
27

Applied mechanics

1. Introduction

Papers [1–4] propose a new approach to solving problems 
on continuum mechanics by using argument functions for 
some basic dependences. This makes it possible to expand 
the range of examined applied problems for various purposes. 

Using the argument functions simplifies solving the 
systems of equations from the theory of plasticity, elasticity, 
and dynamic problems. Common provisions are employed to 
solve differential equations in private derivatives of different 
types, such as hyperbolic and elliptical. A certain invariance 
is defined that is associated with finding the conditions for 
the existence of permitting functions.

The theoretical approaches presented are in line with 
the fast-paced industrial production, which constantly 
puts forward new requirements to materials, technologies, 
equipment, as well as their theoretical and experimental 
justification. There are a lot of fields in mechanics that 
are explained by the variety of applied problems. In this 
regard, new methods and procedures to solve them are 
being developed, including current trends in their advance-
ment. The level of examined problems is both fundamental 
and applied in character. These include: contact problems 
with a different geometry of the tool and varying friction 
conditions; studies of heterogeneous fields of deformations 
and stresses, including additive deformation of bodies with 

different shapes; the interaction between bodies with a 
different loading.

Separately considered is the classical and non-classical 
theories of elasticity, which in the latter case are defined by 
different directions, including: asymmetrical, microstruc-
tural, micromolar, multimolar, gradient, as well as other 
theories. This necessitates consideration of a new set of prob-
lems on the theory of elasticity, related to the subsequent 
transition to more complex and technologically-substanti-
ated applied production issues. The new processes represent 
problems with a wide variety of boundary conditions that 
must be matched with solutions to problems from the theory 
of elasticity. At this stage, it is more effective to find not the 
solution itself, but the conditions for its existence through 
the defining differential and integrated ratios.

It is a relevant task to devise generalized approaches 
to solving the problems on the theory of elasticity, using 
argument functions under conditions of complex interaction 
between deformable bodies.

2. Literature review and problem statement 

Paper [5] stated the basic generalizing approaches to 
problems on the theory of elasticity, supported by analytical 
solutions. Using a complex variable function [6] makes it 
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На базi методу аргумент функцiй та методу функцiй 
комплексного змiнного отриманi узагальнюючi рiшення пло-
скої задачi теорiї пружностi з використанням iнварiантних 
диференцiальних спiввiдношень, здатних замкнути резуль-
тат для поставленої системи рiвнянь. Наведено пiдходи, за 
допомогою яких визначають не самi дозволяючи функцiї, а 
умови їх iснування. Це дозволяє розширити коло гармонiй-
них функцiй рiзної складностi, що задовольняють всiляким 
крайовим умовам прикладних задач, що постiйно оновлю-
ються. До розгляду взято двi базовi функцiї: тригономе-
трична та фундаментальна, аргументи яких є невiдоми-
ми координатними залежностями. Введення до розгляду 
аргумент функцiй змiнює пiдходи визначення дозволяючих 
залежностей, тому що задача iстотно спрощується при 
виявленнi диференцiального зв’язку помiж ними у виглядi 
спiввiдношень Кошi-Рiмана та Лапласа. Показано кiлька 
аналiтичних рiшень рiзної складностi, яким вiдповiдають 
рiзнi граничнi умови. Зiставлення з результатами дослiд-
жень iнших авторiв, при однакових вихiдних даних, призво-
дить до однакового результату, а при розглядi тестової 
задачi взаємодiї металу з пружнiм напiвпростором – до 
збiгу визначальних схем силового впливу на пружне сере-
довище.

Таким чином, запропоновано новий пiдхiд рiшення пло-
скої задачi теорiї пружностi, пов'язаний з використан-
ням аргумент функцiй, що дозволяє замкнути задачу через 
диференцiальнi спiввiдношення Кошi-Рiмана та Лапласа. Цi 
узагальнення розширюють коло гармонiйних функцiй, що 
вiдповiдають рiзним граничним умовам прикладних задач
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possible to expand the range of approaches when solving 
problems on the theory of elasticity. Work [7] outlines 
solutions to contact problems in a semi-infinite space. These 
also include modern structural solutions to the problem [8], 
integrated ratios [9] for assessing kinematic perturbations, 
which close parameters [10] that define the overall form of 
a gradient solution. It should be emphasized that although 
the papers include elements of generalization, their authors 
failed to define differential ratios for variables capable of 
closing the result of permitting differential equations.

An option to overcome the related difficulties might 
be to use the argument functions introduced for consid-
eration for the basic variables. Such approaches were used 
in papers [11–13]. Study [11] reports the generalized Cau-
chy-Riemann conditions, but the argument functions that 
close the solution to the problem were not introduced for 
consideration. 

The conditions for the existence of solutions can be de-
termined through the differential ratios shown in work [12]; 
in this case, the approaches from the cited work do not make 
it possible to consider the generalization using argument 
functions.

The generalizations reported in article [13] are primarily 
related to the theory of plasticity, which limits obtaining a 
specific result for the theory of elasticity. 

Publication [14] examines the contact interaction be-
tween a sample and a punch. Common approaches to the prob-
lem were complemented by the relationship conditions. The 
lack of conditions for the existence of solutions to the problem 
complicates calculation and obtaining a reliable result. 

The structure of stating a practical problem is deter-
mined within the general problem and the periodically 
changing obvious and boundary conditions [15]. From the 
argument functions point of view, this makes it possible to 
predict one of the basic dependences that should include a 
trigonometry variable.

Paper [16] studies cyclical loading for the case of a simple 
shift, which finds a cyclical response from internal stresses. 
Periodic exposure can also be determined from the basic 
trigonometrical function in the proposed method. 

An analysis of change in the load pattern for the thick-
ness of a sample exposed to the compact tension is given 
in [17]. The maximum zone is closer to the surface, which 
indicates the uneven stressed state of the material. Ac-
counting for the heterogeneity of the stressed state of an 
alloy is characterized in theory by introducing coordinate 
functions for consideration or, in this case, the argument 
functions.

The local problem on loading at the discontinuity base 
was considered in [18] by using a general approach defined 
by the state of the medium. The repeated heterogeneity 
of the stressed state or a change in obvious conditions 
show the need to use coordinate functions in a solution in 
combination with periodic dependences. For the case of an 
argument function method, this represents a combination 
of basic functions, including a trigonometrical one and the 
corresponding argument function. 

Paper [19] shows that changing the characteristics of 
external loading leads to a change in the characteristics of 
internal response under the exponential law. In the method 
of argument functions, for the case of solving a linear equa-
tion in partial derivatives, it is advisable to use a fundamen-
tal substitute for a second basic function, which includes the 
same dependence.

Varying stresses and deformations during loading are 
the main reasons for a decrease in the strength and durabili-
ty of articles [20]. That renders relevance to solving applied 
problems that characterize the stressed state of articles by 
applying classical equations from the theory of continuum 
mechanics. 

The scientific literature cited above [8, 10, 11] allows one 
to construct mathematical dependences for the basic vari-
ables characterized by argument functions. However, there 
are the unresolved issues related to determining general 
results, which could show not the solutions themselves but 
the conditions for their existence, identifying the invariant 
ratios between the argument functions themselves, connect-
ed to the conditions for the existence of closing solutions.

3. The aim and objectives of the study

The aim of this study is to devise new approaches to 
solving problems on the theory of elasticity, which are dis-
tinguished by a significant variety of boundary conditions, 
by using argument functions.

To accomplish the aim, the following tasks have been set:
– to confirm the argument function method by solving 

the problems on the theory of elasticity as an example; 
– to solve in an analytical form, using the argument 

functions, the theoretical and applied problem on the theory 
of elasticity; 

– to identify generalizing dependences that would make 
it possible to derive conditions for the existence of closing 
solutions to the problems on the theory of elasticity; 

– to test the obtained result using an example of applied 
problems, and to compare with studies by other authors.

4. Substantiating the argument function method in  
the theory of elasticity

Known statement of the flat problem from the classical 
theory of elasticity is used. It includes: two differential 
equilibrium equations, a deformations continuity equation, 
boundary conditions for stresses in a trigonometrical form. 
We introduce unknown argument functions, for the expo-
nential and trigonometrical basic dependences that close 
the solution to the flat problem. At the same time, the trigo-
nometric and fundamental substitutions must be confirmed 
in the course of obtaining the ultimate result. Differential 
ratios between the argument functions demonstrated by 
the solution to the problem are the Cauchy-Riemann con-
ditions, which occur in the analytical functions of complex 
variables, that is 

,x yq = -ΑΦ ,y xq = ΑΦ

where θx, θy, АФy, АФx are the particular derivatives from 
argument functions θ and АФ by coordinates. 

By using the derivatives, we obtain the elliptical Laplace 
equations 

0,xx yyq + q =  0.xx yyΑΦ + ΑΦ =

A kind of invariant connection is established between 
the physical functions, which underlies mathematical trans-
formations when using the method of complex variables. 
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A feature of this approach is that the ratios resulting from 
inference make it possible to close the solution in accordance 
with the boundary conditions. 

The proposed solutions typically begin with the state-
ment of the problem and the formulation of the boundary 
conditions. For a flat problem, we obtain:

0,xyx

x y

∂τ∂σ
+ =

∂ ∂  
0,yx y

x y

∂τ ∂σ
+ =

∂ ∂

( ) ( )2 2
02 0.x y∇ σ + σ = ∇ ⋅σ = 		  (1)

Boundary conditions for stresses can be brought to 
form [3]

sin 2 cos2 ,
2

x y
n xy

σ - σ
τ = - ⋅ j + τ ⋅ j 		  (2)

where σ0 is the mean normal stress or hydrostatic pressure. 
It should be emphasized that the above statement of 

the elastic problem is acceptable for both the flat-stressed 
and the flat-deformed state of a material. Analysis of ex-
pression (2) shows that, in order to simplify the solution 
and boundary conditions, a trigonometrical substitution 
should be used, in the following form:

( )sin ,xy iTτ = ⋅ ΑΦ
 

( )2 cos ,x y iTσ - σ = ⋅ ⋅ ΑΦ 	 (3)

which must be subsequently confirmed by the solution to the 
problem and by meeting the boundary conditions. Substitut-
ing (3) in (2), we obtain:

( )sin 2 ,n iTτ = - ⋅ ΑΦ - j 				    (4)

where Тi=Тi(x, y) is a function of the coordinates for a defor-
mation site, coinciding in functional terms with the intensity 
of tangential stresses; A is a constant factor that determines 
the elastic state of a deformable environment; Ф is a function 
of coordinates, one of the argument functions introduced for 
consideration that characterizes contact tangential stresses; 
φ is the angle of pad’s incidence.

Given that the differential equation system is linear, it 
is possible to use a fundamental substitution in determin-
ing the intensity of tangential stresses Тi [21]. It should 
be noted that paper [21] accepted a linear dependence on 
coordinates in the exponent. It is proposed to introduce 
a second argument function θ, that is the exponent, in the 
form of an arbitrary continuous function of coordinates, 
whose value at this stage of solution is unknown. Typically, 
elastic deformations define the stressed state in such a way 
that the intensity of stresses is a variable quantity. In this 
regard, it is advisable to introduce into consideration a 
spatial influence factor associated with the coordinates for 
a deformation site, that is:

( ) ( ) ( )exp ch sh .iT C Cσ σ  = ⋅ ±q = ⋅ q ± q  		  (5)

It should be added that the θ exponent is an unknown de-
pendence and is represented by a second argument function. 
Taking into consideration comments (3) to (5), we have:

( ) ( )exp sin ,xy Cστ = ⋅ q ⋅ ΑΦ  

( ) ( )2 exp cos .x y Cσσ - σ = ⋅ ⋅ q ⋅ ΑΦ 		 (6)

In expressions (6), two basic functions (trigonometric 
and exponential) and two unknown argument functions  
(θ and АФ) are considered, which are largely the defining 
ones. If there is a mathematical relation between them, for 
example, a Cauchy-Riemann condition, then there is suf-
ficient certainty to derive an analytical solution and the 
possibility of establishing the conditions for its existence for 
the system of equations (1). 

The boundary conditions show that the difference be-
tween normal stresses (6) should have a specific mathemat-
ical notation, confirmed by the solution to the flat problem 
from the theory of elasticity. According to (1) and (6), taking 
into consideration the deviator component for normal stress-
es [22], it is possible to record

'
0d ,xy

x x C
y

∂τ
σ = - + σ +

∂∫
 

'
0d ,xy

y y C
x

∂τ
σ = - + σ +

∂∫

then

( ) ( )d d 2 exp cos .xy xy
x y x y C

y x σ

∂τ ∂τ
σ - σ = - + = ⋅ ⋅ q ⋅ ΑΦ

∂ ∂∫ ∫

This is possible if

( ) ( )d exp cos ,xy x C
y σ

∂τ
= - ⋅ q ⋅ ΑΦ

∂∫
 

( ) ( )d exp cos ,xy y C
x σ

∂τ
= ⋅ q ⋅ ΑΦ

∂∫

or

( ) ( ) ( )'
0exp cos ,x C f y Cσσ = ⋅ q ⋅ ΑΦ + σ + +

( ) ( ) ( )'
0exp cos .y C f y Cσσ = - ⋅ q ⋅ ΑΦ + σ + +

		

(7)

Requirements (3) to (7) are set to the solution to the 
problem from boundary conditions (2). 

Let us consider the mean normal stress that is employed 
in the deformation continuity equation. This parameter 
should be given special attention, given its presence in the 
statement and solution to the problem. Taking into consid-
eration (7), we write

If ' '
0 02 2 2 0Сσ + = σ =  or equals a constant, 2σ0=const, 

then the deformation continuity equation is identically 
satisfied. However, these are not the only solutions to the 
continuity equation. The integrated ratios shown above (7) 
are of interest.

Similar to Mora’s circles, there may be shifts along 
the abscissa axis of the stressed state towards negative 
or positive values, due to the mean stress σ0. For the shift 
process to be obvious, hydrostatic pressure must be repre-
sented in a comparable form to the “core” of the solution, 
in expressions (6), (7). Establish under what limitations 
for the argument functions the deformation continuity 
equation holds. 

There is a need to determine conditions for the existence 
of a solution to the Laplace equation of the following form

( ) ( )
( ) ( )

' ' '
0

' '
0 0

exp cos

exp cos 2 2 .

x y C C

C C C

σ

σ

σ + σ = ⋅ q ⋅ ΑΦ + σ + +

 + - ⋅ q ⋅ ΑΦ + σ + = σ + 
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( ) ( ) ( )( )2 2
0 exp cos 0.Cσ∇ σ = ∇ ⋅ q ⋅ ΑΦ = 		  (8)

We shall analyze dependences (6), (7) for the mean 
normal stress in terms of the problem in statement (1). We 
obtain σ0 in the form

( ) ( )0 exp cos .Cσσ = ⋅ q ⋅ ΑΦ

The last expression makes it possible, in formulae (7), to 
eliminate uncertainty when finding stresses σx and σy.

5. Solving the problem from the theory of elasticity using 
the argument function of a complex variable

Let us return to the differential equilibrium conditions. 
Given that expressions (6), (7) include exponential depen-
dences, including a complex one, we shall write down a tan-
gential stress via an exponential function in the form:

( ) ( )exp exp
.

2xy

i i
C

iσ

q + ΑΦ - q - ΑΦ
τ = ⋅ 		  (9)

To determine normal stresses, one needs to substitute 
the expression for tangential stresses (9) in the equilibrium 
equation. Partial derivatives take the following form

( ) ( ) ( ) ( )exp exp
,

2
y y y yxy

i i i i
C

y iσ

q + ΑΦ ⋅ q + ΑΦ - q - ΑΦ ⋅ q - ΑΦ∂τ
= ⋅

∂

( ) ( ) ( ) ( )exp exp

2
xy x x x xi i i i

C
x iσ

∂τ q + ΑΦ ⋅ q + ΑΦ - q - ΑΦ ⋅ q - ΑΦ
= ⋅ ⋅

∂

After substituting the derivatives into differential equi-
librium equations and separating the variables, we obtain

( ) ( ) ( ) ( )exp exp
d d ,

2
y y y y

x

i i i i
C x

iσ

q + ΑΦ ⋅ q + ΑΦ - q - ΑΦ ⋅ q - ΑΦ
σ = - ⋅ ⋅

( ) ( ) ( ) ( )exp exp
d d .

2
x x x x

y

i i i i
C y

iσ

q + ΑΦ ⋅ q + ΑΦ - q - ΑΦ ⋅ q - ΑΦ
σ = - ⋅

By applying the analyticity condition for bracketed func-
tions(θx=–АФy), (θy=–АФx), we obtain the opportunity to 
move from one integration variable to another. We obtain

( ) ( ) ( ) ( )exp exp
d d ,

2
x x x x

x

i i i i
C x

iσ

ΑΦ - q ⋅ q + ΑΦ - ΑΦ + q ⋅ q - ΑΦ
σ = - ⋅ ⋅

( ) ( ) ( ) ( )exp exp
d d .

2
y y y y

y

i i i i
C y

iσ

-ΑΦ + q ⋅ q + ΑΦ - -ΑΦ - q ⋅ q - ΑΦ
σ = - ⋅

Under such a statement, the integrands are recorded 
with a single variable. One can show that

,x
x x

i
i

i
q + ΑΦ

ΑΦ - q =  ,x x
x x

i
i

i
q - ΑΦ

ΑΦ + q = -

,y y
y y

i
i

i

q + ΑΦ
-ΑΦ + q = -  .y y

y y

i
i

i

q - ΑΦ
-ΑΦ - q =

After substituting the ratios obtained above, integration

( ) ( )exp exp
,

2x

i i
C Cσ

q + ΑΦ + q - ΑΦ
σ = ⋅ +

( ) ( )exp exp
.

2y

i i
C Cσ

q + ΑΦ + q - ΑΦ
σ = - ⋅ +

Moving on to physical functions, we obtain

exp cos ,x C Cσσ = ⋅ q⋅ ΑΦ +

exp cos .y C Cσσ = - ⋅ q⋅ ΑΦ + 			   (10)

If the integration determined not the stresses but the 
stress deviators sx=σx–σ0, sy=σy–σ0, according to [22], then:

0exp cos ,x Cσσ = ⋅ q⋅ ΑΦ + σ  

0exp cos ,y Cσσ = - ⋅ q⋅ ΑΦ + σ 		  (11)

						     at θx=–АФy, θy=АФx, θxx+θyy=0, АФxx+АФyy=0.
It should be emphasized that expressions (11) correspond 

to expressions (6), which was required when stating the 
problem. By representing the deviator component in the 
form, we obtain:

( )0 ,x xs f y= σ - σ -
 

( )0 ,y ys f x= σ - σ -

then

( )0exp cos ,x C f yσσ = ⋅ q⋅ ΑΦ + σ +  

( )0exp cos .y C f xσσ = - ⋅ q⋅ ΑΦ + σ +
	

(12)

The above Cauchy Riemann conditions for 
the argument functions completely close the solu-
tion to the problem both in terms of boundary 
conditions (6) and equilibrium equations (1). 
The unknown functions θ and АФ, introduced in 
consideration, are determined from the Laplace 
equations according to (11), (12), which provides 
sufficient certainty for their finding. Differential 
relations

,x yq = -ΑΦ
 

,y xq = ΑΦ  

0,xx yyq + q =  0,xx yyΑΦ + ΑΦ = 	 (13)

are the invariants of argument functions that 
limit the solution to the problem. By using (13), 
there is a tool to obtain additional capabilities 
for analytical and numerical solution. An entire 
class of argument functions emerges, that is 
of new dependences that meet the boundary 
conditions and equations of the system equi-
librium (1). 

However, the problem is not finalized, as the mean 
normal stresses that are included in (7), (11), (12) through 
the deformation continuity condition (8) have not been 
determined. In this case, the problem is set to determine 
at which values for argument functions the continuity 
equation (8) holds. Let us write (8) via a complex variable 
function
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( ) ( )2 exp exp
0.

2

i i
Cσ

 q + ΑΦ + q - ΑΦ
∇ ⋅ =  

We describe the derivatives with respect to coordinates

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2

2

2

2

2

2

2

2

exp exp

2

exp

2

exp
,

2
exp exp

2

exp

2

exp

xx xx x x

xx xx x x

yy yy y y

yy yy y y

i i
C

x

i i i
C

i i i

i i
C

y

i i i
C

i i

σ

σ

σ

σ

 q + ΑΦ + q - ΑΦ
∂ ⋅ 

  =
∂

 q + ΑΦ + q + ΑΦ q + ΑΦ = +

 q - ΑΦ + q - ΑΦ q - ΑΦ +

 q + ΑΦ + q - ΑΦ
∂ ⋅ 

  =
∂

 q + ΑΦ + q + ΑΦ q + ΑΦ  = +

 q - ΑΦ + q - ΑΦ q  +
( )

.
2

i- ΑΦ

After substituting the derivatives in the deformation 
continuity equation and upon contractions, we obtain

( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

22

22

exp

exp

0.

xx yy xx yy

x x y y

xx yy xx yy

x x y y

i

i

i i

i

i

i i

q + ΑΦ ×

 q + q + ΑΦ + ΑΦ ⋅ +
 × + + q + ΑΦ + q + ΑΦ 

+ q - ΑΦ ×

 q + q - ΑΦ + ΑΦ ⋅ +
 × = + q - ΑΦ + q - ΑΦ 

	 (14)

Operators in (14) that are adjacent to the exponents 
contain the same second derivatives for coordinates and 
non-linearity. If for some reason the operators are zero, then 
there is an identity. Let us show it. We shall describe the 
non-linearities in the operators and regroup them.

( ) ( )
( ) ( ) ( )
( ) ( )

22

2

,

x x y y

x y x y x x y y

y x y x

i i

i

q + ΑΦ + q + ΑΦ =

= q + ΑΦ ⋅ q - ΑΦ + q ⋅ ΑΦ + q ⋅ ΑΦ +

+ q + ΑΦ ⋅ q - ΑΦ

( ) ( )
( ) ( ) ( )
( ) ( )

22

2

.

x x y y

x y x y x x y y

y x y x

i i

i

q - ΑΦ + q - ΑΦ =

= q + ΑΦ ⋅ q - ΑΦ - q ⋅ ΑΦ + q ⋅ ΑΦ +

+ q + ΑΦ ⋅ q - ΑΦ

By taking in the products of brackets one to be equal 
to zero, we move away from non-linearity, then θx=–АФy, 
θy=АФx, which was observed when solving differential 
equations of equilibrium. The expression for both operators 
automatically turns into zero

0.x x y y y x x yq ⋅ ΑΦ + q ⋅ ΑΦ = -ΑΦ ⋅ ΑΦ + ΑΦ ⋅ ΑΦ =

The continuity equation (14) is significantly simplified 
and takes the form

( ) ( ) ( )
( ) ( ) ( )

exp

exp 0.

xx yy xx yy

xx yy xx yy

i i

i i

 q + ΑΦ ⋅ q + q + ΑΦ + ΑΦ ⋅ + 
 + q - ΑΦ ⋅ q + q - ΑΦ + ΑΦ ⋅ = 

We determine second derivatives from the Cauchy-Rie-
mann conditions, which show that: 

θxx+θyy=0, 

АФxx+АФyy=0, 

that is the deformation continuity equation is identically sat-
isfied. Therefore, the solution to the deformation continuity 
equation at 

θx=–АФy, θy=АФx, θxx+θyy=0, АФxx+АФyy=0 

is 

0 exp cos ,n Cσσ = ⋅ ⋅ q⋅ ΑΦ 		  (15)

where n is any number. 
The solution (15) is subject to the same constraints as 

(11), (12) at the same parameters. It should be emphasized 
that the solution to the deformation continuity equation al-
lows the presence in the expression of the mean normal stress 
of two exponents simultaneously with the opposite signs of 
argument function θ. We show it:

( )
( ) ( )

0 exp cos

exp exp
.

2

σ

σ

σ = ⋅ ⋅ -q ⋅ ΑΦ =

-q + ΑΦ + -q - ΑΦ
= ⋅ ⋅

n C

i i
n C

By substituting in the deformation continuity equation, 
we obtain

( )
( ) ( )
( ) ( )
( )

( ) ( )
( ) ( )

22

22

exp

exp

0.

xx yy xx yy

x x y y

xx yy xx yy

x x y y

i

i

i i

i

i

i i

-q + ΑΦ ×

 - q + q + ΑΦ + ΑΦ ⋅ +
 × + + q - ΑΦ + q - ΑΦ 

+ -q - ΑΦ ×

 - q + q - ΑΦ + ΑΦ +
 × = + q + ΑΦ + q + ΑΦ 

		  (16)

By comparing (14) and (16), we make sure that the op-
erators before the exponents are of the opposite sign in com-
parison to function θ, but, in terms of solution, they almost 
have not changed. We group

( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

exp

2

exp

2 0.

xx yy xx yy x y x y

x x y y y x y x

xx yy xx yy x y x y

x x x x y x y x

i

i

i

i

i

i

-q + ΑΦ ×

× - q + q + ΑΦ + ΑΦ ⋅ + q + ΑΦ ⋅ q - ΑΦ -
- ⋅ q ΑΦ + q ΑΦ + q + ΑΦ ⋅ q - ΑΦ +

+ -q - ΑΦ ×

× - q + q - ΑΦ + ΑΦ ⋅ + q + ΑΦ ⋅ q - ΑΦ +
+ ⋅ q ΑΦ + q ΑΦ + q + ΑΦ ⋅ q - ΑΦ =
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By using the Cauchy-Riemann conditions, θx=АФy, 
θy=–АФx, the continuity equation is significantly trans-
formed and takes the form

( ) ( ) ( )
( ) ( ) ( )

exp

exp 0.

xx yy xx yy

xx yy xx yy

i i

i i

 -q + ΑΦ ⋅ - q + q + ΑΦ + ΑΦ ⋅ + 
 + -q - ΑΦ ⋅ - q + q - ΑΦ + ΑΦ ⋅ = 

The established differential relation between the ar-
gument functions makes it possible to determine second 
derivatives

θxx=АФyx, θyy=–АФxy, АФxx=θyx, АФyy=–θyy.

By substituting derivatives in the continuity equation, 
we make sure that (14) turns into an identity. 

We have stated and solved from a unified position the 
flat problem on the theory of elasticity, and identified the 
generalizing ratios (13) determining the conditions for the 
existence of the assigned class of solutions through the in-
variants of differential ratios of argument functions. 

The result is the notation

( ) ( )0exp cos ,x C f y Cσσ = ± ⋅ ±q ⋅ ΑΦ + σ + +

( ) ( )0exp cos ,y C f x Cσσ = ⋅ ±q ⋅ ΑΦ + σ + +∓ 	

( ) ( )exp sin ,xy Cστ = ⋅ ±q ⋅ ΑΦ

( )0 exp cos ,n Cσσ = ± ⋅ ⋅ ±q ⋅ ΑΦ 	 (17)

at θx=∓АФy, θy=±АФx, θxx+θyy=0, АФxx+АФyy=0.
Analysis reveals that solution (17) can be further 

strengthened and represented in the form

( )( ) ( )
( ) ( ) ( )
( )

1 2 0

1 2

0

exp cos sin

ch sh cos sin

,

x C C f y C

C C

f y C

σ = ± ±q ΑΦ - ΑΦ + σ + + =

 = ± ±q ± ±q ΑΦ - ΑΦ + 
+σ + +

( )( ) ( )
( ) ( ) ( )
( )

1 2 0

1 2

0

exp cos sin

ch sh cos sin

,

y C C f x C

C C

f x C

σ = ±q ΑΦ - ΑΦ + σ + + =

 = ±q ± ±q ΑΦ - ΑΦ + 
+σ + +

∓

∓

( ) ( )
( ) ( ) ( )

1 2

1 2

exp sin cos

ch sh sin cos ,

τ = ±q ⋅ ΑΦ + ΑΦ =

 = ±q ± ±q ΑΦ + ΑΦ 

xy C C

C C

( ) ( )
( ) ( ) ( )

0 1 2

1 2

exp cos sin

ch sh cos sin .

n C C

n C C

σ = ± ⋅ ±q ⋅ ΑΦ ΑΦ =

 = ± ⋅ ±q ± ±q ΑΦ ΑΦ 

∓

∓ ,	 (18)

at θx= ∓ АФy, θy=±АФx, θxx+θyy=0, АФxx+АФyy=0.
As a particular case, expression (18) can be considered 

as a function of stresses to employ for a comparative analy-
sis. Indeed, a biharmonic equation for a flat problem can be 
represented 

( )4 2 2 0.∇ φ = ∇ ∇ φ =
				  

(19)

Since ( )2
0 0,∇ σ =  hence

( ) [ ]2 2 2
0 0 0. ∇ ∇ σ = ∇ = 

			 
(20)

Paper [23] gave the solutions to a flat problem using se-
ries. The stress function φ takes the form

( ) ( ) ( )
( ) ( )

3 4

5 6

ch sh
sin .

ch sh

 ⋅ α + ⋅ α +
φ = α ⋅  

+ ⋅ ⋅ α + ⋅ ⋅ α  

C y C y
x

C y y C y y
	 (21)

We shall reduce expressions (18) and (21) to a compa-
rable form, that is С5=С6=0, АФ=αx, θ=αy, n=1, С1=0, 
С2=–1. In (18), a plus sign is chosen before the expression. 
In this case, expressions (18) and (21) coincide, therefore, 
for both of them the Cauchy-Riemann conditions and the 
Laplace equations must hold, those that were obtained from 
the current solution

,x yq = -ΑΦ
 

,y xq = ΑΦ
 

0,xx yyq + q =
 

0.xx yyΑΦ + ΑΦ =

Indeed, θx=0, АФy=0, θy=α, АФx=α. The Cauchy-Rie-
mann conditions for a known solution then also hold, 0=–0, 
α=α, that is the functions presented in work [23] are tested 
with respect to (18). This follows from the fact that functions 
αx and αy are the simplest solution to the Laplace equation, 
which allows a whole class of harmonic functions in different 
combinations. It is assumed that the functions are not neces-
sarily linear and may depend on multiple coordinates at the 
same time. For example, the more complex function of АФ is 
the function of second order. Let us consider several options. 
Trigonometric argument functions are:

1 6 ;xΑΦ = ΑΑ 2 6 ;xyΑΦ = ΑΑ ( )2 2
3 13 .x yΑΦ = ΑΑ -∓ (22)

Second argument functions θ are determined from the 
Cauchy-Riemann condition, in the form

1 6 ;yq = ΑΑ ( )2 2
2 6

1
;

2
x yq = - ΑΑ - ( )3 13 .xyq = ±ΑΑ 	 (23)

Let us check all the functions for harmony, substituting 
alternately in the Laplace equation:

2 2
1 1

2 2 0 0 0;
x y

∂ ΑΦ ∂ ΑΦ
+ = + =

∂ ∂  

2 2
2 2

2 2 0 0 0;
x y

∂ ΑΦ ∂ ΑΦ
+ = + =

∂ ∂
 

( )
2 2

3 3
13 132 2 0.

x y
∂ ΑΦ ∂ ΑΦ

+ = ΑΑ - ΑΑ =
∂ ∂

	 (24)

Next

2 2
1 1

2 2 0 0 0,
x y

∂ q ∂ q
+ = + =

∂ ∂

2 2
2 2

6 62 2 0,
x y

∂ q ∂ q
+ = -ΑΑ + ΑΑ =

∂ ∂
 

2 2
3 3

2 2 0 0 0.
x y

∂ q ∂ q
+ = + =

∂ ∂
				    (25)

All three options satisfy the Cauchy-Riemann condi-
tions and the Laplace equations (22) to (25), as was defined 
by the solution to the problem. It follows from the last 
analysis that there can be as many solutions as the defined 
harmonic functions. Then, in a general form, one can write 
down:

( )( ){ }

( ) ( ) ( ){ }
1 2 0

1

1 2 0
1

exp cos sin

ch sh cos sin ,

n

x i i i i i i i i
i

n

i i i i i i i i i
i

C C

C C

=

=

σ = ± ±q Α Φ - Α Φ + σ =

 = ± ±q ± ±q Α Φ - Α Φ + σ 

∑

∑
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( )( ){ }

( ) ( ) ( ){ }
1 2 0

1

1 2 0
1

exp cos sin

ch sh cos sin ,

n

y i i i i i i i i
i

n

i i i i i i i i i
i

C C

C C

=

=

σ = ±q Α Φ - Α Φ + σ =

 = ±q ± ±q Α Φ - Α Φ + σ 

∑

∑

∓

∓

( ) ( ){ }

( ) ( ) ( ){ }
1 2

1

1 2
1

exp sin cos

ch sh sin cos ,

n

xy i i i i i i i
i

n

i i i i i i i i i
i

C C

C C

=

=

τ = ±q ⋅ Α Φ + Α Φ =

 = ±q ± ±q Α Φ + Α Φ 

∑

∑ (26)

( ) ( )

( ) ( ) ( )

0 1 2
1

1 2
1

exp cos sin

ch sh cos sin ,

n

i i i i i i i i i
i

n

i i i i i i i i i
i

n C C

n C C

=

=

σ = ± ⋅ ±q ⋅ Α Φ Α Φ =

 = ± ⋅ ±q ± ±q Α Φ Α Φ 

∑

∑

∓

∓

at 

,ix i iyq = Α Φ∓ ,iy i ixq = ±Α Φ 0,ixx iyyq + q =
 

0.ixx iyyΑΦ + ΑΦ =

Different harmonic functions exert different influences 
on the ultimate result; they can be characterized by different 
boundary conditions for problems. In contrast to the expres-
sions obtained by the method of separating variables, the 
argument functions may be non-linear and, at the same time, 
depend on two coordinate variables.

For analysis, we shall use the simplest variants of argument 
functions (22), (23). Let us show the impact of their construc-
tion on the distribution of contact stresses in the elastic zone. 
We examine the stressed state of an elastic semi-space under 
the influence of force P from a massive die of width 2b (Fig. 1). 
It is assumed that there is a continuous distribution of stresses 
throughout the volume of zone of elastic deformation, which 
will make it possible, in a contact with a die, to find the law of 
distribution of tangents and normal stresses.

Fig. 1. Effect of a flat die on elastic semi-space

Choose the simplest first variant of expressions (22). 
By accepting expression (18), considering С1=Сσ, C2=0, we 
obtain differential ratios in the form: 

θx=АФy, θy=–АФx, θxx+θyy=0, АФxx+АФyy=0.

Stresses take the form:

( ) 0exp cos ,x Cσσ = - -q ΑΦ + σ

( ) 0exp cos ,y Cσσ = -q ΑΦ + σ

( )exp sin ,xy Cστ = -q ΑΦ
 

( )0 exp cos .n Cσσ = ± ⋅ -q ⋅ ΑΦ

If, in the process of loading, there forms the stressed state 
of one sign, for instance, compression, then:

( ) ( )exp cos exp cos ,x C n Cσ σσ = - -q ΑΦ + ⋅ -q ⋅ ΑΦ

( ) ( )exp cos exp cos ,y C n Cσ σσ = -q ΑΦ + ⋅ -q ⋅ ΑΦ

( )exp sin .xy Cστ = -q ΑΦ

In this case, the minimum integer n=2, then:

( )exp cos ,x Cσσ = -q ΑΦ ( )3exp cos ,y Cσσ = -q ΑΦ

( )exp sin .xy Cστ = -q ΑΦ

If, given the assumptions accepted, it is necessary to ob-
tain stress σx=0, then n=1, hence:

( )2exp cos ,y Cσσ = -q ΑΦ
 

( )exp sin .xy Cστ = -q ΑΦ

Functions АФ and θ are determined considering the Cau-
chy-Riemann conditions and the Laplace equations (22) to (25):

6 ,xΑΦ = ΑΑ 6 .yq = -ΑΑ

Substituting argument functions in the last expressions 
for stresses, we obtain:

( ) ( )6 62exp cos ,y y C xσσ = -ΑΑ ΑΑ

( ) ( )6 6exp sin .xy y C xστ = -ΑΑ ΑΑ 	 (27)

Analysis of expressions (27) shows that the solution im-
plies the presence of friction in the contact, which changes 
according to the sinusoid law. If one accepts that in depen-
dences (27) the constant АА6 equals zero, the heterogeneity 
of the stressed state disappears. Then

2 ,y Cσσ = ⋅
 

0.xyτ =

It follows from the above formulae (27) that the constant 
АА6 characterizes the heterogeneity of the stressed state, 
which in the deformation zone is determined by contact 
friction. The stress σy does not change. The equilibrium 
equation can yield a connection between constant Cσ and 
power P. Returning to expressions (27), it is clear that 
function θ depends only on a single variable y; as it increases 
the exponent decreases. This characterizes the damping of 
the impact from the die deep into the semi-space, both for 
the normal stress and tangential one. Contact normal stress 
changes according to the cosinusoidal law. It should be noted 
that the stresses in contact for (27) accept maximum values.

Consider more complex dependences for argument func-
tions in (22):

2 6 ,xyΑΦ = ΑΑ  ( )2 2
2 6

1
.

2
x yq = ΑΑ -∓

By adopting the Cauchy-Riemann conditions in form 
θx=АФy, θy=–АФx, we shall write an expression for stresses 
in the following form

( ) ( )2 2
6 6

1
2exp cos ,

2y x y C xyσ
 σ = ⋅ ΑΑ - ΑΑ  

P

x

y

b b 
0

y
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( ) ( )2 2
6 6

1
exp sin .

2xy x y C xyσ
 τ = ⋅ ΑΑ - ΑΑ  

		 (28)

In Fig. 1, the coordinates origin is at the contact 
surface; the tangent stresses in this case are zero, which 
excludes them from consideration. We consider the prob-
lem on the impact exerted by a flat die on an elastic semi-
space without taking into consideration contact friction. 
It should be emphasized that the change in coordinate 
functions changes the ability to meet boundary conditions 
in contact, that is a change in the problem. As in the pre-
vious case, the constant АА6 being zero leads to an even 
distribution of stresses across the elastic deformation zone. 
However, the value for АА6 is no longer determined by 
contact friction, but by other indicators. It is evident that 
the extreme values of trigonometrical functions are derived 
not only in contact but also in the depth of a half-space. In 
this case, expressions (28) are recorded:

( )2 2

0 0

1
2exp cos ,

2 2 2y x y C xy
by byσ

   p p
σ = ⋅ -     

( )2 2

0 0

1
exp sin ,

2 2 2xy x y C xy
by byσ

   p p
τ = ⋅ -     

	 (29)

where y0 is the position of a point deep in a half-plane for the 
case of an extreme value for the trigonometrical function. 

Hence, it follows that the uneven distribution of stress-
es in the deformation zone is primarily associated with 
the fading effect of the die on the elastic half-space. If one 
assigns position in the contact, that is, y0=0, we shall also 
obtain extreme values for trigonometrical functions. In this 
case, (29) take the form:

( )2

0

1
2exp ,

2 2y x C
by σ

 p
σ = ⋅ 

 
 0.xyτ = 		  (30)

The lowest stress in contact is obtained at x=0. An in-
crease in y0 decreases the exponent, which indicates a signif-
icant impact exerted by this parameter on the heterogeneity 
of the stressed state. 

Fig. 2 show the distribution of normal stresses in con-
tact and in the depth of a half-space. The diagrams are 
constructed using relative magnitudes x/2b and σy/σy0, 
where σy0 is the minimum value for normal stresses in the 
deformation zone.

In contact, the distribution of stresses is determined 
from expressions (30), the tangent stresses are absent, 
which is set by the condition to the problem. The de-
pendence of normal stress is defined by a change in the 
exponent. The stress diagram is concave in shape. As the 
y coordinate increases, the stresses decrease; they would 
ultimately equal zero, which corresponds to the damping 
effect of the die on the elastic half-space. Ultimately, such 
a damping effect over long distances is reminiscent of the 
Saint-Venan principle.

It is interesting to compare result (29), (30) to the 
already known theoretical and experimental data. The 
proposed variant qualitatively correctly reflects the distri-
bution of stresses, which is confirmed in studies by many 
authors [6‒8]. Indeed, we have obtained the following law 
of stress distribution under a flat hard die without taking 
friction into consideration:

( )
2 2

.
P

q x
b x

=
p -

Fig. 2. Distribution of normal stresses in contact and in the 
depth of a half-space exposed to the action of a flat die 

without taking friction into consideration 

The contact stress diagram is a concave curve, with a 
minimum, similarly to case (30), at point x=0. Hence, it 
follows that all qualitative characteristics of the stress distri-
bution under a flat smooth die correspond to data from the 
scientific literature, except for point x=b. In this case, q(x) 
turns into infinity. However, there are papers [26] that show 
that the stress remains limited at point b. In the current 
study, such a limitation is the parameter y0.

6. Discussion of results of studying  
the stressed-state using the argument functions of  

a complex variable

The use of the same generalizing approaches in the form 
of differential ratios and equations in partial derivatives (13) 
in the theory of plasticity, elasticity, and dynamic problems, 
makes it possible to extend the method of argument func-
tions to the continuum mechanics. 

The solutions considered (18) are a test confirming the 
validity of the new result. 

It is possible to use the result from study (22), (23) to 
solve problems:

– with different patterns of external power distribution; 
– with different schemes of loading an elastic semi-space; 
– with different boundary conditions and the stressed 

state schemes; 
– with a complicated geometry of the tool;
– considering friction in contact.
It should be emphasized that the represented solution 

does not fully exploit the biharmonic equation (19), (20): it 
is satisfied at an earlier stage. 

At the same time, there is a possibility of losing some 
solutions. 

The current study can be advanced if the biharmonic 
equation is to be completely closed using argument functions. 
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By summing up, one can note that the introduction of the 
argument functions into consideration, which make it pos-
sible to close the problem and to identify their generalizing 
characteristics in the form of Cauchy-Riemann conditions 
and the Laplace equations (13), brings sufficient certainty 
to obtaining the ultimate result (15).

7. Conclusions

1. We have advanced the method of argument functions 
when solving various applied problems in the mining in-
dustry, metal treatment under pressure, instrumental and 
manufacturing engineering.

2. The argument functions method has been applied to 
demonstrate generalized conditions for the existence of solu-

tions to the problems from the theory of elasticity. This expands 
practical possibilities in the operation of facilities, machinery 
and assemblies, in the design and construction of equipment for 
various purposes in metallurgy, machine engineering.

3. We have defined the differential dependences between 
argument functions in the form of the Cauchy-Riemann 
conditions, the Laplace equations, which make it possible to 
close the problem in a general form. There is a possibility to 
use them to solve different types of differential equations in 
partial derivatives in mathematics, continuum mechanics. 
To solve applied problems on the interaction between elastic 
bodies in the regions of intensive loading for transport engi-
neering, aerospace engineering.

4. The result that is comparable to studies by other au-
thors has been shown, used in geomechanics when loading 
massive bodies on the ground of a semi-infinite space.
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