| =,

3anpononosano cmpozuii popmanrvHull aneo-
pumm nobyodosu 0eoicmoi 3adaui 0ns pisHux
eunaoxie 3anucy (3azanvha, 0CHO6HA, CMAH-
dapmuna ma xanoniuna) npamoi 3adaui Ninitinozo
npozpamyeannsi.

Ha nouamxy naeedeto o3nauenns napu 060-
icmux 3adau ons cmanoapmnoi opmu 3anucy
npamoi 3adaui NiniuH020 npoepamyeanns. Taxuii
nioxio o6rpyHmMosyemvbCs 3 Mux NOIUUi, Wo
3a wacom maxa napa 0yna o3navena nepuioto,
OCKINIbKU MAA 3MICMOBHY iHmMepnpemauiio.

Exonomiunoto inmepnpemauieto cmanoapm-
HOi 3a0aui € MaxcuMizauis npudymxy npu eupoo-
Huymei ma peanizauii desKux 6uoie nPoOYKui.
Taxuii nioxio 3Micmo6Ho 6Ka3ye HA ICHYBAHHS
npamoi sadaui (I) ma cmpozo 6ionoeionoi 0o nei
deoicmoi (cnpswicenoi) (II). Cynymus 0o npsamoi
3a0aui € 3adaua npo minimizauiio eumpam.

Basosum nonammsam meopii deoicmocmi
6 3adavax NIHIUH020 NPOZPAMYGAHHS € MOU
Qaxm, wo napa 3adax € 63aEMHO CRPANCEHUMU —
ompumanns 06oicmoi 6id 0eoicmoi npuzeooumso
00 npamoi 3adaui.

Cmpoeuit nioxio 0o ompumanns anzopum-
My ckaadanns 0e6oicmoi 3adaui rpynmyemocs
Ha meepoxcenni — deoicma 3adaua 6io 06oicmoi
€ npamoro (uxionoro) sadauero. /lna piznux
nap 0eoicmux 3adau cmpozo 00600UMbC BUKO-
HAHHA MAK020 MEePOHCEHHS.

Icnyroui cxemu nepexody 6io npsamoi zaoa-
ui 00 060icmoi Hocamv 3micmosnuii xapaxmep.
3 oensady ma uei axm, 3anpononosarno ma
Cmpo20 006e0eH0 AnzopuUmMM 3a2aJbH020 NIOX0-
0y 00 cKA0aHHA Nap CNPsCeHUX 3a0a4.

Dopmanizauis po3pobaenoi cxemu 00360-
JI€ JleeKo ompumyeamu napu 6i0omMux 060-
icmux 3aodau. Ile dossonuno zanpononyeamu
ma dosecmu icmunnicmv anzopummy nodyoo-
6u 0eoicmoi 3adaui 0na 0osinvioi popmu npeo-
cmaeaenns npamoi sadaui

Knaouoei cnosa: niniiine npoepamyeanis,
npama 3adava, 0eoicma 3adaua, 0eoicmicmo,
uinvoea (Qyukuin, cucmema ooMmedxHceHv, naApu
cnpsavicenux 3aoau

u] =,
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1. Introduction

Linear programming is widely used to solve the problems
of resource allocation [1], highest profit or least cost assess-
ment [2], inventory management [3], formation of an optimal
transportation plan [4], research identification [5], etc.

One approach to solving linear programming problems
is to apply the duality principle, which is methodologically
related to the theory of systems of dependent inequalities [4].
This aspect raises the concept of duality in linear program-
ming (LP) problems to a general mathematical rigor. The
key theorem in the LP theory is the Farkas-Minkowski
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theorem [6]. The theorem provides a necessary and sufficient
condition for a linear inequality to be a conclusion of a finite
system of linear inequalities. The importance of the theorem
is that all basic facts of the linear programming theory [7]
(including duality theory) can be obtained as conclusions of
this theorem.

Known methods of primal to dual conversion are based
on qualitative transformations and have substantial nature.
Formalizing and proving the correctness of the algorithm for
constructing a dual problem for an arbitrary form of presen-
tation of a primal problem will make it easy to obtain correct
pairs of known dual problems.



The relevance of research is driven by requirements for
simplifying solutions of linear programming problems based
on the development of a formal algorithm of conversion of
the primal problem to the dual linear optimization problem.

2. Literature review and problem statement

It can be said without exaggeration that the duality theory
and the resulting pair of conjugate problems are crucial con-
cepts in the LP theory. In the theory of sets, predicates, state-
ments, in the algebra of events and geometry there are so-called
duality theorems. According to certain rules, the primal theo-
rem is put in correspondence with the dual theorem. In many
cases, mathematical models of different systems are interpreted
as discrete optimization problems [8]. Search for methods of
exact or approximate solutions of such problems is performed
taking into account their belonging to so-called P and NP prob-
lems (algorithms of polynomial and exponential solution) [7].

In the classical section of linear programming, such a pair
of extreme problems is known. This is due to the peculiarity
of convex sets — closed convex sets in a vector space can be
described in two ways, both in the original R” and conjugate
R™ space. Existing schemes of conversion of the primal linear
programming problem to dual have, as a rule, substantially
economic nature and therefore cannot satisfy both economic
and technical cybernetics, which are widely used in manage-
ment models.

Combinatorial methods for accurate and practical solu-
tion of discrete optimization problems occupy one of the
important places in obtaining optimum values for such prob-
lems [8]. For the implementation of solution algorithms, it is
necessary to obtain an initial basis, estimates of optimality
and improvement in case of non-optimality. Modern combi-
natorial methods for the practical solution of linear program-
ming problems require the development of algorithms that
allow obtaining an approximate solution with a guaranteed
assessment of deviation from an optimum [9].

Algorithms of transformations in linear programming
problems are an effective way of finding solutions to optimi-
zation problems [10]. If to perform the primal to dual opera-
tion, then such a technique will allow observing the allowable
parameter set of the problem [11]. It is possible to obtain
upper and lower bounds of the values of the objective func-
tion of the problem and dynamically evaluate the possibility
of diversification of basic optimum variables with guaranteed
accuracy [12]. In [13], the method of thermoeconomic opti-
mization of energy-intensive linear systems on graphs is de-
veloped. The analysis of solution stability in the problems of
duplicate detection in electronic documents is given in [14].
The complexity of displaying linear relationships in learning
processes using Markov chains is explored in [15]. The per-
formance of linear models for sports training is shown in [16].

In the above publications, as a rule, individual forms of
presentation of linear programming problems for different
cases (general, basic, standard and canonical forms) of primal
problems are investigated and applied. At the same time, al-
though many methods in this area have been developed and
researched, there is a problem of creating effective models at
the stage of solving systems of equations for the mathemati-
cal description of complex systems [8].

Approaches commonly used to solve LP problems are
often aimed at simplification through the use of specific
constraints [5], iterative search for solutions of equation

systems [12], decomposition of systems using graphs [13].
The specified methods of solving linear equation systems are
focused on using additional transformation of mathematical
description of systems with the construction of unique algo-
rithms of problem solution [15]. The problematic issue of LP
problems is the lack of strategies for generalizing the search
for solutions. The essence of this study is that it is proposed
to choose the simplest form of the problem, taking into ac-
count the existing conjugated dual mappings of the problem
at the stage of problem formulation.

The dual LP problem is obtained by inversion of the objec-
tive function and variables of the original problem. If the objec-
tive function of the original problem is set to a maximum, then
the objective function of the dual problem is set to a minimum.
Primal to dual conversion should be carried out using a certain
formalized algorithm. The presence of pairs of conjugate dual
LP problems allows choosing a rational solution strategy for all
forms in view of the computing complexity of solution. All pos-
sible transformations of the original problem should improve
the solution of systems of mathematical description equations.

3. The aim and objectives of the study

The aim of the study is to obtain a formal primal to dual
algorithm and to strictly prove these rules. This will allow
choosing a simpler dual problem to solve linear programming
problems more easily.

To achieve this aim, the following objectives were set:

— to prove the conjugated nature for existing pairs of dual
problems;

— to present the operation of primal to dual conversion
in a general form.

4. Determination of duality for standard form
of linear programming problem

Suppose that the primal (original) linear programming
problem is presented in standard form [17].
Let us call the following LP problem a standard problem:

n
w, =2{cjxj — max,
p=

LA

n

’ 9112“-'” <b,i=1,...,m,
=t

xJZO,sz...,n,

or in matrix form:

W, =CX — max,
1:|Q :AX < B,
X>0.

The dual or conjugate problem to it is a problem of the
following form:

m
W, = Zbiyi — min,
i=1

II: i
91132%?/1- 2c,j=12...n,

i=1

Yy, 20,i=12,...,m,



or in matrix form:

W, =YB—min,
I:|Q, :YA>C",
Y >0.

For convenience, we introduce and comment on the fol-
lowing notations:

c=C=c=[c;,Cy....C,],

C eR" — coefficients of the objective function W, of the pri-
mal LP problem;

X eR" — variable (unknown) values (basis) of the primal LP
problem; I — symbol of the primal problem; IT — symbol of the
dual problem;

ary Gy Qi3 a,; ay,
Ay Ayy Ay ay; ay,
as  dy Ay as; as,
a=[a;],., = : :
aiy Gy Oy a;; 4,
|Gt Gno Gy pj w0 Gy |

— matrix of coefficients of the constraint system of the primal
problem;

2 |=[b,b,....b,]", BeR”

— coefficients of the right sides of the constraint system of
the primal problem;

Y

y:Y:y: y:Q :[Z/1,y2,...,ym]T, YERm

ym

— variable (unknown) values of the dual LP problem.
We introduce systems of covariance and contravariance
vectors for consideration [17]:

] er”, j=12...m

Y nj

U LT
a.=a.= . _a“.,azj,...a

— column vectors (covariance vectors) of the matrix A of the
constraint system Qp of the primal problem;

a =a‘=[ai1,ai2,...,ain]eR”, i=12,...n

— row vectors (contravariance) of the matrix A of the con-
straint system € of the primal problem.

In this case, the matrix A of system coefficients can be
presented in vector form:

a1

2
a T
A=|" :[a1,a2,...,a”’] =[a,a,,....a,|]eR"®R’,

m

a
and the pair of dual problems has a third form:
W, =(c, x) - max,

Q, :(aj,x)sb,

x>0,

— primal problem;

W, =(b,y)— min,

Q,:(@,y)=c,

y=0.

— dual problem to the given primal one.
In summary, we finally have three forms of the definition
of the dual problem to the standard LP problem:
W, = ZC].xj — max,
=
def Dual

LA

I: Z .
QI:Za.vx.Sb,., i=1...,m,
j=1
ijO,sz...,n,

m
W, = Zbl.y,. — min,
i=1

def Dual II .

m
QD ay,2c,j=12...,n
i=1

y¥,20,i=12,...,m,

W, =CX — max, W, =YB—min,
1:|Q:AX<B, — P9 q1:Q,:YA>C",
X>0, Y =0,

W, =(c,x) — max,
[:]Q, :(a].,x)Sb,

x>0,

def _Dual _ T Wy = (b, y) — min,

Q@ y) e

The conjugacy or duality of the given definition is justi-
fied by a certain sequence of operations, which, in the case of
cyclic application, should lead to the primal problem, that is:

I def Dual I def Dual I,

where —2 2«5 i5 3 set of rules of primal to dual con-

version.

Careful analysis of the definition of the dual problem
for standard form of representation of the primal problem
allows determining necessary, for primal to dual conversion,
operations —% 2.

— extreme requirements of the objective functions of pri-
mal and dual problems are opposite:

def Dual :
W, — max — 2L\ — min;



— for the max problem of the objective function, the
inequalities in the constraint system must have the sign <:

n
2.a,x;<b,
=

— components of the objective function of the dual prob-
lem are components of the vector of the right sides of the
constraint system of the primal LP problem;

— the matrix AT of the constraint system of the dual prob-
lem Qyq is transposed to the matrix A of the constraint system
of the primal problem Qy, since YA=ATYT;

— parts of the constraint system of the dual problem:
Q(al, y)=c are coefficients of the objective function W=
=(¢, x)—max of the primal problem;

—each inequality constraint of the constraint system
of the primal problem is put in correspondence with the
non-negative dual unknown:

n
. def Dual . .

QI.Zaijijbi—ﬁijO, i=1,...,m;
j=1

— each non-negative unknown of the primal LP problem is
put in correspondence with the inequality constraint of dual:

m
def Dual . .
xJ.ZO —_— QH.ZaijinCj, j=12,...,n

i=1

Note that different forms of LP problems are equivalent.
They keep a set of solutions. This can be achieved by using
equivalent transformation techniques of conversion of one
form of problems to another.

Thus, a certain equation of the constraint system of the
LP problem is equivalent to a system of two inequalities:

n
) Z,%-xj <b,
=
D%, =b e
=

Random sign variables can be presented as a difference of
2 non-negative variables:

=U.—0. > >
X, =u; -0, uj_O, v]_O.

Conversion of inequality constraints to equality constraints
is done by adding the non-negative (balance) variable:

Yoax,<b =Y ax;+x,,=b, x,,20, i=1.._k

=1 =

To simplify the transformation of LP problems into dif-

ferent forms, conversion between maximization and minimi-
zation of the objective function and vice versa is also used:

n n
W= c,x; > max e W, ==Y ¢x;, - min.
j=t Jj=1

Let us make sure that the introduced operations and
transformations perform the conjugation chain for the above
pair of problems:

I def Dual 11 def Dual L

Let us present the dual problem as a maximization prob-
lem and, by applying conversion rules and equivalent trans-

formations, prove the conjugacy of the pair of problems — the
dual problem of dual gives the original primal problem.

W =-YB-max,
I Q:-YA<-C", 4 b
Y 20,

W, = —(CT)TX—min,
— 4 Dl 1. Q:~AX <-B, o
X >0,

W, =CX —max,
oI Q:-AX<-B,
X >0.

Thus, it is confirmed that the main feature of duality
of pairs of LP problems is the possibility to reduce them to
each other by definition (the dual of the dual is the primal
problem).

4. 1. Model example No. 1

To the primal linear programming problem:

W, =—4x, +2x, - 3x, —8x, + x, — x5 + 5x, —max,
3x,—4dx, —Tx,+5x, — 4w, —x, <12,

X=X, +3x, —2x, +Txs+9x, <3,

I:Q;:
5, =32, +8x, — 5y +9x, +4x, 22,
7x,—5x, = 9x, +x, —3x;,—x, 23,
x,;20,7=1,..,7

formulate a dual problem.

Solution. To begin primal to dual conversion, we prepare
a system of constraints. The maximization problem requires
inequalities of the form <. In view of this, it is necessary to
change the sign of the third and fourth inequalities to the
opposite, multiplying by (—1).

W, =—4x +2x, - 3x, —8x, + x5 — x, + 5x, —max,
3, —4dx, —Tx,+5x, — 4w, —x, <12,
X=X, +3x,=2x, +Txs+9x, <3,

I:]Q,:
—-5x,+3x, —8x, +5x; —9x, —4x, < -2,
=7x,4+5x,+9x, —x, +3x; +x, <=3,
x,20,j=1,...,7.

Primal to dual conversion is convenient to perform in
Table 1.

Table 1
Primal to dual conversion for the model example No. 1

Y\X 2120|2920 | 2320 | 2420 | 4520 | 4620 [ a720| ? B
y20l 3 | 0o | 4|75 |-4]-1] < |12
y20] 1 -1 3 -2 0 7 9 < 3
y20 5| 3| o | 8|5 |-9]-4]<]|-2
y;20| -7 5 9 1 3 0 1 < -3

? > > > > > > >

C —4 2 -3 -8 1 -1 5

Following the primal to dual algorithm, we fill Table 1.
Presentation of the primal problem in standard form has the
following dual problem:



W, =12y, +3y, -2y, -3y, — min,

3y, +y, 5y, ~ Ty, 24,
-y, +3y;+5y, 22,
-4y, +3y, +9y, = -3,

I:|Q, : -7y, - 2y, -8y, +y, = -8,
Sy, +5y, +3y,>—1,
-4y, +7y, -9, =21,
=Y +9y, —4ys +y, 25,
y;20,i=1,...,4.

To obtain a complete set of primal to dual conversion ope-
rations, we consider the following pair of LP problems and
prove their conjugacy.

) W, =CX —max, df Dual 7. W, =YB —min,

|Q:AX =B, |Q,:YA=C".
Proof.

. W, =CX —max, X=X"-X",X"20,X"20

1Q,: AX =B,

w,=C (X”—X’)—Inax,
A(X”-X")<B,
~A (X”-X")<-B,
X">0,X"20,
W, = (Y”-Y’)B-min,

(Y"-Y)A=C",
IT: |, :

def Dual

X=XToXX20X20 (.| {
—= =2 2R Q)

def Dual

EE—— =
(Y”-Y’)(-A)>-C",
Y”20,Y’ >0,
. W, =YB —min,
1Q,:YA=C".

The proven duality of this pair of problems allows for-
mulating the implications of the definition of duality for the
standard LP problem:

— each equality constraint of the primal problem is put in
correspondence with a random sign dual unknown;

def Dual

[:Q,:AX =B 11:Y.
where Y is the random sign dual unknown;

— the random sign variable of the primal problem is put
in correspondence with the equality constraint of the dual
problem;

[ X2 110, :YA=C".
where X is the random sign variable of the primal problem:
Using similar transformations, it is possible to prove
the conjugacy of the main asymmetric forms of pairs of dual
problems:

W, =YB—min,
' W, =CX —max, def Dual__ q1-|) - VA=C"
1Q,:AX<B, .Yl;.O |

W, =C X —max, .
: ]' — def Dual . u/U:YB_mln,
L|Q:AX=B, 2 1 "
X=0 Q:YA2C',
W, =CX —min Wiy =YB - max,
I:QI.AX>B g bl 1.l YA=CT,
e Y 20.

Which was to be proved — the basic asymmetric forms of
pairs of dual problems are conjugate.

4. 3. Model example No. 2
To the primal linear programming problem:

W, =4x, +9x, + x, + 2x, — x; — 54 — max,
—X, =X, — X, —x, + x5 =—41,
I:]Q:q4x, +x, —x; =28,
X —x,+x;,=9,
x,20, j=1,...,5
formulate a dual problem.

Solution. We have the canonical form of the primal prob-
lem. For primal to dual conversion, we compile Table 2.

Table 2

Primal to dual conversion for model example No. 2

Y\X | 2120 | 2920 | 2320 | 420 | 2520 ? B
Y1 -1 -5 -1 -1 1 = —41
Yo 0 4 1 0 -1 = 28
Y3 1 0 0 -1 1 = 9
? > 2> > > 2>
C 4 9 1 2 -1

Following the primal to dual algorithm in case of presen-
tation of the primal problem in the canonical form, we have
the following dual problem:

W, =—-41y, + 28y, + 9y, — min,
Y t+y, 24,

-5y, +4y, 29,

Y +y21

Y —Y; 22

Y=Y +y;2-1,
y,20,i=1, 2, 3.

II:|1Q,, :

The resulting form of the dual problem corresponds to
the primal problem. That is, in case of presentation of the
primal problem in the canonical form, it is possible to obtain
the form of the dual problem.

4. 4. Model example No. 3
To the primal linear programming problem:

W, =x, - 3x, +5x, + 2x, — min,
4o, —dx, +3x, —x, 23,
I: Q- —x,+2x, +4x, = Tx, 22,
Y8, —xy - a0y — T2, 23,
X, +8x, —dx, —9x, 28

formulate a dual problem.



Solution. For primal to dual conversion, we compile Table 3.

Table 3
Primal to dual conversion for model example No. 3

Y\X X1 X9 X3 X4 B
y1=0 4 -5 3 -1 > 3
Y220 -1 2 4 7 > 2
y3=0 3 -1 -1 -7 > 3
y4>0 8 -5 -9 > 8

? = = = =

C -3 5 2

Following the primal to dual algorithm, we have the fol-
lowing dual problem:
W, =3y, + 2y, + 3y, + 8y, —» max,
4y, -y, +3y,+y, =1
-5y, +2y, -y, +8y,=-3,
3y, +4y, —y, oy, =5,
Y =Ty, =Ty, =9y, =2,
y;20,i=1, 2, 3, 4,

II:|1Q,, :

put in accordance with the original (primal) problem. It is
confirmed that the dual problem corresponds to the primal
problem. That is, in case of presentation of the primal prob-
lem in the canonical form, it is possible to obtain the form of
the dual problem.

4. 5. Model example No. 4
To the primal linear programming problem:

W, =2x, +8x, —x, + 5x, — max,
I: o {43(1 —5x,+3x, —x, <3,

Uy + 200, +dy, —Tx, <2

formulate a dual problem.
Solution. For primal to dual conversion, we compile Table 4.

Table 4
Primal to dual conversion for model example No. 4
Y\X X1 X9 X3 X4 ? B
¥1=0 4 -5 3 -1 < 3
Y220 -1 2 4 -7 <
? = = = =
C 2 8 -1

Following the primal to dual algorithm, we have the fol-
lowing dual problem:

W, =3y, + 2y, — min,
4y, -y, =2,
-5y, +2y, =8,
II:|Q,; : Nty
3y, +4y, =1,
-y, =Ty,=5,
y;20,i=12,

put in accordance with the original (primal) problem. The
above conjugate pairs of dual problems are the basis for
generalizing the properties of duality in linear programming

systems in case of presentation of the primal problem in the
general form.

5. Dual problem for the general form of primal problem

The given pairs of dual problems allow performing a gen-
eralization of the definition of duality in linear programming
problems in case of presentation of the primal problem in the
general form.

Let us have the general linear programming problem:

W, =CX — max,

vec ) (3 ()

x;2 0, j=1, 2.1,
or in expanded form:
W, = c,x; > max,
=
Y ax,<b, i=1,2 3.k,
j=t

1,
Zang:bn i=k+1,k+2k+3,..m,
=

x,20, j=1, 2,1,

the dual problem to it is the problem of the following form:

W, =YB — min,
A, AL [=] (€
II:QII:{(Y; Yz) (A1 A2 _ C1 )
21 22 - 2
20, i=1, 2,k
or in another form:

m
Wi = zbi y; — min,
i=1

I Zyi a;2c;, j=1,2, 3,..,
. Q L) it

1Y
Zyi a;=c; i=[+1,1+2 1+3,..n,
i1

¥,20,i=1, 2,k

Model example No. 5
To the primal linear programming problem:

W, =7x,—4x,+3x, —2x, + x; — min,
—-3x,—-5x,+9x, —x, +8x;>24,

rlo - X +2x,—x,+3x, = Tx; <11,

[0.1]

X +4x, +x,—2x,—x;=38,
—x,+3x,+6x, —dx, — 31, =21,

x;20, x,20,

formulate a dual problem.
Solution. For primal to dual conversion, we prepare
a system of constraints of the primal problem — for the mini-



mization problem it is necessary to have inequalities only >.
We change the sign of the second inequality to the opposite.

W, =7x,—4x,+3x, —2x, + x; — min,
-3, —5x, +9x, —x, +8x; 2 24,
—x,—=2x,+x, =3x, +Txy > -11,
X +dx, +a,—2x, —x, =8,

—x, +3x,+6x, —5x, —3x, =21,

x,20, x,20.

Primal to dual conversion is performed in Table 5.

Table 5
Primal to dual conversion for model example No. 5
Y\X X1 Xy 23>0 X4 x5>0 ? B
120 | -3 -5 9 -1 8 > 24
20 | —1 -2 1 -3 7 > 11
U3 1 4 1 i) -1 = 8
s -1 6 -5 -3 = 21
? = = < = <
C 7 —4 3 -2 1

The dual problem has the following form:

Wy =24y, —11y, +8y, + 21y, — max,

=3y~ Yty -y, =7,
oY, =2y, + 4y, + 3y, =4,

II:|1Q, :< 9y, +y, + y, + 5y, <7,
Y, +3y, +2y,+5y, =2,
8y, +7y,—y, -3y, <7

y, 20, y,20.

We investigate the case of the presence of non-positive
unknowns in the primal problem and violation of the corre-
spondence of the inequality sign to the extremum type of the
objective function.

Let us prove that every non-positive unknown x<0 of the
primal problem is put in correspondence with the inequality
constraint, for max — >, and for min — <.

The pair of LP problems are dual.

W, =C X —max, W, =YB—-min,
1:Q:AX>B, M2 Lq1:|Q, :YA<CT,

X >0, Y <0.
Indeed,

W, =CX —max, . W, =CX —max,
I:|Q:AX>B, & [:|Q:-AX<-B, 4 2«

X >0, X =0,

W, =Y"(-B)—min, W, =YB —min,

Y'=-Y
Dl L q1:1Q, Y (-A)2CT, e T1:|Q, 1 YASCT,
Y’ >0, Y <0.

Thus, it is proved that in case of violation of the corre-
spondence of the inequality sign to the optimum type of the
objective function, the corresponding dual unknowns must
be non-positive y<0.

Similarly, it is found that every non-positive unknown
x2<0 of the primal problem is put in correspondence with the
inequality constraint in the dual problem, which is opposite
in sign to the main definition. On these grounds, the given
pairs of problems are dual.

W, =C X —max, W, =YB —min,
I|Q:AX<B 2 q1:|Q,:YA<CT,

X<0 Y 20,

W, =C X —max, W, =YB -min,
I|Q:AX>B, P q1:iQ, : YA<C",

X<0, Y <0,

W, =CX —min, W, =YB-max,
I Q:AX>B, —“ 2 q1:|Q, :YA>C",

X <0, Y >0.

Thus, it is proved that every non-positive unknown x<0
of the primal problem is put in correspondence with the
inequality constraint in the dual problem, which is opposite
in sign to the main definition. On these grounds, the given
pairs of problems are dual to the original problems.

6. Dual problem for an arbitrary form
of the primal PL problem

Summarizing the proofs and implications, it is possible
to obtain a general primal to dual algorithm for an arbitrary
form of the primal linear programming problem.

Definition. For an arbitrary form of the primal linear pro-
gramming problem:

W, =CX — max,
A11 A12 A13 X1 S Bl
Qi Ay Ay Ay || X | 2] B )
I: Ay Ay A ) (XS ) [=] B,
x;20,  j=1,2..k
x, 0, j=k+1 k2,0
x;, j=l+1, [+2,...n,
or in expanded algebraic form:
W, =20jxj —max,
=t
Zai].xjsbj, i=1,2 3,.,s,
=1
Q: Zai/szb,., i=s+1,s+2,5+3,..,t,
I: =
Noax,=b, i=t+1t+2t+3,..m,
=
x; 20, j=1, 2.k
x; <0, J=k+1 k2,1,
x;, j=1+1, [+2,...n,

the dual problem to it is the problem of the following form:



W, =Y B— min,
Ay Ay Ag)z| (G
Qy: (Y1 Y, Ya) Ay Ay A |G|
IL: Ay Ay Ay )[=] G
Y, 20, i=1, 2,..,5,
y; 20, i=s+1, s+2,..,t,
Y, i=t+1,t+2,...,m,

or in expanded algebraic form:
Wi= Zbi y; —min,
i=1

Zyi a;2c;, j=1,2 3.k,
i1

- Q. 2%%3% j=k+1, k+2, k+3,..1

i=1

Zyi a;=c;, i=[+1,[+2, [+3,.n
i=1

y; 20, i=1 2,..,s,
y, <0, i=s+1, s+2,..t,
Y, i=t+1,t+2,..,m.

Model example No. 6
Formulate a dual problem to the given primal linear pro-
gramming problem:
W, =7x,—4x,+9x, — 2x, —max,
—2x,—3x, +5x,+x, =1,
3x,+4x, —8x, —2x, 221,
X, —2x,-3x,+4x, <12,

x,<0,x,20.

Solution. Primal to dual conversion is performed in Table 6.

Table 6
Primal to dual conversion for model example No. 6

Y\ X Xy 1y<0 X3 1420 ? B

vt -2 -3 5 1 = 1
y2<0 3 4 -8 -2 > 21
y4=0 -2 -3 4 < 12

? = < = >

C —4 9 -2

The dual problem has the following form:
W, =y, +21y,+12y, — min,

2y, +3y, +y; =7,

=3y, +4y, -2y, <4,

II:|Q,; :
5y, —8y, =3y, =-9,
Yy~ 2y, +4y; 2 -2,
Y, < 0, Yy 2 0,

put in accordance with the original (primal) problem. That
is, it is proved that for an arbitrary form of the primal
linear programming problem, there is a general primal to dual
algorithm.

7. Discussion of the results of the study of dual problems

As is known, the majority of LP problems are solved
due to specific conditions or simplification using available
constraints in the form of equalities or inequalities [5]. Some-
times it is possible to formulate problems of iterative search
of the solution of systems of equations [12] or decompose
systems using graphs [13]. Such methods of formulating LP
problems and solving systems of linear equations use direct
descriptions of systems with the construction of unique solu-
tion algorithms [15]. Despite the wide variety of forms of LP
problems, it remains relevant to identify ways of generalizing
the search for solutions. It is shown that, from the practical
point of view, the proposed approach allows expanding the
possibilities of choosing the form of LP problems in order to
reduce the computing complexity of optimization problems
of this class [18]. It is suggested to choose the simplest form
at the stage of problem statement, taking into account avail-
able conjugated dual problem mappings.

Dual conjugated pairs of mappings of LP problems are
formed through the inversion of the objective function and
variables of the problem. The following rules for constructing
a dual problem are known:

—each i-th constraint of the original problem corre-
sponds to the variable y; of the dual problem; and vice versa,
each j-th constraint of the dual problem corresponds to the
variable ; of the original problem;

—if one of the pair of dual problems is formulated on
maximization of the objective function, then the second — on
minimization and vice versa;

—inequality constraints should be written with the
sign «=» — in minimization of the objective function;

— coefficients of the objective function of one of the prob-
lems are free members of the constraint system of the other
problem;

— matrices composed of the coefficients of the constraints
of the original and dual problems are mutually transposed.

Optimal solutions to the dual problems are closely inter-
connected, which leads to the conclusion that, in the general
case, there is no need to search for a solution by the descrip-
tion of both primal and dual conjugate problems. It is enough
to define the solution only by one form of description.

For optimal solutions of the primal and dual problem,
when inequality is strictly fulfilled, zero variables correspond
to constraints, and non-zero variables included in the basis
correspond to the conditions of the fuzzy constraint inequali-
ty, implemented as equality. These properties of dual solution
can significantly reduce the time of solution, if the problem
has much more constraints than variables. Then, solving the
dual problem, it is possible to find its basis, and then, after
selecting only the constraints in the primal problem corre-
sponding to the basis, solve the ordinary system of linear
equations for them.

The applied value of the proposed approach is the use
of the obtained result to enable the improvement of com-
plex systems described by systems of linear equations with
systems of linear constraints [19]. A large number of mathe-
matical models in project management have a description
of linear optimization problems. In this regard, the given
theoretical data are used to solve their conjugate problems,
which have practical interpretation. Generalization of the
method of mutual conjugacy of mathematical mappings of
the dual problem for an arbitrary form of the primal problem
will make it possible to easily obtain correct pairs of known



dual problems. This allowed to propose and validate the
algorithm for constructing the dual problem for an arbitrary
form of primal problem. The main drawback or limitation of
the proposed method is applicability only for linear problems.

8. Conclusions

1. For existing pairs of dual problems, their conjugacy as
the main criterion for composing duality pairs is rigorous-
ly proved. Formation of the dual problem is based on the

statement that the dual problem of dual is a primal (original)
problem. For different pairs of dual problems, this statement
is rigorously proved.

2. Operations of conversion of the primal problem to the
dual problem presented in the general form are rigorously
defined. Given this, primal to dual conversion has a simple
formal order. This suggests that, in the general case, there is
no need to search for a solution by the description of both
primal and dual conjugate problems. It is sufficient to define
the solution only by one form of description of the linear
programming problem.
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