2 2 2

no

8 & e G
8)=— 3 (—1)"" sin——2
H(n ) nn;( ) sin (2k—1)2

is the partial sum of a Fourier series [2]; 0=arctgs(y, x) is the
arc tangent of ratio y/x.

0.210846
0.187419
0.163991
0.140564
0.117137
0.093709

0.070282
0.046855
0.023427

-1;-1) (1;-1)

Fig. 5. Triangulation of the hexagonal domain
with a round subdomain (R=1and r=0.6R):
a — initial discrete model; b — resulting discrete model

The result of triangulating the domain assigned by func-
tion (6), when using a structured mesh, is shown in Fig. 6, b.

((14; 1.4)

-1.4:-1.4)
a b

Fig. 6. Model triangulation:
a — drawing of the domain; b — resulting discrete model

(1.4;-1.4

Table 1 gives results from studying the influence of the
number of nodes and elements in the initial (structured)
mesh on the value for a minimum angle in the element. One
can notice that the value for a minimum angle less than 18°
was not obtained. This is due to the local optimization of
angles and to the application of operation to change a shared
edge.

Thus, the constructed method makes it possible to build
discrete models of heterogeneous domains that are functio-
nally assigned. In the resulting discrete models, the boun-
daries of a domain and the sub-domains are approximated by
the elements’ edges.



Table 1

Influence of the number of nodes and elements
in the initial mesh on the value for a minimum angle
in element at triangulation

Number of nodes in initial mesh
121] 144 169] 196 | 225 | 256 | 289 | 324 | 361] 400
Number of elements in initial mesh
200|242 | 288338392 | 450 | 512| 578 | 648 | 722

Minimum angle in a triangulation element, degrees

Model

Domain set by
function (3)

Domain set by
function (5)

28.8128.0(28.1(26.4]|27.0|25.5(30.6{26.7|27.3|23.4

29.5|27.0{18.5]27.9(28.5|27.0|23.3|23.6|28.6(29.4

8. Discussion of results of applying the method
of triangulation of inhomogeneous domains

As the result of the application of the devised method, in the
derived discrete models the boundaries of subdomains in inho-
mogeneous domains (in contrast to results reported in [7, 8])
are explicitly represented by the elements’ edged. As opposed
to papers [10—12], the devised method does not require the
thickening of discrete models at the boundaries of subdomains.

The result of the application of the method for trian-
gulating heterogeneous domains is the derived discrete
models whose elements include angles that are less than 20°.
Applying the Delaunay triangulation methods with con-
straints [3—-6] makes it possible to obtain models whose
elements’ angles are not less than 26°. However, the models
of boundaries of a non-uniform domain and its subdomains,
built by using the devised method, could be used as source
data (in the form of planar graphs), for the triangulation
methods described in [4-6].

The accuracy of approximation and characteristics for
the resulting discrete model depend on an initial grid. It is
obvious that the size of an element in the initial grid must
be less than the geometric patterns of the simulated domain.

The disadvantage of the proposed method might be its
iterative nature. Consequently, its implementation for paral-
lel computer systems is problematic.

When smoothing the coordinates of nodes at the boun-
daries of a f domain and the subdomains, one can apply the
method proposed by authors in [15].

The method reported in the current paper could be used
as a preprocessor to the finite element analysis of inhomo-
geneous regions. The prospect of further advancement is to
generalize the method for cases of three-dimensional bodies
or shell structures.

9. Conclusions

1. We have constructed an algorithm for the initial
triangulation of a functionally-assigned domain. A given

algorithm employs a consistent correction of coordinates
for the nodes at initial triangulation. Initial triangulation
can be arbitrary, but it must fully capture the structure. At
each step of the algorithm, the closest node is displaced to
the boundary of the structure or the subdomain. Following
the displacement of each node, coordinates for the adjacent
nodes are determined by minimizing the functional of expo-
nents of doubled areas considering the sign. In this case, for
the elements, incident at nodes with modified coordinates,
meeting the Delaunay condition is checked and, if neces-
sary, the operation «flip» is executed to change the diago-
nal. The result of such an algorithm is the discrete model
of a domain, in which the triangles satisfy the Delaunay
condition.

2. An algorithm for adapting the initial triangulation
to the boundaries of subdomains representing different
materials has been constructed. Underlying the algorithm
is the consistent displacement of nodes to the boundaries
of subdomains. The first phase implies the displacement of
boundary nodes from the initial triangulation. In this case,
one searches for the point of intersection between a domain
and the subdomains. The second phase implies the displace-
ment of inner nodes. Both phases involve the local smoothing
of nodes adjacent to the displaced one and checking if the
Delaunay condition is satisfied. The result is that the subdo-
mains are represented by elements of a discrete model, which
is needed to improve the accuracy of modeling heterogeneous
domains.

3. Verification of the constructed algorithms has shown
that the resulting discrete models lack «bad» triangles (with
very sharp angles). Uniform and non-uniform discrete mo-
dels could be used as the background models.

The devised method for the triangulation of inhomoge-
neous functionally-assigned structures makes it possible to
build discrete models, in which the subdomains’ boundaries
are represented by the elements’ edges. From an applied
point of view, such a representation could improve the ac-
curacy of a finite element analysis of inhomogeneous struc-
tures. A limitation of the devised method is the requirement
that in the background triangulation a mesh size should
be less than the size of the smallest geometrical feature of
the structure.

It should be noted that the functional approach makes it
possible to simulate heterogeneous domains of arbitrary com-
plexity. In this case, the shape of domains and subdomains
can be changed through the variation of model parameters.
The result is the simplified investigation and optimization of
the shapes of domains in the design process.

Acknowledgement

Materials for this paper were prepared within the frame-
work of the state budget project «The Development of
a Software Resource for the Cloud-based Engineering Ana-
lysis of Aerospace Objects» (0117U007204) at the Ukraine’s
Ministry of Education and Science.

References

1. Rvachey, V. L. (1982). Teoriya R-funktsiy i nekotorye ee prilozheniya. Kyiv: Naukova Dumka, 552.
2. Sheyko, T. 1., Maksimenko-Sheyko, K. V., Litvinova, Yu. S., Lisin, D. A. (2017). R-functions and chevron surfaces in machine

building. Problemy mashinostroeniya, 20 (2), 54—60.



10.

11.

12.

13.

14.

15.

Gaur, P. K., Bose, S. K. (2017). On recent advances in 2D Constrained Delaunay triangulation algorithms. arXiv.
URL: https://arxiv.org/pdf/1707.05949.pdf

Eder, G., Held, M., Palfrader, P. (2018). Parallelized ear clipping for the triangulation and constrained Delaunay triangulation
of polygons. Computational Geometry, 73, 15-23. doi: https://doi.org/10.1016/j.comge0.2018.01.004

Coll, N., Guerrieri, M. (2017). Parallel constrained Delaunay triangulation on the GPU. International Journal of Geographical
Information Science, 31 (7), 1467—1484. doi: https://doi.org/10.1080,/13658816.2017.1300804

Qi, M., Cao, T-T., Tan, T-S. (2013). Computing 2D Constrained Delaunay Triangulation Using the GPU. IEEE Transactions
on Visualization and Computer Graphics, 19 (5), 736—748. doi: https://doi.org/10.1109/tvcg.2012.307

Choporov, S. V. (2015). Background grid method for plane shapes triangulation in functional approach. Radio Electronics,
Computer Science, Control, 4, 31-38.

Choporov, S. V., Gomenyuk, S. 1. (2015). Parallel method for triangular mesh generation using functional representation. Vestnik
Hersonskogo natsional’'nogo tekhnicheskogo universiteta, 3 (54), 511-517.

Fayolle, P-A., Pasko, A. (2012). Optimized surface discretization of functionally defined multi-material objects. Advances in
Engineering Software, 45 (1), 301-312. doi: https://doi.org/10.1016 /j.advengsoft.2011.10.007

Rushdi, A. A, Mitchell, S. A., Bajaj, C. L., Ebeida, M. S. (2015). Robust All-quad Meshing of Domains with Connected Regions.
Procedia Engineering, 124, 96—108. doi: https://doi.org/10.1016/j.proeng.2015.10.125

Rushdi, A. A., Mitchell, S. A., Mahmoud, A. H., Bajaj, C. C., Ebeida, M. S. (2017). All-quad meshing without cleanup. Computer-
Aided Design, 85, 83-98. doi: https://doi.org/10.1016/j.cad.2016.07.009

Awad, M. A., Rushdi, A. A, Abbas, M. A., Mitchell, S. A,, Mahmoud, A. H., Bajaj, C. L., Ebeida, M. S. (2016). All-Hex
Meshing of Multiple-Region Domains without Cleanup. Procedia Engineering, 163, 251-261. doi: https://doi.org/10.1016/
j.proeng.2016.11.055

Nikishkov, G., Nikishkov, Y., Makeev, A. (2013). Finite element mesh generation for composites with ply waviness based on X-ray
computed tomography. Advances in Engineering Software, 58, 35—44. doi: https://doi.org/10.1016 /j.advengsoft.2013.01.002
Barrera-Sanchez, P, Gonzéalez-Flores, G. F,, Dominguez-Mota, F. J. (2003). Robust Discrete Grid Generation on Plane Irregular
regions. Computational Mathematics and Mathematical Physics, 43 (6), 845-853.

Choporov, S., Homeniuk, S., Grebenyuk, S. (2018). Optimized smoothing of discrete models of the implicitly defined geomet-
rical objects” surfaces. Eastern-European Journal of Enterprise Technologies, 3 (4 (93)), 52—60. doi: https://doi.org/10.15587/
1729-4061.2018.130787



