yu] =,

Pozensanymo pesyrvmamu 6usgieHHs NepioouMHUX CUZHALIE
3 BUKOPUCMAHHAM MeOPii XA0CY, HA 0CHOBI UCKpemHoi 06podKu
ampaxmopa /[y inea y nepepisi Ilyanxape.

Zlns npoeedenns 0ocaiodicenv o0pano xaomuumny cucmemy
My inea, axa xapaxmepusyemvcsa 6UCOK00 wymaugicmio 00
cuenanie nepiodunnoi popmu, i mosxce bymu peanizoeana 6io-
HOCHO HeCKAA0HO010 CXeMO10.

IIposedeno ananiz peaxuii cucmemu Jlyinea na nepiooun-
nuii enaue. Iloxazano, wo npu 36invwenni amniimyou nepioouy-
HUX CKAA006UX 6XIOH020 CUZHAY HA MACMOMI 3A0AI0UUX KOJIU-
eanw 6id0ysaemvcsa 3cye Pazo6oi mpaekmopii 83006ic nepepizy
Iyanxape, axuii xapaxmepusyemocs Qpaxmanvioro zeomem-
pier. Buznaueno munu 3min ampaxmopa /lypginza, axi eunu-
Karomv 6HACAI00K 0ii nepiodunnozo cuznany na 6xo0i. ¥ ¢aszo-
6iil NAOWUHI, YMEOPeHill GUXTOHUM CUZHANOM i 1020 NOXi0HOI0,
eudineno xonmpoavii oonacmi ons Qixcauii munie Junamixu
¢aszoeoi mpaexmopii. Bionogiono do xapaxmepucmux ompuma-
Hux asoeux mpaexmopiii no6y0oeano maduylo icmunnocmi,
AKa 00360J3€ BUKOHYBAMU OUIHKY 6NAUGY nepioduunoi ckaa-
00601 i3 docmamnbo eeauKuM KpoKom OUCKpemusauii 3a 4acom,
Wo 6axcAuUBo 05 3a0e3neuenHs WeUOK00il npucmpoie 006poo-
Ku cuenanie. Ompumano Qyuxuyionanu, AKi ONUCYrOMsb NPoUec
BUABNEHHA NEPIOOUMHUX CUZHAIB WIAAXOM OUCKPemILoi 00poOKU
ampaxmopa cucmemu /lydpinea y nepepizi Ilyanxape.

Ha ocnosi cpopmynvosanux Qyuxuyionanie ma maodauui
icmunnocmi 3anpononosano CMpPYKmMypHy cxemy npucmporo
015 BUABIEHNS NEPIOOUMH020 CUuzHANY 6 wyMmi. Y 3anpononosa-
HOMY npucmpoi 6 aKocmi 6xi0H020 GIOKY MoJiCe BUKOPUCMOBY-
samucs peanizauis cucmemu /lydgpinea na ocnosi ananozo060zo0
eNeKmpun020 Ko0ad.

Ompumano snamenns OUCKPEMHUX OUTHOK aMNnimyou nepio-

mpaexmopii cucmemu [Jydinea éionocno ampaxmopa y nepe-
pizi Ilyanxape. 32i010 3 pezyaomamamu npoeedenozo mooeio-
6aNHsl, 3ANPONOHOBAHA CXeMA 00380JIAE GUABAAMU NePiOOUUHT
CUHANU NPU HUSLKUX SHAMEHHAX GI0HOUEHHS CULHAL/ WMYM
Knouoei crosa: eussnenns cuenanie, xaomuvna cucmema,
2apmoniunuil cuznan, ampaxmop, uudposa oopodKa cuznanie
| 0

Juunoi cxna0060i 6xiOH020 cueznany 3a 3miuweHHAM Pazo6oi
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1. Introduction

Development of advanced information technologies, com-
munication and control systems [1] induces experts to focus
more and more attention to the use of chaotic signals and in-
formation processing systems [2]. Signal detection methods
based on chaos theory have been known for the last 20 years.
Such methods can be characterized by a significant level of
information capacity, improved correlation properties and
super-broad bands (super-broad band systems, SBS) under
various conditions [3,4]. Currently, signal detection me-
thods using chaotic systems are being investigated with vari-
ous types of modulation (BPSK, QPSK and others) [1, 5-7].
Software and hardware implementations of the signal detec-
tion methods based on chaos theory are known. However,
practical application of such methods is complicated because
of errors in control and estimation of chaos [8—10]. Present-
day studies related to detection of signals using the theory
of chaos are focused on the problems of identification and

control of chaos [11-13]. Their solution makes it possible to
improve sensitivity and noise immunity.

The main advantage of using chaotic systems for detect-
ing signals consists in their high sensitivity to weak signals
against the background of noise, in particular when the
signal-to-noise ratio is less than 0 [4]. However, the known
methods of processing attractors [9, 10] do not enable tak-
ing advantage of chaotic systems to a full extent because
of insufficient development of algorithms of estimation of
the input signal parameters by analyzing the output chaotic
oscillations [12]. In particular, because of complexity of dy-
namics of the chaotic systems in detection of periodic signals,
the process of transition of the system from a chaotic state to
a periodic state [14] which is characterized by low sensitivi-
ty [2] is used as an indicator of signal presence. Coupled with
sensitivity of the critical state parameters to the form of non-
periodic input signals, this disadvantage substantially limits
the possibility of practical application of chaotic systems to
detection of periodic signals.



Thus, the task of analyzing and developing new methods
and means of detecting periodic signals by means of process-
ing attractors of chaotic systems is relevant.

2. Literature review and problem statement

The results obtained in studies of signal detection ca-
pabilities using a chaotic system were presented in [15]. It
was shown that a chaotic system is characterized by high
sensitivity to weak periodic signals. The methods are based
on sensitivity of the Lyapunov exponents of the chaotic sys-
tem to weak input signals [12]. The results presented in [12]
suggest that chaotic systems have significant prospects for
application in signal processing. However, it has been shown
that the process of identifying a chaotic state of oscillations
can introduce a significant statistical error and brings about
substantial signal processing complications. Thus, current
methods of analysis of chaotic signals were developed insuffi-
ciently and require further improvement.

A theory of nonlinear systems with chaotic dynamics was
developed in [14] for the problems of signal detection. It was
shown that the Duffing oscillator described by the differen-
tial equation of the second order is characterized by noise
immunity. It was proved that the Duffing system response to
periodic signals is stronger than the response to non-periodic
noise with uniform distribution. Let us consider the Duffing
oscillator equation [14] given by expression (1):

2 (t) koo () x(6)+(x(2)) = 5(¢), (1)

where s(¢) is the input signal; x(¢) is the output signal; & is
the attenuation factor. It is known that such Duffing system
is extremely sensitive to small variations of periodic compo-
nents of the input signal [14].

As amplitude of the periodic component of the input
signal grows, chaotic state of the Duffing system oscillation
(Fig. 1, a, b) changes for the periodic state of oscillations
(Fig. 1, ¢, d). The graphs shown in Fig. 1 were obtained at
signal-to-noise ratios smaller than 0. Thus, transition of the
Duffing system from chaotic state to periodic in the known
signal detection means serves as a function of the indicator of
presence of a periodic signal.

’ 20 30 40 50 60 70 80 90 -1 0
t x(t)
c d

1

Fig. 1. States of the Duffing system oscillations:
a — chaotic state; b — phase portrait of chaotic
oscillations; ¢ — periodic state; d — phase portrait
of periodic oscillations

Relative simplicity of implementation is advantage of the
presented detection method consisting, practically, in dis-
tinguishing between forms of the phase portrait in Fig. 1, b,
and Fig. 1, d. However, information contained in the form
of chaotic oscillations (Fig. 1, a, b) is practically not used to
detect signals. Thus, benefits of the chaotic system are not
utilized completely.

Ways of realization of oscillating systems with bi-stable
potential functions were described. Methods are known
for detecting signals with analog implementation of the
Duffing system as an input circuit of the receiver [16]. Digi-
tal implementation of the Duffing system can be based on
the use of a programmable logic matrix [17]. The methods
presented in [16] and [17] are characterized by drawbacks
inherent in the method [14] (Fig. 1), which relate to incom-
plete use of information about the input signal which can
be derived from the form of oscillations of the output signal
in a chaotic state.

One of the most important trends in development of
chaos-based signal detection methods is communication
where chaotic systems are used as highly sensitive input
circuits of receivers [6]. Besides, high sensitivity of chaotic
systems is used to diagnose mechanical faults [18] for the
purpose of non-destructive testing. Application of a chaotic
system to seismic signal processing was described in [19].
There is also an example of use of chaotic mapping in anal-
ysis of Internet traffic in order to detect LDoS attacks [20].
Studies [6, 18—20] also used a detection method using tran-
sition to the periodic state which is a significant drawback.
Insufficient practical implementation of these methods is
associated with the difficulty of maintaining a stable thresh-
old of signal detection and the need to solve the problem of
chaos identification. Methods of estimation of parameters
of an input signal of a chaotic system proceeding from cha-
racteristics of an output signal need further advancement
for an ample use of the information contained in chaotic
oscillations.

In addition, issues related to insufficient noise immu-
nity of the described signal detection methods remain
unresolved. This may be caused by objective difficulties
associated with the use of transition from chaotic state to
periodic as an indicator of presence of signals which mani-
fest themselves in essentially impossible detection of weak
signals in the periodic state and in the costs associated
with maintaining critical oscillation state [11] which makes
relevant studies inappropriate. A variant of overcoming the
above difficulties can consist in advancement of methods
of chaos identification according to the characteristics of
phase portraits. Namely this approach was used in [13],
however, the problem of maintaining a stable value of the
detection threshold in the critical state remains unresolved
because of high sensitivity of the chaotic system to weak
influences which is described in[21]. According to the
results reported in [21], critical state of a chaotic system
depends on weak influences and therefore value of the signal
detection threshold may differ for different forms of noise.
Variation of the threshold value impairs signal detection
characteristics and increases value of the required minimum
signal-to-noise ratio.

Thus, the present study addresses the problem of detect-
ing periodic signals by processing the Duffing attractor in
a chaotic state without using transfers to the periodic state
which enables additional increase in sensitivity due to pro-
cessing of chaotic oscillations.



3. The aim and objectives of the study

The study objective was to develop a method for detect-
ing signals using a discrete processing of the Duffing attrac-
tor without transitions to the periodic state of oscillations.

To achieve this objective, the following tasks were set:

— study response of the Duffing system to periodic and
non-periodic signals;

— determine relationship between the amplitude of the
periodic component of the input signal and dynamics of the
Duffing system attractor;

— construct a block diagram of a device for detecting pe-
riodic signals by discrete estimation of the phase trajectory
shift of the Duffing system.

4. The task on detecting periodic signals by discrete
processing of the Duffing attractor

Let us consider equation of the Duffing oscillator [2, 12]
given by expression (1) in a form of transform Fp[u(¢)]:

x”(t)+ k-’ () - x(t)+(x(2) )
=s,(¢)+u(t)ex(t)= FD[u ] (2)

where sy(¢) is the driving signal that determines state of
oscillations of the Duffing system; x(¢) is the output signal;
k is the attenuation factor; u(¢) is the input signal that is an
external influence on the Duffing system.

Input of the Duffing system receives signal s(¢) which is
a sum of the driving signal so(¢) and the external influence u(t):

s(¢)=s,(¢)+u(?). 3)
The driving signal has a harmonic form:
s, ()= A, sin (ot +@,). (4)

The external input signal contains a useful periodic sig-
nal s;,/(¢) and aperiodic noise §(¢):

u(t)=s, (0)+5(¢). ®)
Useful periodic signal is described by expression:
lﬂ/ (t) A inf Sln( inft + (pi/l/)' (6)

Amplitude A;, is the informative parameter of the useful
signal s /(¢).

The problem of detecting the periodic signal s;,Af) in
composition of the input signal u(¢) can be expressed as
a problem of finding transformation G[x(¢)] resulting in
a binary value Q, which is 0 in the absence of signal and 1
when signal is present:

Q=6[x(0)]=G[ £, [u(n)]]=¥[u()] ™

{0 A,; <A, decision: signals,, (¢)is absent,

1, A,;=A,,, decision: signal s, (¢)is present.

Transformation G[x(¢)] can be expressed as transforma-
tion Y[u(t)] performed on the input signal.

3. Study of the Duffing system response
to periodic and non-periodic signals

To solve the problem of periodic signal detection, it is
necessary to study response of the Duffing system to periodic
and non-periodic signals at the following parameters:

k=3t o=t 9,0, ©)

However, it should be noted that a same form of oscil-
lation of the Duffing system can be obtained for different
values of frequency g and amplitude Ay when scaling coef-
ficients are introduced into equation (2) as shown in [23].

Input signal of the Duffing system meets the condi-
tions [14, 24]:

A,,<0.024; o, =0,£0.050, 0, =0, (10)

Input noise §(¢) is a random variable whose distribution
is uniform in the passband of the Duffing system (2).

According to solution of equation (2), the Duffing system
is in a chaotic state if 0.35<A(<0.83. It was established that
chaotic state is stable in the amplitude range 0.4<A(<0.7 and
does not change to periodic state as a result of weak exter-
nal influences [22]. In this state, chaotic oscillator has the
highest sensitivity to changes in the input harmonic compo-
nent s;,/(¢) at frequencies close to o, [2, 24].

Oscillograms of the Duffing system output signal in
a chaotic state (4p=0.4) and in a periodic state (49=0.8) are
shown in Fig. 2.
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Fig. 2. Duffing system response to periodic
and non-periodic signals: @ — input signals;
b — chaotic state; ¢ — periodic state

A signal u(t) described by expression (5) enters the
Duffing system input. Oscillograms of chaotic oscillations
almost coincide (Fig.2,b) in a complete absence of signal
(u(t)=0) and in presence of non-periodic noise (u(t)=&()).
When adding a weak periodic signal (u(¢)=si,/(t)+E(¢),
SNR=-6.23 dB), a significant change of the form of chaotic
oscillations is observed.

Thus, in the chaotic oscillation state, the Duffing sys-
tem is characterized by high sensitivity to the influence of



periodic signals and resistance to the influence of non-
periodic noise. This enables detection of weak signals against
the background of noise by distinguishing changes in the
shape of oscillations of the Duffing system which arise be-
cause of action of different types of input signals.

Known methods of detecting periodic signals using the
Duffing system are based on the use of the process of the
system transition from chaotic state to periodic as a result of
increase in amplitude of the periodic component of the input
signal above a certain threshold level (Fig. 1) as an indicator
of signal presence. This approach was used, in particular,
in[5,7,10-13].

A substantial drawback of this approach consists in
a significant reduction of the Duffing system sensitivity in
a periodic state. This is confirmed by the graphs in Fig. 2, ¢
where it is shown that oscillations of the Duffing system in
the periodic state practically do not differ under the action of
the same input signals (u(¢)=0, u(t)=&(1)), u(t) =si () +E(1),
SNR=-6.23 dB).

6. Detection of periodic signals using discrete processing
of the Duffing attractor

6. 1. Establishment of a relationship between ampli-
tude of the periodic component of the input signal and
dynamics of the Duffing system attractor

Let us consider the Duffing attractor in the Poincare
section defined as a set of points (x(mT+@); x’(mT+@)) for
which m=[t/T]=0,1,2,3,..; T is the period of the driving
signal; T=2m/wy; @ is the phase of the driving oscillation;
@=t—mT. Fig. 3 shows geometric location of the Poincaré sec-
tion points of the Duffing attractor for three different values
of the driving signal phase (0, /2, 7).

1

x'(KT)

x(kT)

Fig. 3. Dynamics of the Poincare section of the Duffing
system: ¢=0 (blue); p=m/2 (purple); = (red)

The Poincaré section of the Duffing system changes over
time according to the phase of the driving signal. Structure
of the Duffing attractor has properties of fractal geometry
that manifest themselves in a connection with the homo-
clinic forms of phase trajectories. A more detailed analysis
of the fractal geometry of the Duffing attractor is presented
in[2, 21, 23] with schematic images.

Based on the results of numerical experiments, a diagram
of motion of points of the Poincaré section of the Duffing
attractor was constructed.

Possible types of movement of the Poincare points are
shown in Fig. 4 by green arrows. The points can rotate

around one of the centers (—1,0), (1,0) or move from one
center orbit to the orbit of the other center. Accordingly,
during each period T of the driving signal so(¢), phase tra-
jectories of the Duffing system diverge which leads to an
increase in influence of single-phase periodic signals at fre-
quencies close to y. The continuous process of divergence of
phase trajectories can be seen in Fig. 1, b.

+Control
Region 0

Ju—

=
P(n)=1
Control
1 (p=7t+7t/\/2/ I Region 1 |

L5 1 05 0 05 1 L5
x(H)

Fig. 4. A diagram of movement of the points of the Poincare
section of the Duffing attractor

Red arrows indicate the direction of shift of the Poincaré
cross-section points which results from an increase in the
periodic signal amplitude at the input (at a frequency close
to 0)()).

Thus, points of phase trajectories of the Duffing system
are characterized by four types of dynamics with respect to
the centers (-1, 0) and (1, 0):

1) rotation around one of the centers without changing
the shift direction with an increase in amplitude of the peri-
odic component of the input signal;

2) rotation around one of the centers with a change of the
shift direction as the amplitude of the periodic component of
the input signal grows;

3) transition from one center of rotation to another
without changing the shift direction as the amplitude of the
periodic component of the input signal grows;

4) transition from one center of rotation to another with
a change in the shift direction when amplitude of the periodic
component of the input signal grows.

Accordingly, using sequences of types of dynamics 1-4
in time, it is possible to estimate and compare magnitudes of
the shift of phase trajectories caused by influence of different
forms of the input signal u(¢) which is also confirmed by the
results obtained in [23, 24].

In order to determine the shift direction corresponding
to growth of the useful signal amplitude, two control regions
(Control Region 0, Control Region 1) were selected on the
phase plane and two auxiliary lines x’=(x+1)/2, x¥’=(x—1)/2
were drawn which make it possible to divide the Poincare
section of the Duffing attractor into segments 0, 1, 2, 3 as
shown in Fig. 4 for the phases of the driving signal ¢ = /2
and g=m+7/2.

If amplitude of the periodic component of the input signal
grows, then the phase trajectory of the Duffing system shifts
sequentially from segment 0 to segment 3 regardless of the
driving signal phase.

The sequence number of entry of the phase trajectory
point into control region 0 or 1 is indicated by variable 7.
Position of the phase trajectory point with respect to the



structure of the Duffing attractor is determined each time
the point enters one of the control regions (Fig. 4) at time
moments ¢, where =0, 1, 2,..., M. Then, position of the point
of the phase trajectory with respect to the Duffing attractor
can be described for each 7 in the binary numeration system.

Value of P(n) is an indicator of entry of the phase trajec-
tory point into the control regions (Fig. 4).

1, x(¢)<tna’(t)<0 (control region 0),

P =
() {O, x(t)<=1na’(¢)>0 (control region 1).

(1)

The value of V(n) is an indicator of direction of shift of
the phase trajectory as amplitude of the periodic component
of the input signal grows (Fig. 4) for the point of time ¢,
when the phase trajectory point enters one of the control
regions.

V(n)=

ool )= P m)n(e)= () (x(e )+ (0"") 2

where ¢, <t, <t,, quantity P(n) takes value 0 or 1 accord-
ing to (11). Value V(n)=0 corresponds to clockwise direc-
tion and the value V(n)=1 corresponds to counterclockwise
direction.

Thus, quantities P and V are arrays of binary quantities of
1xM size which are defined as transforms from the input signal:

P=G,[x(t)]=Y,[u()]. (13)
V=G, [x(t)]=Y, [u(t)]- (14)

From the binary quantities P(n), V(n) and P(n—1),
V(n—1) determined at the moments of the n-th and n—1-th
entry of the phase trajectory point into the control regions,
the number E(n) of the Poincare section segment which
characterizes the type of point movement can be determined
using the truth table (Table 1).

Table 1

Truth table for determining number of a segment
of the Poincare section

E(n)
P(n—1) | V(n-1) | P(n) V(n) Binary system | Qua-
ternary
Ei(n) | Eo(n) | system
0 0 0 0 1 1 3
0 0 0 1 0 0 0
0 0 1 0 0 1 1
0 0 1 1 1 0 2
0 1 0 0 1 1 3
0 1 0 1 0 0 0
0 1 1 0 0 1 1
0 1 1 1 1 0 2
1 0 0 0 0 1 1
1 0 0 1 1 0 2
1 0 1 0 1 1 3
1 0 1 1 0 0 0
1 1 0 0 0 1 1
1 1 0 1 1 0 2
1 1 1 0 1 1 3
1 1 1 1 0 0 0

0, ([)(Ifz,)=g+1'cP(n)ﬁx'(,fv)>(_1)1’(71)_(x(tr)4_(_1)11;1-1))/2y

The two-element output vector E(n) in Table 1 is the
number of the segment in the Poincare section (Fig.4)
which contains the point of phase trajectory (x(¢); ¥'(t)). Va-
lues of E(n) are given in binary and quaternary numeration
systems. Eq(n) and Ey(n) are the higher- and lower-order
bits of the binary number E(n), respectively. An array of in-
dexes of 1xM size which can be expressed as a transform W
for all n=0, 1, 2, ..., M is the result of successive application
of the truth table (Table 1):

(15)

E=W,[G,[x(t)],6,[x(1)]]

Estimation of the phase trajectory shift resulting from
influence of the periodic component of the input signal is
given by this expression:

L= iE(n)A’” =W, [E]=Y,[u(t)]. (16)

=0

(12)

3

where L is the value of the shift estimate; E(n) are the weight
coefficients that can take values 0, 1, 2, 3 according to the
truth table (Table 1).

Fig. 5 shows dependence of the value of quantity L on
amplitude A;,f of the useful signal s;,/(¢).

2 4 6 8 10 12
Ain %107

Fig. 5. Dependence of estimate of the magnitude of shift
of the phase trajectory on the amplitude of the periodic
component of the input signal

Thus, dependence of dynamics of the attractor of the
Duffing system on amplitude of the periodic component of
the input signal is reflected by the estimate of shift L of the
phase trajectory described by expression (16), Fig. 5. The
growing form of the dependence shown in Fig. 5 is remaining
at signal-to-noise ratios up to —10 dB. Therefore, a weak
periodic influence of s;,(t) causes a larger shift of the phase
trajectory of the Duffing system than the much stronger
non-periodic influence of §().

6. 2. The process of detecting periodic signals by dis-
crete processing of the Duffing attractor in the Poincare
section

As shown in Section 6. 1, dependence of shift of the phase
trajectory of the Duffing system on amplitude of the periodic
component of the input signal is described by expression (16)



for the Poincare section. Since application of the transform
Y [u(?)] results in a growing dependence of the quantity L
on amplitude of the useful signal A, (Fig. 5), it is advisable
to use two threshold values Lo, Ly which will allow one
to uniquely determine position of the A, value relative to
the threshold Ag,. Then, the decision-making procedure is
described by the expression:

{L<L,h,,(J = A, <A, decision:signal s, (¢)is absent,

L>L, =A, >A,, decision:signal s, (¢)is present.

Thus, the desired transformation (7) which describes the
signal detection process has the form of expression (18):

Q=Gx(e)]=Y[u(t)]=

{O, Y, [u(t)]<Lth,0,decision: signal s, (¢) is absent, 9

1,Y,[u(t)]2L,,,, decision:signal s, (¢)is present.

Expressions (11) to (18) can be used to further develop
devices and algorithms for detecting periodic signals by ana-
lyzing the Duffing attractor.

7. Block diagram of a device for detecting periodic signals
by discrete estimation of the phase trajectory shift
of the Duffing system

Implementation of the Duffing system [16] is shown
in Fig. 6. The electric circuit in Fig. 6 is implementation of
a chaotic system characterized by a typical Duffing attractor
in the phase space.

D1 R3
D2 OPI
|—N— R L x(t)
_Em_—o
Output
C =
s(t) RI R2
o 1 1 —_
Input

Fig. 6. Implementation of the Duffing system in a form
of an electric circuit

Voltage of the input signal s(¢) is fed to the inverting input of
the operational amplifier OP1. Voltage of the output signal x(¢)
is taken from the capacitor C. The linear part of the Duffing sys-
tem is realized by a resistor R, an inductor L and a capacitor C.
The nonlinear part of the Duffing system is implemented by
a resistor R3 and diodes D1, D2. The addition operation is im-
plemented by the OP1 operational amplifier circuit [16].

The amplitude estimation unit of the periodic component
of the input signal can be digitally implemented. A logic
circuit that determines discrete value L of the amplitude
estimation of a periodic component of the input signal is the
main part of the evaluation unit.

The logic circuit model is described by the truth table
(Table 1).

The signal detection device can be implemented in a form
of the structure shown in Fig. 7.

x©, _— P

ﬂg/gg;g X(® CI/P(n-1) decision
T Logic |[EM)| Accum.| L Q
—V(n) |Seh- [T Dev. Cmp.—>
L]
DI|V(n-1)

reset signal

RSG

Fig. 7. Block diagram of a device for detecting
periodic signals

The analog part of the signal detection device consists of
a Duffing system (Fig. 6) and a driving signal generator. The
digital part consists of a unit of the control region indica-
tor (CI), a unit of the indicator of the phase trajectory shift
with growing amplitude A;,s of the periodic component of the
input signal (DT), a logic circuit that implements the truth table
(Table 1), a device for accumulation of counts, a comparator
unit (Cmp.), a restart signal generator (RSG) and a timer unit.

A binary quantity V(n) is the output signal of the unit of the
shift direction indicator. The unit of the control region indicator
consists of comparison circuits that determine values of P(n).

The CI and DI units produce new values of the output
signals when phase trajectories intersect the line ’=0 when
entering the control regions according to Fig. 4.

Counts of the logic output signal E(n) are fed to the ac-
cumulation unit which generates value of the L quantity in
accordance with expression (16). The comparator unit (Cmp.)
compares the quantity L with the threshold value Ly, and
issues a decision Q on presence or absence at the input of a
periodic signal s;,(¢) with amplitude Aj;;s not less than the
threshold value Ay,

If the value of the estimate of L is much greater than the
threshold value Ly, (typical condition is L>2L,), then the
RSG generates a restart signal that sets zero values at the
input and output of the chaotic system. The timer block re-
starts the Duffing system when the L value remains below the
threshold value Ly, during a relatively long time (typically
20-30 periods of the driving signal).

Thus, the presented structure of the signal detection de-
vice implements the transform (18) by discrete processing of
the output signal of the analog Duffing system. The result of
operation of this device is a binary quantity Q which is 0 in
the absence and 1 in the presence of a useful periodic signal
with an amplitude not less than the specified threshold value.

The device model (Fig. 7) was studied in the MATLAB
software environment. The obtained model parameters are
given in Table 2.

Table 2
Basic parameters of the model of the device
for detection of periodic signals

Parameter Value
Amplitude of the driving signal, A 0.4
Amplitude of the useful signal, A;,s 1075104
Signal-to-noise ratio (SNR) -10dB
Threshold value of the useful signal amplitude, Az, 6-107°
Lower threshold of estimate of the phase trajectory 15.10-6
shift, Ly,
Upper threshold of estimate of the phase trajectory 25106
shift, Lo
Number of elements of the array of coefficients E, M 24




8. Discussion of results obtained in signal detection
using discrete processing of the Duffing attractor
in the Poincare section

The obtained results of detection of periodic signals using
discrete processing of the Duffing attractor are explained by
the fact that periodic influences cause a much greater shift of
the phase trajectory of the Duffing system than non-periodic
influences (Fig. 2, 5). The proposed approach features an im-
plementation of detecting periodic signals using the Duffing
system in a chaotic state, without transitions to the periodic
state. This makes it possible to avoid the errors associated with
instability of the critical state and low sensitivity in the perio-
dic state. The minimum signal-to-noise ratio at which signals
can be detected is limited by own noise of the Duffing system
circuit and the digit capacity of the digital estimation device.

Dependence of the quantity L on amplitude of the useful
signal A;,s (Fig. 5) is similar in form to the dependence ob-
tained in [23] by integration according to the Aj;,s amplitude
which confirms correctness of the performed calculations.

The described approach provides detection of periodic
signals at low signal-to-noise ratios in the bandwidth of the
Duffing system. Additional linear filters can be used to obtain
more complex characteristics of frequency selectivity at the
input. On the other hand, the linear part of the Duffing sys-
tem can also be modified to obtain the necessary pass band
and delay band according to the theory of linear filtering.

It is known that the Duffing attractor is characterized by
the properties of fractal geometry [3]. For further studies, de-
velopment of mathematical models based on fractal geometry
to analyze the Duffing system response to various forms of
the input signal is an interesting task. Such models can great-
ly increase efficiency of the above signal detection method.

9. Conclusions

1. Response of the Duffing system to periodic signals
was investigated. The ranges of parameters necessary to
maintain the chaotic oscillation state were determined. It
was found that the Duffing system is characterized by the
highest sensitivity to weak periodic influences in the am-
plitude range 0.4<Ay(¢)<0.7 where the chaotic state does
not change to the periodic state due to weak external in-
fluences.

2. Dependence of dynamics of the Duffing system attrac-
tor on amplitude of the periodic component of the input sig-
nal was determined using a discrete estimation of the phase
trajectory shift in the Poincare section. The phase trajectory
shift estimate was presented in a quaternary numeration
system according to the four main types of phase trajectory
dynamics of the Duffing system trajectory. The obtained es-
timation makes it possible to make decisions on presence or
absence of a periodic signal with a specified amplitude range
at the input.

3. A block diagram of a device for detecting periodic sig-
nals based on a logical truth table which implements discrete
estimation of the phase trajectory shift in the Duffing system
under influence of the periodic component of the input signal
was constructed. The proposed block diagram enables detec-
tion of periodic signals at a signal-to-noise ratio of —10 dB in
the bandwidth of the Duffing system.

Thus, a method for detecting signals by means of discrete
processing of the Duffing attractor was developed which
makes it possible to increase sensitivity due to the absence of
the periodic state of low sensitivity. The results obtained can
be used when developing high-sensitivity digital devices for
receiving signals.
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