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Ananimuuno 00Cai0NceHi PetcuMu 3acmpszanHs 6a-
maoicié (Kyav, poOnuUKi6, MAAMHUKIB) 6 PAMKAX NIAOCKOT
MoOeni 6pieHOBAIICEH020 POMOPA HA 130MPONHUX NPYDiC-
HO-8'A3KUX ONOpaAx, wio Hece asmobanancup 3 Oazamoma
00HaK08UMU BaHMANCAMU.

Onucana @izuxo-mamemamuuna Mooelb CucmeMmu
pomop-asmobanancup. 3anucani oudepenyianvii pieHaHHA
DPYXY cucmemu w000 cucmemu Koopounam, wo obepmaecmocs
3 nocmitinoro weudxicmio odepmanns. 3naioeno 6ci ycma-
JIeHi PeACUMU PYXY, 8 AKUX 6AHMANCI 3ACMPSAIOMb HA NOCMIlL-
Hill weudrxocmi odepmanns. B cucmemi xoopounam, wo cun-
XPOHHO 06epMaemvCs 3 6AHMANCAMU, Ul PYXU CMAUTOHAPHI.

IIposeoeni meopemuuni docnidxicenns noxazyromo, wo
pejcuMu 3acmpsizanis 6awmaicié 6 cucmemi pomop-as-
mobanancup € ooHonapamempuuHuMu Cim’amu ycmagie-
HUX pyxia.

Koowcen pescum 3acmpsieanns xapaxmepusyemocs nee-
HOW0 Konizypauicto eanmadicié i 6i0n06idH0I0 1ACMOMOI0
3acmpsieanns.

B cucmemi xoopounam wo cunxponno obepmaemocsa 3
sanmasicamu:

— nepemiuweHHs pomopa € Cmaaum;

— napamempom € Kym, w0 6U3HAUAE HANPAMOK eKMOpa
nepemiuwenns pomopa;

— eanmavici 3aimaiomo neei QiKcosami nonoHcenHs 6i0-
HOCHO 8eKmopa nepemiwjenss pomopa i yi no0NceHHs 3ae-
Jicamov 610 weudkocmi obepmanns pomopa.

Y asmoobanancupa 3 n, 00HAKOBUMU 6AHMANCAMU PIZHUX
Konieypauiii eanmaoicié ny+1. 3azanvha KinvrKicmo pizHux
PeACUMIB 3ACMPAANHHA BAHMANCIB:

—2(ny+1), axuo nb nenapne;

— 2ny+1, axwo nb napue.

3azanvha KinbKicms Pi3HUX 4ACMOM 3ACMPSA2aAHHA:

- 3(np+1)/2, axwo nb nenapne;

- 3ny/2+1, axwo nb napne.

3azanvha KibKicms pisHux xapaxmepHux weuoxocmeti —
np+2. Xapaxmepni weuoxocmi € mouxamu 6idpyprauii pyxie,
60 npu ix nepexodi 3apooIHCYIOMbCA MU IHUKAIOMD 00HONA-
pamempuuni cim’i pyxis, w0 6i0nosioaromv neHOMyY pexcu-
My 3acmpseannsn. B uyux mouxax pescumu 3acmpsieannsn
Modcymv nabyeamu, abo empanamu cmitixicmo

Kmouoei crosa: nacuenuit asmoéanancup, epexm 3om-
MepPenvoa, inepuiiinuil 6i6po30yonuk, peonancua 6i6po-
Mawuna, 6ipyprauis pyxie
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1. Introduction

Passive auto-balancers, ball (roller), pendulum, etc. [1-
13], are used for balancing high-rotational rotors at operation.
The same devices with a single or more loads can be used in
vibration machines in order to excite vibrations [14—18].

The use of auto-balancers for different purposes is pos-
sible due to that a rotor machine with loads in the form of
balls (rollers), pendulums can execute various steady modes
of motion that correspond to:

— auto-balancing or synchronous rotation of loads to-
gether with the rotor (stationary movements) [1-4];

— load jams (caused by the Sommerfeld effect) [5—16];

— parametric and other oscillations of loads [17, 18].

This is an open access article under the CC BY license
(http.//creativecommons.org/licenses/by/4.0)

Theoretically, the rotor machine—auto-balancer system
can execute various steady movements. Among all possible
steady movements, over time, the system would execute
only steady movements. Therefore, when constructing an
analytical theory for such machines, one searches for all
possible steady movements of the system and investigates
their stability.

The most complete information on the origin, disap-
pearance, conditions of existence and stability of different
motion modes of the system is provided by the bifurcation
theory. Typically, the speed of rotor rotation is accepted as
a bifurcation parameter. In this case, at certain speeds of
rotor rotation an auto-balancer can balance the rotor, and at
certain — to excite vibrations. To build a bifurcation theory,



it is necessary to find and investigate all possible steady
movements of the system; this is, however, a complicated
mathematical problem.

Today, most analytical results were obtained in the
framework of a flat model of the rotor on isotropic elas-
tic-viscous supports carrying an auto-balancer with identi-
cal loads. However, there remain the insufficiently studied
modes of load jams caused by the Sommerfeld effect. Only
those jam modes have been found and investigated at which
loads are combined.

It is a relevant task to analytically find, within the
specified model of the rotor and auto-balancer, all possible
modes of load jams. This is important for building analyti-
cal theories both for passive auto-balancing and resonance
vibration machines in which an auto-balancer is used as a
vibration exciter.

2. Literature review and problem statement

Initially, passive auto-balancers were intended for bal-
ancing high-rotational rotors [1]. The history of emergence
and development of passive autobalancing, methods for in-
vestigating the autobalancing process, etc., were described
in [2].

For a long time, it was believed that the system a rotor
on isotropic supports — auto-balancer can only execute sta-
tionary steady movements. During stationary movements,
loads synchronously rotate with the rotor and take one of
the possible positions of relative equilibrium. A procedure
for studying stationary movements of the rotor on isotropic
supports with auto-balancers is described in [3]. The proce-
dure makes it possible to find all possible stationary motion
modes of the system and to assess their stability. Paper [3]
examined, also within the framework of a flat model of the
rotor on isotropic elastic-viscous supports, which carries an
auto-balancer with many loads (balls, rollers, pendulums),
the stationary movements; the authors derived the rotor
rotation speeds, which give rise to the emergence or disap-
pearance of various stationary movements. In terms of the
bifurcation theory, in the transition of these speeds, station-
ary movements can acquire or lose stability. It was found
that among all stationary movements, at the pre-resonance
speeds of rotor rotation, only such a motion can be steady
during which loads unbalance the rotor to the fullest, and
at the over-resonance speeds — the multiparametric family
of basic movements (during which a rotor is balanced by
an auto-balancer). However, the construction of a complete
bifurcation theory necessitates identifying and investigating
all other possible steady motion modes of the system.

Study [4] provides an analytical statement of the problem
on building a nonlinear bifurcation theory for the considered
system. However, the bifurcation analysis was carried out by
numerical methods, for the case of two loads. It was found
that there are boundary cycles and chaotic movements in the
system along with the stationary movements.

To estimate the degree of completeness of the analytical
bifurcation theory built for the system considered, we shall
review some studies that have reported the new steady mo-
tion modes of rotor machines with auto-balancers.

Paper [5] established, experimentally and from a com-
puting experiment, the modes of pendulum jams in the rotor

pendulum auto-balancer system. Under these modes, the
pendulums are combined, they cannot accelerate and get

stuck at one of the resonance speeds of rotor rotation. It was
found that jam modes occur at low resistance forces in the
system. The emergence of modes was explained by the man-
ifestations of the Sommerfeld effect [6]. Next, the pendulum
jam modes were explored in the following papers:

— [7] — theoretically for the rotor on isotropic supports,
which executes spatial motion and is balanced by a single or
two two-pendulum auto-balancers;

— [8] — experimentally for the pendulum freely mounted
onto the shaft of an electric motor.

It was established that when a rotor rotates at a con-
stant speed the pendulums get stuck at one of the resonance
speeds of rotor rotation (natural frequency of the system
oscillations).

Paper [2] experimentally identified and analytically ex-
amined the modes of load jams in a multi-ball auto-balancer.
Theoretical study was carried out for a flat model of the rotor
on isotropic supports and an auto-balancer. The authors con-
sidered the case when loads were assembled together. It was
theoretically found that, depending on the speed of rotor ro-
tation, there are one or three possible speeds when loads get
stuck. For the case of three jam speeds, two speeds are close
to the resonance speed of rotor rotation, and one is somewhat
less the speed of rotor rotation. Among all possible regimes
of load jams, only such a mode would be stable under which
the speed of load rotation is the lowest, and pre-resonance at
the same time. It should be noted that within the framework
of the considered model the authors derived exact analytical
solutions for jam regimens for the case of a balanced rotor.

The modes when balls get stuck were theoretically and
from a computing experiment detected and investigated
within the following models:

— a rotor on isotropic supports that executes spatial mo-
tion and is statically balanced with a double-ball auto-bal-
ancer [9];

— a rotor on isotropic supports that executes a flat mo-
tion and is balanced with a double-ball auto-balancer, by us-
ing the modified incremental harmonic balance method [10];

— a rotor on isotropic supports that executes a flat mo-
tion and is balanced with a double-ball auto-balancer, by
applying the Limit-Cycle Analysis [11];

—a rotor on anisotropic supports that executes flat
motion and is statically balanced with a two-ball auto-bal-
ancer [12];

— a rotor mounted on isotropic supports atop a platform
that moves in a straight-line direction, with the rotor bal-
anced with a two-ball auto-balancer.

The effect of jamming was analytically investigated in
vibration machines, in which:

— one or two inertial vibration exciters are mounted on a
bearing body exercising flat motion [14];

—a wind wheel with an unbalanced mass, mounted on a
vibration platform [15];

— auto-balancer [13].

Papers [9-15] established that loads get stuck at one of
the resonance speeds of rotor rotation; for the case of several
loads, such jam modes were investigated at which the loads
are assembled together.

Authors of [16] analytically derived and examined load
jam modes within the framework of a single-mass vibration
machine with straight forward motion of the platform and a
vibration exciter in the form of an auto-balancer with many
loads. They explored only those jam modes under which
the loads are assembled together. It was determined that



depending on the speed of rotor rotation there are one or
three possible frequencies of load jams in the system. For the
case of three frequencies, two frequencies are close to the
resonance frequency of platform oscillations, and one — to
the frequency of rotor rotation. It should be noted that it is
impossible, within the framework of the considered model, to
derive precise analytical solutions for jam modes. Therefore,
the frequencies of jams were determined approximately, by
the method of decomposition based on powers for a small
parameter.

Let us analyze the results obtained. Detecting, in pa-
pers [2, 16], the three, rather than one, possible frequencies
of load jams is due to that these speeds were determined
from exact formulae [2] or in higher approximation [16]. In
studies [5, 7-15] the frequencies of load jams were deter-
mined approximately, by different approximation methods.
Therefore, in the lowest approximations, two smaller fre-
quencies of load jams coincided with the resonance speed
of rotor rotation, and the highest — with the speed of rotor
rotation.

Studying only such a jam mode under which loads are
assembled together can be explained as follows. Computa-
tional or field experiments [2, 5, 8, 14] can only detect stable
steady motion modes of the system. This is how the jam
modes were found under which the loads are assembled to-
gether. Therefore, the analytical theory was built exactly for
such a regime; the issue of the existence of other jam modes
was not addressed [7,9-13, 16].

It should be noted that a rotor system with an auto-bal-
ancer can execute the parametric (steady) oscillations. Such
oscillations, for example, were detected and investigated for
the following cases:

— a single-mass [17] vibration machine with a vibration
exciter in the form of a ball auto-balancer mounted on the
rotor with eccentricities;

—a flat model of the rotor on isotropic supports with a
two-ball auto-balancer [18].

The above results show that building an analytical bi-
furcation theory for the considered system is impossible yet,
since not all possible steady motion modes of the system have
been analytically identified and investigated. The necessary
stage in the construction of an analytical bifurcation theory
of the system under consideration is to investigate all possi-
ble modes of load jams.

3. The aim and objectives of the study

The aim of this study is to find all possible modes of
load jams in a passive auto-balancer with many identical
loads in the framework of a flat model of the balanced
rotor on isotropic elastic-viscous supports. This would
make it possible both to avoid such modes when balancing
rotors automatically and to enable such modes in vibra-
tion machines.

To accomplish the aim, the following tasks have been set:

— to describe a mechanical-mathematical model of the
rotor—auto-balancer system, to record the differential equa-
tions of motion and the equations of stationary movements
in the movable coordinate system;

— under condition for load jams in the auto-balancer, to
find all possible solutions to the differential equations of the
system motion and to test the established jam modes in a
computational experiment.

4. Methods for finding all possible modes of load jams in
an auto-balancer

To construct a mechanical-mathematical model of the
rotor — auto-balancer system, we shall use elements from the
theories of rotor machines with passive auto-balancers [1, 2],
classical mechanics [19], disturbances [20], bifurcation of
movements [21].

Differential equations of the system motion are recorded
with respect to the coordinate system that rotated at a con-
stant angular velocity.

In such a coordinate system:

— the mechanical system motion is described by a system
of regular nonlinear autonomous differential equations;

— all load jam modes are stationary movements, provided
that the rotation speed of the moving coordinate system co-
incides with the angular velocity of load jams.

Finding all possible modes of load jams comes down to
solving a nonlinear system of algebraic equations. At the
same time, one searches for all possible frequencies of load
jams (angular velocities of rotation of the moving coordinate
system), positions of loads relative to the rotating coordinate
system, corresponding deviations of the rotor.

To solve the system of nonlinear algebraic equations, we
shall use the method of expanding the roots of equations in
powers of the small parameter [20]. In this case, different
ratios of smallness between the parameters of the system will
be considered.

A bifurcation parameter to be applied is the angular ve-
locity of rotor rotation. The load jams modes will be searched
for depending on the angular velocity of rotor rotation. The
occurrence and disappearance of different jam modes will be
studied from the point of view of the theory of movements
bifurcation [21].

The results to be obtained from a theoretical study will
be tested using specific numerical calculations.

5. Load jam modes in an auto-balancer — a flat model of
rotor on isotropic supports

5. 1. Mechanical-mathematical model of the system

5.1.1. Description of the mechanical-mathematical
model of the system

To study the system dynamics, we have adopted the
so-called flat model of the rotor and auto-balancer. Under
it, a rotor is a symmetrical flat disk of mass M, mounted on
a completely rigid shaft perpendicular to its plane (Fig. 1).
The rotor is located vertically, moves in a flat parallel di-
rection in the horizontal plane, and rotates at a constant
angular velocity . For the case of a pendulum auto-balanc-
er (Fig. 1, a), the rotor shaft hosts 7, identical pendulums.
The mass of the pendulum is m, physical length / and the
main central axial moment of inertia Io. For the case of a
ball (roller) auto-balance (Fig. 1, b), n, balls (rollers) roll
without sliding along a circular track. The ball (roller) mass
is m, radius R, distance from the shaft axis to the center of
the ball (roller) is /. As it is accepted in the analytical theory
of passive auto-balancers, it is assumed that the loads do not
interfere with each other’s motion.

At a stationary rotor, the shaft is aligned with the axis
of rotation. In the process of motion, the shaft, point O, de-
viates from the axis of rotation, point K, and it is exposed to
the action of a renewing force, and the force of the medium



viscous resistance. Coefficients of rigidity and damping in
the shaft supports are ¢, b.

Fig. 1. A flat model of rotor and auto-balancer:
a — rotor on isotropic elastic-viscous supports;
b — kinematics of the rotor motion and a ball or a roller;
¢ — kinematics of the pendulum motion

To describe the system motion, the following systems of
axes are used:

— OEH - right-hand system of stationary rectangular
axes;

— OXY — right-hand system of moving rectangular axes
that rotates around the rotation axis (point K) at a constant
angular velocity;

- 0XpYp — right-hand system of moving rectangular
axes, starting at the center of the disc and parallel to the
system of OXY axes.

The rotation angle of the OXY axes around point K is
equal to Qt, where ¢ is the time. The rotation angle of the
rotor is wt. Position of the j-th load is determined, relative
to the system of the OXoYy axes, by angle a;. When the j-th
pendulum rotates around the shaft, it is exposed to the mo-
mentum of force of viscous resistance B/ (m— Q- dj), where
B is the coefficient of forces viscous resistance, gm—Q—('x ;
is the pendulum rotation speed around the shaft (rotor): a
dot over the magnitude defines a derivative for time. When
the j-th ball (roller) moves along a track, it is exposed to a
force of viscous resistance Bl(a)—Q—('xj), where B is the
coefficient of viscous resistance forces, and /{o—-Q—-d& ;) is
the motion speed of the center of a ball (roller) along a track
relative to the rotor.

The mass of the system, the total imbalance due to loads
in the projections onto the moving X and Y axes, the reso-
nance rotation speed of the rotor, are, respectively:

M, =M +n,m,
ny,
s, = mlzj:1cosaj,

Z n, .
Sy =m Zj:1SIIl(Xi,

o, =+c/ M. )

Projections of speed of the rotor mass center onto the X
and Y axes are, respectively

Vo =X =Qy, v,, =y +Qux. 2)

5. 1. 2. Differential equations of the system motion

The differential equations of the system motion are con-
ditionally divided into two groups [2]:

— the differential equations of load motion

L, =xml*6; +Bl* (6, + Q- 0)-
(¥ -2Qy-Q’x)sina; -

—ml . =0, /j=1n,/, (3)
—(y+ 2Qa'c—sz)cosocj

where, for a ball, a roller, or a pendulum, respectively,

73
K=—, K=—,

5072
k=1+1, /(ml*); &)

— the differential equations of rotor motion
L, =M, (i-2Qj-Q'x)+b(i-Qy)+cx -

_mIZj;[dj sino +(dc/ +Q)2 cosocj]=0;

L, =M, (ij+2Qi - Q’y)+b(j+Qx)+cy -

—m12311|:_d1605“1+(d1+9)zsinaj]:0~ (5)
Note that for a mathematical pendulum I,=0, x=1.

3. 1. 3. The generalized potential and dissipation func-
tion of the system
Potential energy of the system

V:%c(x2+y2). (6)

At steady motion, the kinetic energy of the rotor is the
sum of the kinetic energies of the progressive motion to-
gether with the center of masses (point O) and the rotation
around the center of masses [19]:

T =M(x"+y")Q" / 2+ 1w’ /2, 7

where 10 is the axial momentum of rotor inertia relative to
the longitudinal axis.

At steady motion, loads stop moving relative to the
moving axes. Loads behave as a completely rigid body
rotating at a constant angular velocity Q around the axis
of rotation. Their kinetic energy can be represented in
the form

T,=10Q" /2, (8)

where I is the axial momentum of inertia of loads relative
to the axis of rotation.



In its turn

1= Z:_';{IC +m[(x+lcosocj)2 +(y+lsin0cj)2]}:

=nb|:lo+m(x2+y2)]+2xsx+2ysy, )

where I,=1.+ml* is the axial momentum of inertia of the
load relative to the O axis.
Thus, the kinetic energy of the system at steady motion

T,=T+T,=M,(x*+y°)Q" / 2+

+100" / 2+(n, 1, + 2xs, +2ys, ) Q /2. (10)
The generalized potential:

c=M,Q*)(x?+y*) -1V’ -
N=V-T,= (oM, )= /2. (11)

—(nblo +2xs, + 2ysy)(22

This function generalizes the analog of the potential
energy derived in paper [3] and extends it for the case of
movements at which loads get stuck.

A dissipation function

Dzibvé+f
2
=%b[(3’c—9y) +(+Qx) ]+ pI 2(0) Q-a,). (12)

The component, linear relative to the generalized veloc-
ities, is

D, =bQ(~iy + ) - Bl (0-Q) 37 6. (13)
This function is an analog of the dissipative function

derived in paper [3] and extends it for case of movements at
which loads get stuck.

5. 1. 4. Equations of the system stationary movements
The equations of stationary motions for the considered
system will take the form

= JIl  dD,

L= ﬁ ﬁ =B’ (Q-0)+mlQ’* (xsmoc ycosoc) 0,
/i=tn,/, (14)
- oI oD, o i
Lo=ort=(e- MQ2")-Q'5, by =0,

- oI oD, . i

L= @+$ (c-M,Q")j-Q’%5, +bQiE =0. (15)

When loads get stuck at angular velocity Q, the general-
ized coordinates are constant

o,=6, &,=6,=0, /j=LN/; x=% y=j.

J 7’ J

(16)

Therefore, the system of equations (14), (15) can be
derived from the system of differential equations of mo-

tion (3), (5).

This system of (7,+2) nonlinear algebraic equations rela-

tive to (n,+3) unknowns %, 7, a; /j=1n,/, Q.
Stationary movements are the solutions to a system of
algebraic equations (14), (15).

The system may execute the following stationary move-
ments:

—basic and side at which loads rotate synchronously
with the rotor Q#w [3];

—side movements, at which loads rotate non-synchro-
nously with the rotor Q#o.

The stationary movements at which loads rotate syn-
chronously with rotor were studied in paper [3]. Next, we
shall examine the stationary movements at which loads
rotate non-synchronously with the rotor Q#w.

Note that we are considering movements that are sta-
tionary relative to different coordinate systems that rotate
at certain stable angular velocities. These movements are
not stationary relative to a single, particular, rotating coor-
dinate system.

5. 2. Finding load jam modes

5.2.1. Problem statement o

Introduce an angle O between vector KO (the rotor dis-
placement vector) and the X axis.

Then

~2 ~2

cosV=X /7, sinO=4 /7, F=X" +7",

(17)

and the equations of steady movements (14), (15) are trans-
formed to the form:

L, =BI*(Q-0)-mlQ*Fsing,; =0,

( ;"71 S=npl(Q-w)- leQrZ sing, = 0) (18)

T o )

il - gL, =bQF* +mlQ'F Y sing, =0, 19)
where

¢,=0-6, /j=1ln,/. (20)

We have derived a system of (7,+2) nonlinear algebraic
equations relative to (n,+2) unknowns 7, Q, ¢, /j=1n, /.
A first group of equations — (18) would hold if

:(—1)’” cosy, /j=1n,/,
where k,€{0,1}, /j=1m,/; x -
Equations (21) would hold if

k
®= o X,k—1

Using (21), we obtain from (18) and (19) the following
system of equations to determiney, 7, Q:

sin@; =siny, cosQ,

21

some angle to be found.

(22)

L =PI’ (Q-0)-mIQ*Fsiny =0, (23)
FL, + 3L, = (C—MzQz)f2 —mlQ’7n ,; (k)cosy =0,
S, g, = 7 sing =0 en



where

ma(B)= 3" (1) k=l ek,

A binary number %,k _,,...,k, (or its decimal equiva-
lent k) characterizes a certain configuration of loads in the
moving coordinate system OXpYp under a jam mode. The
introduced angle 0 is the parameter. Therefore, each jam
mode is a single-parametric family of movements at which
loads get stuck in a specific configuration at a single partic-
ular rotation speed.

In the decimal calculation system 0<k<2" —1. There-
fore, different configurations of loads may not exceed 2.

As the loads are the same, the movements at which for the
same quantity of loads =y are not fundamentally different.
We shall enumerate the fundamentally different configura-
tions of loads with index i=0,..., ;. Under configuration 0,
all loads are inclined at angles @;=y, at motion 1 — one load is
inclined at —(m+y), and the rest — at y, etc.

The total quantity of different configurations of loads is:

(25)

N=n,+1. (26)
In this case
ny(i)=n,~2i, /i=0n,/ N

and parameter n,,(i) accepts the following values:
— Npyeey 3,1, =1, =3,..., —myp, if ny is even;
— Ny 4, 2,0, =2, —4,..., —ny, if npis odd.

5.2.2. Jam modes for the case when n,,(i)#0

The general sequence of problem solving. Note that at
the odd quantity of loads, it is always n,,(k)#0.

We shall solve the system of equations (23), (24). Repre-
sent it in the form

7t= _mmiQ 7siny, 7cosy= —7MZQ2 —C¢
b % x mlQ’n,, (k)
- Bl
Fsiny=— <3 (Q-w). (28)
We derive from the first and third equations
o, nmlQ Bl n,BI°
= (Q-0)="E (0-Q). 29
' b mQ’ (@-0) bQ (0-9) 29)

It follows from (29) that loads can lag behind the rotor
only (Q<wm). Then it follows from the first equation in (28)
that siny <0, therefore ye(-m,0).

By using the first and second equation in (28), introduce
the angle

y(k)zarctan[smx(k)Jz

cosy, (k)

a0 )

n, M,Q*(k)

y(k)e(_g, g)

Then, we find x(k)e (-x, 0):

= arctan[

(30)

v(k), v(R)<0;
x(k)={ (4710 (G3))
Y(k)-m, v(k)>0
Use the identity
72 = (Fsiny)’ +(Fcosy)’ =
, 9 2
_ pr ( _ )2+ (MEQ _C) P
m’Q’ m*I*Q'n’ (k)
Substitute 7* from (29) in this equation, we obtain
nbﬁlz B B BZZZ ~ )
Q ((1) Q)_m2§24 (Q 0)) +
M.Q— ST
( b C) anl /(D—Q)Z. (32)

m* Q' , (k) b*Q°

This equation can be satisfied in the following two cases:
1) ®—Q =0 — loads rotate synchronously with the rotor;

2
n B (M o _C) np
D el iy o o-0) ot
behind the rotor.

Paper [3] examined the motion modes at which loads
rotate synchronously with the rotor. Below, we study the
load jam modes.

The second case produces the following equation

n,bm’Q’n’, (k) -

| (M2 =) i + 03, (k) [Blo-2) 0. (33)
We find, from (33), frequencies Q;(k) at which loads can

get stuck.
Then, from equation (29), we find

F(k)=1\[nB[w-(k)]/[62(k)] (34)
We find from (20) and (22):

(k%)= ‘“"Pf(’*‘>:{§lﬁ(ff{(2,:g: 1

Ji=tn,/. (35)
We find from (17)

£(k, )= F(k)cosd, §(k)=F(k)sind. (36)

Magnitudes (34) to (36) are calculated for the specific
frequency of jamming.

Frequencies of load jams. Convert equation (33) to the
form

P(v,k)=y(k)V’ —(71—\))[(1—\12)2 +4h* (k)v2] =

= a, (R)V° +a, (R)V' +a, (R)V* +a, (k)v* +

+a,(k)v+a;(k)=0, 37)
where
v=£, nzﬂ, 3(k)= n"B(k),
®, @, n,



x(k)=n, B 8% (k), Table 1
* Dependence of dimensionless frequencies of load jams v{k) on
bS(k rotor rotation speed (n)
)= L _
= No. of Ratio of smal%noss Frequencies of load jams — expanding
entry between param- the roots of a polynomial (39)
a,(k)=1+y(k), eters
a,=-n, n~¢ V1(k)=n[1—x(k)n4:|
a,=-2|1-2h*(k)|, 2 (k)[1-2k* (k
»=—2[1-20* (k)] e ()t 20120 (8]
1+x(k) n
a,=2n[1-20"(k)],
1 [x(k) x(k)(4n-3)
- - <15,/ :
a,=1, a,=-n. (38) RERE) PR
. o . [n—1]~1, x~¢, h~¢ )
The roots of the equation that exactly coincides with v = x(k)n’
equation (37) were investigated in [2, 16]. The effect of ’ (nz _1)2
jamming occurs at small viscous resistance forces (in
the supports and forces that prevent the motion of loads
relative to the body of an auto-balancer). According to 1 wl(k
the results from papers [2, 16], in this case, for the con- v, (k)= 1_2\3/4)((/?)[ _%]’
figuration of loads &, there are three characteristic rotor nen,

rotation speeds

3 5 53 K (k
n1(k):1+g«3/4x(k)+«3/2x (k)+48x(k)_§/%(12)’
_ x(k)
Ty

ns(k):4)252)+1+;X(k)+2(1+§;x(k))hz(k). (39)

At their transition, the quantity or properties of pos-
sible frequencies of load jams change. In this case,

t<n(k)<<n,<n,(k)<<n

- ] o2
n=n,: n~1/¢,
h~¢, 6~1 — param-
eter

96+ 81y (k) — 640
16y’ (k) ’
n 2x(k)

:1+X(k) n

V= 1+%h2 (&) 4 (k)

A£!

and at rotor rotation speed:

— lower the n, (k) (0 <n<mn, (k)), there is the single fre-
quency of load jams vi(k), and 0<vy(k)<1;

—exceeding n,(k), but lower than n, (n1(k)<n<n2),
there are three frequencies of load jams vy, o 3(k), such that
0<vi(k)y<i<vy(k)<vs(k)<n;

— exceeding n,, but lower than n,(k) (n,<n<n,(k)),
there are three frequencies when loads jam vy 5 3(k), such that
1<vi(k)y<va(k)<<vs(k)<m;

— exceeding n,(k) (n >n, (k)), there is a single frequen-
cy of load jams vs(k), such that 1<<vs(k)<n.

Note that n, does not depend on the configuration of
loads relative to the rotor, but 7, (k), #,(k) do depend. We
find from (38) and (39)

2.2
_mym ey

b3

Table 1 gives the formulae intended for the approximate
calculation of frequencies of load jams at different ratios of
smallness between the system parameters.

In Table 1, € is a dimensionless positive magnitude that is
much less than 1 (0<e<<1). It is introduced to determine the
ratios of smallness between the system parameters.

n,

+1. (40)

Number of characteristic speeds, angular velocities
and load jam modes

It is clear from (33) that the characteristic speeds and
angular velocities of load jams are the same for configura-
tions of loads for which n%,(i). are the same. It is clear from
(27) that n},(i)=n’;(n,—i). The case n,,(i)=0 is possible
only at the even number of loads. Thus, there are the funda-
mentally different options for which 73 (i)#0:

— (np+1)/2, if nyis odd;

—ny/2, if nyis even.

Note that in the same number of configurations 7, (i)>0
or n,,(i)<0.

Each option is matched with its own three speeds of load
jams. Therefore, for the case nAB(i);tO, the total number of
different speeds of load jams:

—3(ny+1)/2, if nyis odd,

— 3ny/2, if nyis even.

Since the characteristic speed n, does not depend on
load configuration, for the case nAB(i);tO, there will be the
following number of different characteristic speeds:

—ny+2, if ny is odd;

—ny+1, if ny is even.

One can see from (30), (31) and (35) that the configu-
rations in which:



— n,5(i)>0 are implemented for a load jam frequency of
0<vi(b)<1;

— n,5(i)<0 are implemented for load jams frequencies
1<vi(k)<vo(k)<<vs(k).

Therefore, the total number of jam modes at which
n,;(1)#0:

y _{(1+3)(nb+1)/2=2(nb+1), if n, is even; h

|(1+3)n, /2=2n,,if n, is odd.

The case when n,,(i)=0 is considered below.

5.2. 3. Jam modes for the case when n,,(k)=0

Note that the case n,,(k)=0 is possible only at an even
number of loads, when half of the loads are inclined at angle
¢=y. In this case, from the first equation in (24), we obtain
the following frequency of load jams

Q=0w,. (42)

The remaining equations in (23), (24) take the form

L, =PI’ (o, - ®)—mlo;Fsiny =0, (43)
ZL, - L, = b +n,mlo;Fsiny = 0. (44)
Hence

xL, - gL, +n L, = bo# +npl* (0, - o) =0.

We find from this equation

F:l\/an(u)—ooo)/(b(oo). (45)

Consequently, this mode can exist only at the over-reso-
nance speeds of rotor rotation. We find from (43)

siny = _731((0—2500) =
mogi
__ Bl(0-w,) __ 1 Bo(w-a,)
mwgl\/nb[i(m—wo)/(bo)o) i, mo,
Hence

(46)

mw, 1,0,

Bb((’)_“)o)jl.

x(®)= —arcsin|:

Motion disappears when

1 [Bb(o-w,)
mo,

=1.
1,0,

Hence, we find the characteristic (dimensional) speed

- mmloy
B, =0y + == =0,

Consequently, this jam mode exists in the range of
dimensionless speeds of rotor rotation ne[tn,]. At point
n=1 (o=w,), this mode occurs and at point n=n, (0=,),
it disappears.

We find from (46) x(1)=0, x(n,)=-n/2.

(47)

We find from (35):

— when n=1

a- {ﬁ, k; =0, 48)
9+, k]. =1

— when n=n,

&, =0+m/2. (49)

Thus, for the case n,,(k)=0, there is only one jam mode.
When this regime emerges at the resonance speed, a half of
the loads is inclined towards the rotor inclination and another
half —in the opposite direction. When these modes disappear, all
the loads are equally inclined at 90° relative to rotor inclination.

Considering (41), the total number of jam modes:

ny = {"21 =2(n, +1), if n, is even; (50)

ns, +1=2n, +1,if n, is odd.

In this case, each jam mode is characterized by the i-th
configuration of loads and the corresponding jamming fre-
quency v, We designate the fundamentally different modes
of load jams as follows:

iv,, /i=0n, j=13/. 1)

Then, for example, mode 0v; implies that all loads are in-
clined in one direction so that n,,(0)=7n,>0 and the loads
get stuck at pre-resonance speed vy (vi<1).

5. 2. 4. Computational experiment

Estimated data: n,=3,x=1,m=0.33 kg, [=0.1 m, Ms=4 kg,
¢=10,000 N/m, b=4 N-s/m, B=0.15 N-s/m.

Then

M =M, -nm=3.88kg,
®, =+/¢c/ My =50 rad/s=15.9154943 Hz.

Calculations show that the system (Table 2) has:

— ny+2=3+2=5 different characteristic speeds;

—ny1=3(ny+1)/2=3(3+1)/2=6 different speeds of load
jams;

— 2(ny+1)=2(3+1)=8 different modes of load jams.

Table 2

Load jam modes

Magni Numeric values of magnitudes for different
tudes load configurations
3 0 7 1 2 4 3 5 6
(000) | (111) [ (001) | (010) | (100) | (011) | (101) | (110)
i 0 3 1 2
Mg (1) 3 -3 1 -1
5 (1) 9 1
n (i) | 1.23595 1.10291
n, 12.25
ny (i) | 12.25268 12.25030
vi>1,
Modes | vi<1 | vy, vi<i Vvi>1, vo, V3
V3




Fig. 2 shows the built graphs of dependences of angular
velocities of load jams on rotor rotation speed for load con-
figurations k=1+6 (niB (k)= 1).

v v

V3(n)
10 125
v3(n) :
. Vz(n)
5 1 Py — vl(n)
vo(n) N
0 1@ 475 i
0 5 10 n 075 1 125 n
a b
v
\
1.00003
1.00002
1.00001
ly N
0.99999 m n3
12.24988 12.25015 n
(o

Fig. 2. Graphs of dependences of angular velocities of
load jams on rotor rotation speed for load configurations
k=1+6 (nfw (k)= 1): a — general view; b — in the vicinity of
characteristic angular velocity n1(k); ¢ — in the vicinity of
characteristic angular velocities n,, 1, (k)

Almost the same form is demonstrated by graphs of de-
pendences of angular velocities of load jams for loads config-
urations £=0.7 fnfw (k)= 9).

Fig. 3, a shows the emergence of motion 0v; (7~0) and its
merging with motions 1v; and 3v; (n=n5).

90
60

n~0 \
8890| 0

Fig. 3. Emergence of motion Ov4 (n~0) and its merging with
motions 1vq and 3vq (m7=ny)

Fig. 4 shows the emergence of motions 3vy, 3vs (n=ny),
the merging of motion 3v, with motion 3v; (n=n3), motion
3vs at n=ns.

20—

< ﬁ:nf
7 \=12.2526

n:n3:

—1225268 \

Fig. 4. Emergence of motions 3v,, 3vs (n=n4), the merging of
motion 3v, with motion 3v4 (n=ns3), motion 3vz at n=n;

Fig. 5 shows the emergence of motion 1v; (7~0) and its
merging with motions 0vy, 3vy (n—ns).

90

150/ n=7 \ 30
/
[ n~0 n~0
180 2O O-9| 0

Fig. 5. Emergence of motion 1v¢ (n~0) and its merging with
motions 0vy, 3vq (n—>ny)

Fig. 6 shows the emergence of motions 2vy, 2v3 (n=ny),
the merging of motion 2v, with motion 2v;y (n=n3), motion
2vs at n=ns.

90

| n=ny=

| =12.25030

l"l:l"l3: |

~ =1225030/

Fig. 6. Emergence of motions 2v,, 2v3 (n=n), the merging of
motion 2v;, with motion 2v4 (n=n3), motion 2v3 at n=n;3

Fig. 3-6 are drawn, for convenience, for angle 9=0 (the
rotor, due to the total load imbalance, has shifted along the x
axis). In addition, red color shows the positions of loads at the
lowest rotor rotation speed, green — middle, blue — the largest.

6. Discussion of results obtained from
studying load jam modes

Our theoretical study shows that the load jam modes in
the rotor—auto-balancer system are the single-parametric
families of steady movements.

Each jam mode is characterized by a certain load con-
figuration and the appropriate frequency of jamming. In the
coordinate system that rotates synchronously with loads:

— the rotor displacement is constant;

— the parameter is the angle defining the direction of the
rotor displacement vector;

—loads take certain fixed positions relative to the rotor
displacement vector and these positions depend on rotation
speed of the rotor.

The auto-balancer with 7,+2 of the same loads haven;+1
different load configurations. The total number of different
modes of load jams is:

— 2(ny+1), if nyis odd;

— 2my+1, if nyis even.

The total number of different jamming frequencies is:

—3(npt+1)/2, if nyis odd;

— 3ny/2+1, if nyis even.

The total number of different characteristic speeds is
ny+2. Characteristic speeds are the points of movement



bifurcations, because their transitions give rise to the emer-
gence or disappearance of single-parametric families of
movements that correspond to a certain jam mode. At these
points, the jam modes may acquire or lose stability.

It should be noted that the results were obtained for the
cases of small forces of viscous resistance in the system or
at low mass of loads in comparison with the system mass.
However, this assumption is relevant for practice. In addi-
tion, the assumption was accepted at the stage of finding the
expansion of characteristic speeds and jam velocities into
series based on the small parameter power.

The solved problem can act as a model problem, particu-
larly in order to estimate:

— efficiency of approximated methods for studying the
dynamics and stability of movements of mechanical systems;

— the completeness of solving the problems on studying
jam modes within other models of rotor machines with au-
to-balancers, the unbalanced vibration exciters, etc.

The results obtained make it possible both to reduce the
regions of the existence of jam modes and to increase them.
This could be used in the design of auto-balancers for balanc-
ing rotors or vibration exciters in the form of auto-balancers.

Among all theoretically possible jam modes, only stable
movements would be executed in practice. Therefore, in the
future it is planned to investigate the stability of the estab-
lished jam modes and to conduct computational experiments.
Note that the study can be carried out using the fixed-motion
stability theory for nonlinear autonomous systems. At the
same time, it is possible to analytically find the “exact” bound-
aries of movement stability regions in the parameter space.

7. Conclusions

1. Within the framework of a flat model, the dynamics of
a balanced rotor on isotropic supports and a ball (roller) or

a pendular auto-balancer are described by the autonomous
system of differential equations.

With respect to the coordinate system that rotated
synchronously with loads, both the load jam modes and the
synchronous rotation modes of loads with the rotor are the
stationary solutions to the system of differential equations.
Thus, any such regime is a state of relative equilibrium of
the mechanical system relative to the moving coordinate
system.

2. The load jams modes in the rotor-auto-balancer system
are the single-parametric families of steady movements.

Each jam mode is characterized by a certain load config-
uration and the appropriate frequency of jamming.

In the coordinate system that rotates synchronously
with loads:

— the rotor displacement is constant;

— the parameter is the angle defining the direction of the
rotor displacement vector;

— loads take certain fixed positions relative to the rotor
displacement vector and these positions depend on rotation
speed of the rotor.

The auto-balancer with #n; of the same loads has n;+1
different load configurations. The total number of different
modes of load jams is:

— 2(ny+1), if nyis odd;

— 2ny+1, if ny is even.

The total number of different jamming frequencies is:

= 3(ny+1)/2, if nyis odd,;

— 3ny/2+1, if nyis even.

The total number of different characteristic speeds
is ny+2. Characteristic speeds are the points of move-
ment bifurcations, because their transition gives rise to
the emergence or disappearance of single-parametric
families of movements that correspond to a certain jam
mode. At these points, the jam modes can acquire or lose
stability.
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