u] =,

3anpononosano memod po3e’azanns 3adaui 0Opi6Ho-HeniniunOi
onmumizauii. Iloxazano, wo came 0o makxoi mamemamuunoi mode-
N 3600AMbCA HUCTEHHI 3a0a4i YnpasNinHA 3anacamu, pauionav-
H020 PO3n00iay 00MejxNceHUx pecypcie, GIOMYKAHHA ONMUMATGHUX
waaxie Ha epadi, payionanvroi opeanizauii nepeeesenv, YnpasaiHHs
Junaminnumu cucmemamu ma inwi 3adaui y eunaoxax, Koau euxio-
Hi dani 3adaui onucani 6 mepminax meopii iimogipnocmeil ado wevim-
xoi mamemamuxu. Ilposedeno ananiz eidomux memoodie eupiuen-
Ha 3a0ay Opiono-Heniniunoi onmumizauii. Haiibinvw npooyxmuenui
3 HUX 3ACHOBANHUI HA TMEPauiiHOT nPoYedypi NOCHI006H020 NONINUEHH
nouamx06020 piwenns 3ada4i. Ilpu ybomy na KoicHOMY Kpoui eupiuiy-
emvcsa 3adana mamemamuunozo npozpamysanns. Memoo cxooumocs,
aKwo ooacms donycmumux piwens xomnaxmua. Ouesuonuil nedonix
Memody — HeKOHMPONbo8ana meuoxicmv 30ixcnocmi. B po6omi 3anpo-
noHo8aANUIl Memo0 P0368’A3aHHA 3a0aui, i0es AK020 nepezyKyemvcs
3 eidomum memodom OpibHo-ninilinoi onmumizauii. 3anpononosana
MexH0JI02is nepemeopioe 6uxiony 3adauwy 3 OpPiOHO-PAUIOHANLHUM
Kpumepiem 00 36uMaUnOi 3a0aui MAMeMAMUUHOZ0 NPOZPAMYGAHHSL.
Tonoene docmoitcmeo memoody i tiozo 6idminnicmo 6i0 8idomux noJs-
2ae 6 Momy, W0 Memoo Peanizyemovcs 3 UKOPUCMAHHAM 00HOKPOKO-
60i npouedypu ompumanns pimenns. Ilpu ybomy posmipnicme 3ada-
ui He € oOMmedcyronum paxmopom. Bumozu do mamemamuunoi moodeni
3adaui, AKi 36Yxcyomv 001ACMb MONCAUSUX 000AMKi8 PO3POONEHOT
Memoouxu:

1) xomnonenmu yinvoeoi Pynxuii noeunni Gymu cenapadesvHuMU
Qynxyiamu;

2) nokasHuxu cmynens 6Cix HeJiHIHUX 000aHKI8 KOMNOHEHMHUX
Qynxuii nogunni 6ymu 00HaAK0BUMU.

Inwa eascausa nepesaza memooy nonsieac 6 MONCAUBOCH 11020
BUKOpUCMANHA O3 BUPTUWENHS 3a0aYi 0e3YMOBHOT ma YMO8HOT onmu-
mizauii. Posensnymo npuxaaou

Kniouogi cnosa: onmumizauis 0piono-neniniinoi Qpynxuii, ainitini
o0Medscenns, 00HOKPOK08A NPOUedYpa, moune Po36 ’I3aHHs
| =,
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1. Introduction

Numerous practical problems are reduced to optimizing
a nonlinear fractional functional in the form:
o(X)
Flx)=——+=, X=(x,x,,..,x, )JeR , 1
( ) g(X) ( 1 2 n) n ( )

where @(X), g(X) are the arbitrary functions, and g(X)
does not change its sign throughout the entire region of
determination. It is such a mathematical model to which,
in particular, inventory management tasks, on the rational
allocation of limited resources, routing, etc. are reduced un-
der conditions of uncertainty when a problem’s parameters
are defined in terms of a probability theory or fuzzy mathe-
matics. A general scheme for solving such problems is as
follows. Assume, for example, that the problem’s parameters
are random variables. It is clear that this uncertainty passes
in transit into the problem’s objective function. In this case,
a conventional approach to solving the problem is optimiza-
tion of the average [1-3]. The obvious disadvantage of the
solution thus derived is the danger of obtaining a result that
would grossly deviate from an optimum in some specific situ-
ations, which may occur by accident during operation of the

This is an open access article under the CC BY license
(http.//creativecommons.org/licenses/by,/4.0)

analyzed object. In this regard, a more appropriate approach
is to modernize the criterion, which should be wisely chosen
as the probability of obtaining a value for winning that is not
below the assigned threshold. The solution that is derived
in this case is better than the solution, optimal on average,
for the following reasons. This solution is warranting and
managed owing to the possibility of a rational choice of the
threshold value. We shall show below that under the simplest
and natural assumptions concerning the nature of uncertain-
ty in the initial data the maximization of a source probability
leads to the optimization of a fractional-quadratic functional
in the form (1).

It is clear that solving this problem is possible when
using direct zero-order optimization methods (for example,
by a Nelder-Mead method) [4, 5]. However, the extremely
slow convergence of these methods, which manifests itself
defiantly in the problems of high dimensionality, makes it
difficult to implement them. On the other hand, the use of
more powerful methods of optimization of the first and se-
cond orders [6—8] is complicated due to the need to compute
the gradient vector and the Hessian-matrix for functionals
in the form (1). In this connection, it is a relevant task to
construct a fast and accurate method of fractional-nonlinear
optimization.



2. Literature review and problem statement

The issue on the nonlinear optimization with a fractional
criterion in the form (1) has been addressed by a large num-
ber of studies. The common characteristic of these works is
that they solve a fractional-linear problem, that is the crite-
rion to be optimized (1) is not linear in structure only, while
the functions ®(X), g(X) that form it are linear. In this case,
the problem is solved by reducing a fractional criterion to
normal. Current results from the modification and strength-
ening of the method extend the scope of its application
in some important areas (solving integer fractional-linear
problems [9, 10], the problems in which the objective func-
tion coefficients are set over an interval [11, 12] or fuzzily
assigned [11-15].

Those problems are much more difficult in which the
functional to be optimized (1) is not linear not only struc-
turally, but also due to the nonlinearity of functions that
form it.

Known methods for solving such a problem employ
different variants for transforming the fractional crite-
rion (1) into normal [16—21]. This concept is implemented
as follows. Assume g(X)>0. Choose an arbitrary vector
XO =@ 2, ., x) from the function determination
domain (1). If the original problem is to maximize the cri-
terion (1) and the selected vector X(» is not a solution to
this problem, then there must be some other vector X
for which:

F(X")-F(x")>o0. 2)
Then, considering (1), record:

ofx)=[{x")-{x" e x°)-
:(p(x“))_g(x(”).F(X‘“’)>0. (3)

Hence is a simple technique to solve the original problem:
one must maximize the criterion ®(X™M). If inequality (3),
derived in this case for plan X(, is satisfied, the plan X is
better the plan X, otherwise the plan X is optimal. Thus,
the original problem is reduced to an iterative procedure of
finding a sequence of vectors:

X0, X0, X0, x 0 x4 4)
for which the recurrence ratio holds:
s (X*(k+1))_ g (X*(k+1))' F(X”(k)) _

=max{o(X"Y)-g(x")- F(x)} ®)

In this case, it is clear that the problems obtained at
every step of this procedure are easier than the original one.
In a general case, it is a difficult task to prove the conver-
gence of a sequence of vectors (4) to vector X* that maximi-
zes (1). However, for a series of specific tasks the problem can
be solved, for example, if the set of permissible solutions to
the problem is finite.

Assume the problem implies finding a vector X that ma-
ximizes the non-linear-fractional function:

O(x,, x,) _ af +5x;
glx, ) 20+

F(x,x,)= (6)

and which satisfies the constraint:
X, +2x,=3. 7

In accordance with the methodology described, we shall
assign any initial vector X that satisfies (7), for example,
X®=(1;1). In this case, F(X®)=2. Next we introduce the
function:

®(x;,2,)=0(x,, xz)—g(x1,x2)F(X(0)):
=x12+5x§—2(2xf+x§)=—3xf+3x§. ©)
We shall find vector (xy, x9) that maximizes (8) and sa-

tisfies (7) using the uncertain Lagrange multipliers method.
Introduce:

L(xy, x,)=-3x; +3x; = A(x, +2x, - 3). 9)
Next:
dL((‘;CUxQ) =—6x1 —7\,=0, x1 =_1>\‘;
X, 6
L
%:69{2—27\:0, Y
X, 3

Substitute the derived expressions for xy and xy in (7)

and find A:

—17»+g7»:&= 3.
6 3 2
Hence A=6 and
O m__1

6=t a)=—26=2.

Check that the inequality F(X)>F(X®) holds for the
derived vector X(D=(~1; 2). Since:

1+20 7
——=—>

F(X®)= 244 2

F(X‘O)) =2

the procedure should continue.
Forming the following function anew:

d)(xl, xz): (p(xﬂ xz)—g(xi,xz)F(X(“):

7 3
=x’+5x) —E(fo +x§)= —6x7 +§xf,

as well as the new Lagrangian function:

L(x, x,)=—6x; +%x22 =M, +2x, - 3).

Next:

dL(x,,

M=-12x1-x=o, x1=—ik;
dx, 12

dL(x,, x 2

(d;Q 2):3x2—2k:0, % =gh



Find A and the values for vector X®® components. We
obtain:

1. 4. 5 12 1 8
——A+-A=A=3 A== AP ==, aP=—
127 37 4 50 M 5 2 T

Since:
2)) = - (CO0
F(x )—@—4.863>F(X )=35,
25 25

the procedure continues. At the next step, we obtain:

®(x,, x,)=2] +5x, —4.863(23512 +x'22)=
=-8.726x; +0.137x,;

L(x,, x,)=-8.726x] +0.137x; = A(x, +2x,);

dL(x,,
LG BT S U S T
dx, 17.452
dL(x,,
b, x,) 02742, -0 =0, x,=——%=T73k;
dx, 0.274
1 3
- +2.73 |A=14540=3; A=—"—
17.452 14.54
3 _ 3 _ NG .
o= 0012 2! =1.506;
17.45214.54
-0.012)* +5-(1.506)°
F(X<3>)=( ) 4; ( )2211.34032
2(-0.012)" +(1.506)°  1.5002
=4.996> F(X®).

Because the value for F(xi,x3) continues to grow, the
procedure should continue. Solving it further shows that the
values for variables xy, 19, F(xy, x2) asymptotically approach,
respectively, x; =0, x,=1.5, F(x,,x,)=>5. In this particular
example, the computational procedure is simple and the
rate of its convergence is quite high, however, this gives no
reasons for the statement of general optimistic conclusions.
This fundamental circumstance renders relevance to the task
on devising an alternative finite-step method to solve the
fractional nonlinear optimization problems, which defines
the purpose of the current study.

3. The aim and objectives of the study

The aim of this study is to construct a single-step method
to solve the fractional nonlinear optimization problem, which
would make it possible to obtain a result in a single step.

To accomplish the aim, the following tasks have been set:

—to transform the original model of a fractional non-
linear optimization problem to the form typical for conven-
tional problems of mathematical programming;

— to devise a computational procedure to solve the prob-
lem of mathematical programming, derived in this case, in
a single step.

4. Construction of a single-step method
of fractional-nonlinear optimization

Let us consider a possibility to build a single-step optimi-
zation method for the nonlinear fractional functional.

Here us a specific and practical task (the rational alloca-
tion of limited resource), which comes down to optimizing
the fractional-quadratic functional. We introduce:

b — value for the resource utilized when making a single
piece of product of the j-th type, j=1,2,...,n;

x; — planned number of manufactured pieces of product of
thej-th type, j=1,2,..,1;

¢j — profit earned when selling a piece of product of
the j-th type.

Then

L(x)=c.x,

=

is the total profit when implementing production sche-
dule X =(x,,2,...,,).

The task on the rational resource allocation implies
finding plan X, which maximizes the total profit L(x) and

satisfies the constraints:

Yax; =b, 10)
Jj=1
x,20, j=1,2,..,n an

This problem is trivial and its obvious solution takes
the form:

X:{_X’].:O,];é]o}, jozm]ax{]}, xj(,:ai-

However, the task is greatly complicated if the profit
earned when selling a product is random. Assume that the
random profit from selling a piece of product of the j-th type
is distributed in line with the normal law with density:

(Ci -m )2

j
2
20j

expq— , J=12,..,n,

f(cj)_

216 ;

where m; is the mathematical expectation of a random profit
from the sale of a piece of product of the j-th type; 63 is
the variance of a random profit from selling a product piece
of the j-th type.

Then the total profit L(x) from implementing plan
X=(x1,x2,...,x ) is a random variable with a distribution

density:
L—-my ’
f(L(x))= \/ﬁcz exp{_( 2(5; ) },

where

n n
— 2 _ 2.2
my = Zmﬂ?w Oy = chx.i'
1 =

n

We can now compute a probability of that a random va-
lue for the total profit exceeds a certain preset threshold L,
which is equal to:



P(L(x)>L,)=

2
_mz)

:T ! exp —(L
Ly mﬁz 20;

w |
dL= ——e 2du. (12
} Lu“"”’z \/E ( )
Osx

In this case, the problem on the rational distribution of
a resource can be restated as follows: it is required to find
plan X that maximizes (12) and satisfies constraints (10),
(11). We shall transform the lower limit in integral (12):

1 n n
n " Ly a0, =3 mx,
x, =]

(e}
™M
—
M-
Q.
=
;_N/‘
VR
Il B
Q
=

1
n 2
2.2
> 0;4;
=

It is clear that the maximization of integral (12) is en-
abled by minimizing the derived value for its lower limit.
We introduce:

L
d;=m,~—ta,

j=m=tay d;>0, j=12..n

Now, the rational resource allocation problem is reduced
to the following: it is required to find plan X that maximizes:

n
dexf
j=t

1
n 2
2.2
PRy
=1

and satisfies (10), (11). The maximization problem (13) is
equivalent to the minimization problem:

(13)

n

2057

F(x)=—"t"— (14)

Thus, the problem is stated as follows: it is required to
find a non-negative vector X that minimizes (14) and sa-
tisfies constraints (10). In a general case, when allocating
a multidimensional resource, constraint (10) takes the fol-
lowing form:

Za,] =b, i=12.,m. (15)

Therefore, we obtained a fractional nonlinear optimi-
zation problem.
To solve the problem obtained, we introduce new variables:

1

Yy .
Y =YX X; ==L, j=12..,n
de‘. Yo

In this case:

w2 dix,=3dy =1, (16)
=t =1

> ay,=by, i=12..,m (17)

Jj=t

Then the objective function (14) is transformed to the
form:

R y)=[ji,"?(zi)2]y§ :(,Zn‘fciyf).

The original task is now stated as follows: it is required to
find vector (yo, Yos oeor y,,), which minimizes (18) and satisfies
constraints (16), (17).

We shall obtain a solution by applying the uncertain La-
grange multipliers method.

We introduce:

=20y -2 (Z“zﬂ/;‘ _bz‘)_xw [zdﬂ/,i _1)'
=1 i1 =1 =

(18)

26 yl 27‘:“” m+1'd'=07 j=1,2,...,n,

7

whence

(Zx,aymmﬂ 1), j=12..n (19)

To define aset of (A,,A,,... A,,,), the derived expressions
for y; will be substituted in (16), (17) and we shall solve the
resulting system of linear algebraic equations:

n

(27"“:7 A j) =by, i=12,.,m,

; (27»151,] +A, j) 1.

(20)

The system of linear algebraic equations is solved by
any known method. For the simplest particular case of
a single-dimensional resource allocation we obtain m=1 and
aj=aj, bj=b; system (20) is simplified to the form:

Z% j 22 z(xaf”‘fdj):byo’

2% j 22(;2 Ma;+4h,-d))=1,

i=1

or
2
noa " ad,
TN /Y
1 7 T Ay 2 0
it 20 o 20
" aq.d. n o d?
A 1, =1
i 20 i 20



or

}"1C11 + 7"2C12 = byoy 7"1012 + 7"2C22 =1

Hence:
_ YbCypy —C,, _Cy =Cpyb 271

= D M= 7 (21)
C11C22 _C12 C11C22 _C12

Substituting (21) in (19), we obtain:

— yObCZQ_Cu_ 4; + C11_C12y0b . d.f j:1y 2.1 (22)

- C11cz2 _C122 2Cj C11C22 _C122 20? 7

Now, by substituting (22) in (17), we shall find y,, then
we shall define the desired solution:

x; :&, j=12.,n

Yo

Thus, the introduced transformation that converts the
non-linear-fractional criterion (14) to the form typical of
mathematical programming problems, has made it possible to
obtain a single-step solution to the original problem.

Consider an example. Assume:

2 2
Xx) +2x,

Flx,x,)=——=,
(1 2) (29{1+ch)2

(23)

X +3x,=1.

We give a solution to the example using the proposed
technique without detailed explanation.

1 Yy, .
s Y =YX, x== j=1,2

%= 2x, +x, Y

In this case:

Fy, y,)=yi +2y3,

{7/1 +3Y, =Y, (24)
2y, +y,=1.
Next:
q)(Y):?/f+2y22_}"1(y1+3y2_y0)_>“2(2y1+y2 —1)§
do(Y ,
( )=2y1_7\’1_27\’2=0’ y1=7\f1+27\-2;
dy, 2
do(Y \
W) _ gy, -3, -1,=0, =22t 25)
dy, 4

To find Ay and Ay, substitute (25) in (24):

7»1+227»2 +3.7u2 +4£’>k1 :%7\'1+£7“2:y0’
A+ 20, + 22t 3h =%x1+%x2 =1.

Hence:

-14+18y, 22-14y,
= y P— . 26
Ay 95 A, 95 (26)
Now, by substituting (26) in (25), we find y1, yo:
B=t(B-w)i vy= o= (16-17y,) @7)
5 25

Finally, by substituting (27) in the second equation of
system (24), we find yj.

1

2
7(3_y0)+25

1
- (16-17y,)=-(46 - 27y,)=1,

hence y,=7/9.
In this case:

1. 7\ 4 1 7\ 1
3= L)=2d =L 1e-17.L)=2.
Y 5( 9) 9 7 25( 9) 9

Then:

f_m A9 & 19 1
v, 97 7 97 7

The problem is solved.

Consider another example. We return to the problem
considered above (6), (7) and solve it by the proposed
method of non-linear-fractional programming. Thus, the
problem is stated as follows: it is required to find vector
X =(,,x,), which maximizes the objective function (6) and
satisfies constraint (7). We introduce:

1 Yy, .
lo_ — oy =yx, x.=—L j=12..n
Yo 247 + x5 Yi=%xp % Yo J
In this case:
v Y Y oY
F(ypyz)=y§(2+5§]=yf+5y§, L4222 =3,
Yo 0 Yo Yo

The problem now takes the form: it is required to find
(¥, y,), which maximize:

F(Y)=y; +5y,

and satisfy the system of constraints:

y1+2y2 =3y()7 (28)
2yf +y; =1.
We introduce the Lagrangian function:
(Y)=y; +5y;, -\, (% +2y, _3y0)_}"2 (2%2 +Y; _1)~
Next:
do(Y) A
=2y, -\ —4hy, =0, y =—r —;
dy1 y1 1 ZyI yl 2(1_2}\'2)
do(Y) A
——=10y, - 21, - 20y, =0, y,=—"2—. 29
dy, Y, 1 2Yy Y 5%, (29)



Substitute (29) in the equation of system (28):

A, A
+2.—L =3y,
o(t-on,) 5-n, P
Mo

=+ =1.
2(1-2x,)  (5-1y)’
Hence:

Ay (5-2,)+ 40, (1-22,) = 6y, (1-22,)(5-1,),
A (5-0,) + 202 (1-22, ) = 2(1-21,) (52, ).

The solution to this system is: A=0, Ay=5, y1=0. To
calculate y, and yo, we shall use equation (28). In this case,
we obtain y, =1, y,=3/2. Then, the desired solution to the
problem takes the form:

xf=y1/y0=0, X;=y2/y0=3/2.

A value for the objective function at optimum set (x1 , xz)
is equal to F(0;3/2)=5. This solution naturally coincides
with the one obtained earlier.

It should be noted that the described technique of the
fractional-non-linear optimization is applicable for solving
problems with an arbitrary power of variables in the numera-
tor and denominator of the optimized functional.

5. Discussion of results of constructing a method
to solve a fractional nonlinear optimization problem

We have proposed a single-step method for solving a frac-
tional nonlinear optimization problem. In contrast to those

known [15-19], the proposed method has the following
fundamental features:

—a possibility to derive a solution to the problem of
arbitrary dimensionality without using a labor-intensive
iterative procedure, whose rate of convergence cannot be
estimated even approximately;

— the order of nonlinearity of the components of an ob-
jective function is not limited. To implement the proposed
method for solving a problem, the model must meet the fol-
lowing requirements: functions ®(X) and g(X) must be sepa-
rable; the order of nonlinearity of all terms for the numerator
and denominator of the optimized function must be the same.

If these requirements are met, the method implements
a single-step procedure for solving a problem.

Directions for the further research are associated with the
development of techniques for extending the method to cases
when the parameters for the problem’s objective function
and constraints are described in terms of fuzzy [22] or inac-
curate [23, 24] mathematics. Possible ways to overcome the
problems that emerge in this case are proposed in [25-27].

6. Conclusions

1. We have proposed a method for solving the optimi-
zation problem of nonlinear-fractional functional in the
presence of linear or nonlinear constraints. The method is
based on the introduced special transformation of an original
fractional-nonlinear structure of the optimized criterion to
the form typical for standard problems of mathematical pro-
gramming of arbitrary dimensionality.

2. The fundamental merit of the proposed method is that
the method makes it possible to obtain the desired solution
in a single step of the computational procedure that employs
the standard methods of mathematical programming.
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