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u] =,

Cucmema pynxuiii Dadepa-Illayoepa 6ynra esedena 6 1910 poui i cmana
nepuwum npuxnadom éaszucy 6 npocmopi Qpynxuyii, nenepepenux na [0, 1].
Bidomo nusky pesynvmamie w000 eracmusocmeii psoie @adepa-Illayoepa,
Y momy uucai w000 ouinio8ans noxubox nabauicenns Qynuxuii noarinoma-
MU ma wacmuHHuMU cymamu psaoie, nodyodosanux 3a cucmemoro Maéepa-
Hlayoepa. Bidomo, wo cepeo 3aedarv meopii HAOIUNCEHNHA PYHKUTL 8aNCaU-
UM € OMPUMAHHI HOBUX OUIHOK BEUUHU HAOIUINICEHHA 006INbHOT PYyHKUTT
desxum 3adanum knacom pynxuiv. Tomy docrioncenns anpoxcumamuenux
saacmugocmeil noninomie i wacmunnux cym psaoie Maéepa-Illayoepa cma-
HOGUMb 3HAUHUY iHMepec 0N CY1achoi meopii anpoxcumauii Qynruyii.

ocnioscerno numanns nabausicenns Qynruiii oomesicenoi eapiauti wacmum-
HuMU cymamu psoie, nodyoosanux 3a cucmemoro Pynxuii Dadepa-Illayoepa.
Ompumaro ouinky noxudxu anpoxcumauii ynxuii 3 kaacie Qynxuii oomedice-
noi eapiauii C, (1<p<e<) y mempuui npocmopy L, 3a 0onomozoto 3nauenv mooy-
25 Henepepeénocmi 0po606020 Nopsaoxy ®z_1,,(f, t). 3 ompumanoi nepisnocmi
BUNTIUBAE OUIHKA NOXUOKU HADTUNCEHHA HenepepeHUX PYHKUTIL, AKa sUpadcena
uepe3 MoOYb HenepepeHocmi Opyzo2o NOPAOKY.

Taxoonc y xnaci pynxuiti C, (1<p <o) ompumani ouinku noxubdox nad.au-
acenna QPynxuii y mempuui npocmopy L, 3a 0onomozoto Mo0yna nenepepe-
Hocmi 0po606020 nopsaoxky ®¢_q1,,(f, t).

Hdna xaacie @ynxuyiti oomescenoi eapiauii KCV 3 ,) (1<p <) ompumano
ouinky noxubxu nadaudcenns Qynxyii y mempuui npocmopy L, wacmun-
Humu cymamu psaoie Dadepa-Ilayoepa.

Taxum vunom, OmpumMano HU3KY OUiHOK NOXUGOK HAOGAUINCEHHA Qymni-
uiil o0Mmedxncenoi eapiauii ix wacmunnumu cymamu psoie Daéepa-Illayoepa.
Ompumani pesyaomamu € HoeuMu y meopii nabauxcenns Qynxuii. Bonu
NeGHUM UUHOM Y3a2aNbHIOIOMb paHiue 6i00Mi pe3yiomamu ma MoXNcymo
Oymu suxopucmaui 01 nO0ATLUWMUX NPAKMUMHUX 3ACMOCYBAHD.

Kmouoei cnosa: pynxuii oomescenoi eapiauii, inmezpaivha mempura,
MOoOyab Henepepsenocmi, cucmema Padepa-Illayoepa.
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1. Introduction space of functions continuous on [0, 1]. Approximate proper-

ties of the Faber-Schauder system regarding approximation
The Faber-Schauder system of functions was introduced  of individual functions and classes of functions are studied,
in the paper [1] and became the first example of a basis of the ~ for example, in [2—5]. In those studies, the upper bounds of



errors of approximation of the function f continuous on [0, 1]
by Faber-Schauder partial sums S, (f,x) in the uniform met-
ric are obtained.

Particularly, in [2] an estimate of the error of approxima-
tion of a continuous function by its Faber-Schauder partial
sum is obtained. This result is specified in [4] using the sec-
ond-order modulus of continuity.

In [6-8], the exact estimates of errors of approximation
of functions from some function classes by Faber-Schauder
partial sums in uniform and integral metrics are obtained.

However, the problems of approximation of functions
of bounded variation by their Faber-Schauder partial sums
have been investigated in few papers. In particular, in [9]
considering the approximation of functions f from the
classes C, (1< p<eo) by polynomials in the Faber-Schauder
system, several estimates of upper bounds are obtained using
the modulus of continuity of fractional orders ®,_,,,(/,8).

The fact that there are known only few results regard-
ing approximation of functions of bounded variation by
Faber-Schauder partial sums can be explained particularly
by certain complexity with obtaining the approximation er-
rors of the functions by their Faber-Schauder partial sums in
classes of functions of bounded variations.

Thus, investigation of approximation of functions of
bounded variation by their Faber-Schauder partial sums
and obtaining new results are of current interest not only to
the modern theory of approximation but also to the wavelet
theory actively used in modern signal processing. It is also
appropriate to use moduli of continuity of fractional orders
®,.,,,(/,8) for obtaining estimates of errors of approxima-
tion of functions by series in the Faber-Schauder system.

2. Literature review and problem statement

Although the Faber-Schauder system of functions was
introduced in 1910 [1], investigation of the properties of the
system, including approximate properties, began only in the
1950s with [2, 3]. Thus, investigating [2] the approximate
properties of the Faber-Schauder system for an arbitrary
continuous function, an upper bound of the value €, (f),., in
terms of the second-order modulus of continuity is obtained.
Later, in [4] that result is specified and the following estimate
of the error of approximation of an arbitrary continuous func-
tion by its Faber-Schauder partial sum is obtained:

f(x)—gn(f,x)sluﬁz(f;%), n>1.

In [3], an estimate of the error of approximation of an
arbitrary continuous function by its partial Faber-Schauder
sum using the first-order modulus of continuity is obtained.

f(x)—gn(f,x)sluﬁ(f,%).

Subsequently, that result is specified in [5] and the vali-
dity of the following relation is shown:

/(x)-E,,(f,x)s%m(/,%), n=23..

It should be noted that in [2-5] only the questions of
approximation of continuous functions in uniform metrics

are considered and the obtained estimates are not exact in
the sense of the final character of the estimates.

The first exact estimates of the errors of approximation
of functions by partial sums in the Faber-Schauder system
are obtained in [6-8]. In [6], the estimates of the errors of
approximation of differentiable functions by their partial
Faber-Schauder sums on classes of functions C'and W'H, are
obtained in integral metrics ¢(L). Moreover, the estimates
obtained in [6] can’t be improved in case of a convex upward
modulus of continuity.

In [7], the following unimprovable estimate of the error
of approximation of differentiable functions from class %
by Faber-Schauder partial sums in the metric L_ is obtained:

Further studies in this direction are continued in [8]
where a number of exact estimates of errors of approxima-
tion of the classes of differentiable functions L, by Faber-
Schauder partial sums in integral metrics L, are obtained.

However, the questions of approximation of functions of
bounded variation by either polynomials or partial sums of
series in the Faber-Schauder system aren’t considered in the
foregoing papers.

Only the work [9] is known, where the problems
of approximation of functions of bounded variation by
Faber-Schauder polynomials are studied with obtaining
a number of estimates of approximation errors. Particularly,
in [9] an upper bound of the error of the best approxima-
tion of functions f of bounded variation from the class C,
(1< p<eo) by polynomials in the Faber-Schauder system
in the space metric L, is obtained:

/() =5u(r5) <

= 1
£ (1), 520, (1 L)

However, the questions of approximation of functions by
Faber-Schauder partial sums aren’t addressed in [9].

It should be also noted that studying the approximate
properties of the Faber-Schauder system, the moduli of con-
tinuity of fractional orders o, (/, 8) are used only in [9].
This is despite the fact that in connection with problems of
approximation theory, the moduli of continuity of fractional
orders o, ,(f,8) were first studied in [19] and used in se-
veral papers, for instance, [19-22], devoted to investigation
of some questions of approximation theory, particularly to
approximation of functions of bounded p-variation.

Application of the Faber-Schauder system in the theory
of nonlinear approximation of functions is considered in [10].
In particular, some issues of the behavior of a greedy algo-
rithm in the Faber-Schauder system in the space of continu-
ous functions are examined [10].

As an example of a piecewise linear wavelet system that
has been actively studied and used in recent decades in signal
processing, the study of properties of the Faber-Schauder
system is of considerable interest for the modern theory of
functions, the theory of signal processing and wavelet theory.

In [11, 12], the behavior of the coefficients of decompo-
sition of a continuous function in the Faber-Schauder series
is investigated. The questions of convergence of series in the
Faber-Schauder system are studied in [13-16]. In [17, 18],
some questions of decomposition of functions in the Faber-
Schauder system of functions are considered.



Consequently, taking into account the abovementioned,
the properties of the Faber-Schauder system require further
rigorous research. In particular, studying the approximation
properties of the Faber-Schauder system and obtaining new
results on estimates of errors of approximation of functions
by polynomials and partial sums in the Faber-Schauder sys-
tem are of importance for further investigations.

Using the moduli of continuity of fractional orders
®,,(/,8) is also of significance for obtaining new re-
sults on estimation of approximation errors in case of the
Faber-Schauder system.

3. The aim and objectives of the study

The aim of the study is to consider the issues of ap-
proximation of functions of bounded variation by their
Faber-Schauder partial sums. The classes of functions of
bounded variation C, (1< p<e) and KCV,, ,, (1< p<eo) are
chosen for the investigation. Modules of continuity of frac-
tional orders ®,_,,,(/,8) (k=1,2) are chosen as characteris-
tics of smoothness of the functions. To achieve the aim of the
study, the following objectives are set up:

— to obtain estimates of errors of approximation of functions
from classes of functions of bounded variation C,, (1< p < o) in
the space metric L, using the values of the moduli of continuity
of fractional orders @, (f,¢) and @, , (f,t);

— in the class of functions of bounded variation KCV,, »
(1< p<eo), to obtain an estimate of the error of approxi-
mation of functions by Faber-Schauder partial sums in the
metric L, (1< p<eo) applying the modulus of continuity of
fractional orders ®, o ( /, t).

4. Definitions and notations necessary for further
presentation of the results

Let us recall the necessary notations and definitions in
order to formulate the results of the research.

Let C=C ([0 1]) be the space of continuous on [0 1] func-
tions / with the norm | £ —rnax{‘f (x)|: x <0, 1]} and let L,
(1< p<eo) be the space of measurable functions J/ on 0,1
whose p-th power is summable and hence the norm:

o (1 1/p
171, ={ Jlrer dx}

is finite.

Let the function f be defined on [0 1] and H {t }’ o
where 0=¢,<t,<...<t_, <t =1, is its arbitrary partition.
The set of partitions of this type will be denoted by 3. Ac-
cording to [23], the value:

n)"i{g /(6

is called the variational sum of the order p of the function f by
partition TI. If for the function f the following value is finite:

1/p
u)p} (1< p<eo)

Vp(f)ﬁsup{Ap(f,H):Heﬁ} (1< p<eo),

we say that the function f has a bounded p-variation on
[0,1]. Let V, (1< p <o) be the class of the functions f defined

on [0,1], for which V, (f)<ee [24]. In case p=1, V] is a usual
class of functions of bounded variation. In [23], it is shown
that the functions f from the class V, (1< p<eo) can have
the points of discontinuity of the first kind only. Therefore, if
feV,(1Sp<eo) then feL forall (1<qg<eo).

According to [25], we assume that the function f given
on [0,1] belongs to the class C, (1< p <o) if for any &> 0 there
is the number §=38(¢&)> 0 such that the inequality:

Is1r0-ser] <

holds for an arbitrary finite system of disjoint intervals
such that:

{Z(Bi —oc,.)p}w <5

The class C, is a class of absolutely continuous on [0,1]
functions. From the results of [26], it follows that the in-
clusions C,cC, and C,cV, where 1< p<r<eo are valid.
Therefore, the classes C, (1Sp<o<>) are considered to be
a generalization of the class C,, and the functions included
in them are called p-continuous functions. The property of
p-continuity is considered to be an intermediate property
between the properties of continuity (p=-ce) and absolute
continuity ( ) [27].

The modulus of continuity of fractional order 1-1/p
(1< p <eo) for the function f(x)eV, is called the value:

wwp(f,t):sup{Ap(f, I):

<}, (1)

where \l'l\ = max{ti —t = 1,3} is the diameter of parti-
tion IT [23].

Using the characteristic (1), it is shown in [25] that
the class C, (1< p<eo) coincides with the class of functions
f(x)eV, for whichw,,,,(f,7)— 0 for T—0.

The modulus of continuity of fractional order k—1/p
(1< p<eo) for the function f eV, is defined in the following
way [19]:

o, (f.8)= sup{wFW(A'{*f(x), 7»):\ Y= 8}, keN., (2)

where

AP (x)=3 (~1)

i=0

( j (x+iL), meN.

Let the finite everywhere on [0,1] function / has bounded
(m, p)-variation (1< p <eo) [28], [29] if

m

o
> (1) Chf () +o=—E

=0

; o
—{supz } < oo,

where the upper bound is taken on all possible partitions
0=xp<x1<..<x,=1 of the interval [0,1]. We define the class
of functions with bounded (i, p)-variation Vi /)by Vi o)
Let KCV,, , be the class of contlnuous on [0,1] func—
tions f €V, . the (m, p)-variations of which do not exceed
the given posmve number K.
We would like to note that in case m =1, the class of func-

tions V(1,p) matches with the class of functions of bounded



p-variation V. In case p=1, the classV , was considered

in [30]. In case m=1and p=1, the class V],

m1)
, is considered in [31].

On the unit segment [0 1], we 1ntroduce the dyadic in-
tervals:

8,=8! =((k-1)/2" k/2")

for the arbitrary number n=2" +k withme Z, and k=1,...,.2".

The Haar system of functions is defined on [0,1] in the
following way (see, for example, [32, 33]): x,(1)=x"(1)=1,
and for every n=2"+k with me Z,_and k=1,2":

22 if tedt,
(D=0 () =3-2"", if tedl),, 3)
0, if ted,

where M is the closure of the set M. At the jump points, the
Haar functions are equal to half the sum of their left and
right limits. At the endpoints of [0,1], they are equal to their
limiting values from within [0,1].

Using the Haar system of functions (3), the system of

functions {\y"}nez is defined in [1] in the following way:

v, (x)=1; wn(x)zjxn(t)dt (neN;0<x<1).

0

It is shown in [1] that every continuous function feC
can be represented by the series:

f(x)=§ak (/)w, (), (4)

that converges uniformly on [0,1], where the coefficients
a,(f) are given by the formulae:

w(f)2/(0), ak(ff’ijxk(x)df(x) (keN). )

The integral in (5) is understood in the Lebesgue-Stieltjes
sense. The result (4) is replicated in [34] using the system
of functions {,}  that differ from {y,} by constant
factors only. For the n-th partial sum (neN), we write
the expression (4) as:

df n

Sa(fx)=Y,

k=0

(/). (%) (neN). (6)

The sum (6) is called the Faber-Shauder partial sum of
the function f e C. We introduce the quantity:

o=l -5.00)

that is called the error of approximation of the func-
tion f by its Faber-Schauder partial sum S,.(f) in the space
metric X.

5. Results of the study of approximation of functions
from the classes C, (1< p <o)

df
Let N.=N\{t} and h=2"" We also introduce the
notation:

n'=

(1/{2”, if n=2'”+k(meN;k=1,2’”—1), -

2" if n=2""(meZ,).

Theorem 1. For all numbers n=2"+k (meZ k= 1,?)
and for the arbitrary function /e C, (1< p<e), we have:

1 1
SWmH/p (fy 271’) (8)

Proof. Let there given the arbitrary function feC. We
consider the following function on some interval [oc, B] c [0, 1]:

y(f;t;oc,B)dsz(t)—{f(ocHW(t—oc)}. )

We have:

Y(f050,B)=v(f;B;0,B)=0.

Let y(/;¢;0,B)#0 on the whole [o,B]. We define by
{,. the point on the interval [o,B], in which the function
Y(fit;a, [3)‘ reaches its highest value. We will consider two
cases when the point 7, lies in the first and second half of
the interval [o,, B].
Let o=t |<|B—t,.|- Then the point ¢'=2¢  —o be-
longs to [o,B]. Using the definition (9) and the fact that
¢ —a=2(t,, —a), we have:

max

1Y (52 0 B) LY (52,05 04 B) +

+ V(S L 0 B) =Y (S35 B} =

=[2/ (1) = () =S () Z S () + S (=)=
= [ (tna) = S (0 (e =)+ / (20):

(10)

In case if [B—¢,, |<|oe—¢
longs to the interval [o,B].
above, we have:

V(3 b 0 B) | 127 (i 0 B)
=12/(t,0) =/ (B)-

|, the point ¢” =2t —P be-
Then similarly to the written

—'Y(f;t”;(l, B)‘:

/()=
B+t -B)-/(B)- i
Sttt B)+ £ )
We introduce the following notation:
f( 1mx nnx - ) mn
it =ma] " >+
/(B ( )) fB)

(
( max max B))+ mn

It is known (see, for example, [3], [8]) that the partial
sum S,(f;x) defined in (6) for any ne N. is linear on the
closed intervals & ., (i=1,2k) and &/ (j=k+1,2"), and inter-

m+1

polates the function f € C at the points of the set D, given by




D ={oyuit},
vl {2;-1}k i
D”_{Zm}j(,u 7 (n=2,3,..).

Thus, for the arbitrary function f € C, we have:

=> [ 1/()=Sa( ftl"dt+ZJ|f

i=1 8 J=k+1 5/,

Su(f2)l de.

Then using (9) from the above equality, we can write:

2k

zjwft i—1)h,ih)|" de+

1151

+ 22 [1v(£58:(i-1)2h, j2h)) de.

Jj=k+1 5,

(12)

Using (10), (11) and definition of the function I( /;¢,,.; o, B),
we have:

» J Y (/36 (i=1)h,ih)| de <

<h1ﬁ(f b (= )hlh) i=1,2k,
(13)
[1v(£56:(i-1)2h, j2R)| de <
5
QR ([t (7=1)2h, j2h), j=k+1,2",
where ¢, . and ¢ . are the points in which the func-

tions |y(/;t;(i—1)h,ih)| (i=1,2k) and [y(f;t;(j—1)2h, j2h)
(j=k+1,2") achieve their maximum values, respectively.
From the definition (2), the modulus of continuity of the
order 2—1/p can be written in the following form:

By 1/, (f? 6) =

I DoV RN RTRRE IO €

0<AI<8;x, x,+1e[0,1],i=0,n

Then for any function feC,(1<p<e) and n=2"+k
with me Z, and k=1,2" -1 based on (10)—(13), definition
I(f;t,.;oB) and equality (14), we obtain from (12) the
following:

k
12Zlﬁ(f;t,mi;(i—1)h,ih)+
g/(f), <2h <
+21”( i (7 —1) 20, 21)

J=k+1

<20}, (f;h). (15)

If n=2""meZ,, then using (9) for f €C we can write:

gm+

L= [ 1r0)-

1151

_Z_Hthl_

1151

‘ dt =

h,ih)" de. (16)

Then from (16), using (13)—(14) and taking into account
the definition of the function I(f; ¢,,; o, B), for an arbitrary
function feC, (1< p<eo) we have:

e (f <h21p(

We obtain the inequality (8) for any ne N, and function
feC, (1< p<ee) from (15), (17) and definition (7) of the
numbers 7’. Thus, Theorem 1 is proved.

It is known that in case p— oo, the space C_ coincides
with the space of continuous functions C [19]. Then going to
the limit p — e in (8), we can get the following result.

Corollary 1. For any ne N, and function feC, we have:

ma‘(z’ l 1)h lh)<hmf l/p(f ) (17)

%(f)cémz(f;ﬁ), (18)

where ®,(/;x) is the second-order modulus of continui-
ty [8]. This inequality is unimprovable on the set C.
The fact that inequality (18) cannot be improved on the
set C can be proven applying the functions defined in [5].
The estimate (18) specifies one result obtained in [4].
Theorem 2. Let 1< p<eo and n=2"+k with meZ,,
k=1,2". Then for the arbitrary function f(x)eC,, the fol-
lowing inequality holds:

&.(/), < (113/63/ (7 )

Proof. Let feC. Considering the function y(/; ¢; o, B),
defined in (9) on the fixed interval [oc, B] c [0, 1], we note that
the value of the following quantity:

J(B)- /()
]
belongs to the interval [min(f(oc),f(B)),max(f((x),f(B));j.

Then using the notations from the proof of the Theorem T,
we define the following function:

df

Z(f; Ly o B)=

@ St .W) f(a),

=max
|/ (te)— S (B)

}>v(f: Ly O B))- (19)

For the arbitrary function f(x)eC, and any n=2"+%
(meN,k=1,2"-1) from (12) and the notations (19) above,
we have the following inequality:

2k i

&), <Y | \ (3t (i —1)h,ih)\”dt+
=1 (i-1)h

om 2k

w3 ] (it (G- 1)28, j2R) de<
J=kH (j-1)2h
1 2k

S 220 (fity i (i=1)hiih) +
2 i=1
<2y

+y Zﬁ(f; L3 (7 =1) 20, Zh)

Jj=k+1

<2hw!

-1/p (f, 2h)’ (20)

In case n=2"" (meZ,) from (16) for feC, (1< p<oo)
we obtain:



1)h, ih)<

2k
(), <ShY 2 (f: by (i-
i=1

<hwy,,,(fh).

21

From the inequalities (20), (21) and definition (7), the
inequality follows:

£,(/f), 5(72,1)1/,1‘31-1/p(f;,1,)

P

for any function feC, (1<p< o). Thus, Theorem 2 is
proved.

Going to the limit p—eo, the next result follows from the
Theorem 2.

Corollary 2. For any function feC and numbers ne N,,

the following inequality holds:

& (/). sm(f; ni)

The inequality is unimprovable on the set C.

6. Results of the study of approximation of functions
from the classes KCV(y,) (1< p <o)

Let us further consider the approximation of the func-
tions from the classes KCV, (IS p<eo).

Theorem 3. 1f the functlon /€KCV, . then for any
1< p<ooand ne N, the following 1nequahty olds

€ < _K 22
g, (f)L,, (n’)“”' (22)

Proof. Let feKCV,, and (1< p<ee). Taking into ac-
count the definition of tﬁwe function I(/; ¢,.; o, B) and defi-
nition of the (2, p)-variation for n=2"+k with me N and
k=1,2" —1 from (12), (13) and using (10), (11), we obtain
the following inequality:

g'(f), <2hK”. (23)

In case if n = 2" (m IS Z+), then using the notations above,
from (13) and (16) we have:

g,(f), <hK’. (24)

P

The inequality (22) follows from (23), (24) and the defi-
nition (7) of the numbers »’".

7. Discussion of the results on studying
the approximation of functions of bounded variation
by Faber-Schauder partial sums

The issues of approximation of functions from the classes of
functions of bounded variation by their Faber-Schauder partial
sums and obtaining the estimates of errors of approximation of
functions are studied. In particular, the classes of functions of
bounded variation C, and KCV,, , (1< p <o) are considered.

In order to obtaln the estlmates of approximation errors of
functions from the classes C, by their Faber-Schauder partial
sums, the modulus of continuity of fractional orders w, , , (f,8)
that were not previously used when studying the problems of
approximation of functions by Faber-Schauder partial sums
are used.

New results for the approximation theory that can be
used for further practical applications are obtained. The ob-
tained results are new and generalize in some way the results
known from [4].

Although the issues of approximation of functions of
bounded variation from the classes C, and KCV}, , (1S p<eo)
by Faber-Schauder partial sums are 1nvest1gated the obtained
results can be further extended for the case of approximation
of functions by polynomials in the Faber-Schauder system.

It is also important to further investigate the appro-
ximation of functions of both one and many variables from
other classes of functions of bounded variation and obtain
new estimates of the errors of approximation of functions by
polynomials and partial sums in the Faber-Schauder system.

The results of the research complement the known ap-
proximation properties of the Faber-Schauder system and es-
tablish the preconditions for further research in this direction.

New results are obtained from the theory of function
approximation, which can be used for further practical appli-
cations, in particular, wavelet theory.

An applied aspect of using the obtained scientific results
is the possibility of applying estimates of approximation er-
rors in the theory of numerical methods in the construction
of numerical algorithms, as well as in signal processing.

8. Conclusions

1. In the metric space L, new estimates of errors of
approximation of functions from the classes C, (1< p<ee) by
Faber-Schauder partial sums using the values of the moduli
of continuity of fractional orders ®,_, , (f,¢) and ©,, /p( /:t)
are obtained. The obtained results generalize in a certain way
the results obtained earlier in [4].

2. The estimate of the error of approximation of functions
of bounded variation from the classes KCV,, , (1< p<eo) in
the metric L, is obtained using the modulus o(‘l continuity of
fractional order ®,_,,,(/, 7).
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