u]

=,

Jocaioxcyemves npobema icHyeanns oOMexHceHUx Po3es3-
K16 Ha 6Ciil OWiCHIl 0Ci IHIUNUX HeoOHopionuUXx cucmem ougdepen-
YIHUX PieHAND, AKI 3A3HAIOMb IMNYIbCHI 30ypenns y Qixcosani
Momenmu uacy. 3uaiioeno docmammi ymoeu ezinepooniunocmi
PO036‘23Ki6 00HOPIOHOT 6azamosumipnoi cucmemu udepenyians-
HUX PIBHANHL 3 IMNYIbCHUM 6NAUGOM. Ompumani ymosu 3acmo-

imMnynocnoi cucmemu. Copmynvosano docmammi ymoeu icuy-
8anHsL €0UN020 00MedCEH020 PO36‘A3KY 00 HeOOHOPiIOHOT cucme-

cucmemu. Ilepesazoro maxozo nioxody € me, wo 3Hatideni ymoeu
Modcymo Gymu epexmueno nepegipeni 04 KOHKpEmMHUX KAACIG
IMNYAbCHO-30Ypenux cucmem, OCKibku chopmyavosani y mep-
Minax xoepiyienmie euxionux sadau. Ompumani ymoeu 00360.1s-
10Mmb 3aCMOCY8amu KAACUuHi Memoou OudepenyianrvHux pieHsHbL
0151 00epoicanns meepodicens NPo Po3e A3nicmv ma Henepepeuy
3anexcHicms Po36 A3Ki6 6i0 napamempie iMnyibCHOL cucmemu.

Teopia cucmem 3 IMNYNLCHUM BRIAUGOM MAE WUPOKE KOJIO
3acmocyeanv. Qucnenni esomouivini npouecu y ¢iziui, mexuiyi,
asmomamumnomy pezyuoéanti, 6iosoeii, eKoHOMIYI Ha NPOMA3L
C6020 PO36UMKY MOJMCYMb NI00ABAMUCH KOPOMKOUACHUM GNIIU-
eam, mpuseanicmio saxux moxcua snexmyeamu. Hanpuxnao, npo-
Uecu i3 CKauKonooioOHUMU 3MIHAMU CROCMEPi2alOMbCA Y Mexani-
ui (pyx npyscunu npu yoapuomy enausi, poboma 200UHHUKOE020
Mexanizmy, 3MiHA WEUOKOCMI paKemu npu 6i00KpeMIeHHi cmy-
nenis), 6 padiomexniui (2enepauis imnyaocie), 6 6ionoeii (poodo-
ma cepys, noodin KuimuH, nepeoaua CuzHalié HeUpoHaAMU), 6
meopii konmpoaio (po6oma npomucaosux pooomis). Tomy saxicre
00CNI0NHCEHN IMNYILCHUX cUCmeM Y 0aHill pobomi € aKMmyanrvHOIO
3adaueto 6 cyuacuiii meopii MamemMamuun020 MOOeNI08aANHS

Kniouosi cnosa: duepenyianvii pieuanns, imnyischa cucme-
Ma, obmexcenuii poseasox, Qpyuxuia Ipina-Camoiinenxa, peey-
JIAPHI PO3 833K U

0 =,

c06ano 0t 00CNI0NHCEHH 0OMENHCEHUX PO36 “A3Ki6 Heo0HOopionoi

MU 0N 6unaoxky caadkoi pesyasapnocmi 6ionoeionoi oonopionoi
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1. Introduction

During the mathematical description of evolution of real
processes with short-term perturbations, it is convenient to
neglect the durations of these perturbations and consider
that these perturbations have an “instantaneous” character.
Such idealization leads to the necessity of studying dynam-
ical systems with discontinuous trajectories or, as they are
also called, differential equations with impulsive actions.

The growing interest in the systems with discontinuous
trajectories in recent years is primarily due to numerous
applications. Nowadays, various impulsive systems of au-
tomatic regulation, impulsive computing systems occupy a
very significant place in modern mathematical modeling.
Therefore, the study of the qualitative behavior of impulsive
systems is a relevant task both for the theory of differential
equations and for its modern applications.

Studying various problems of natural science, one

Copyright © 2019, F. Asrorov, V. Sobchuk, O. Kurylko
This is an open access article under the CC BY license
(http.//creativecommons.org/licenses/by,/4.0)

abruptly. However, the idealization of the replacement of
short-term perturbations with “instantaneous” ones is not
the only reason for the emergence of differential equations
with discontinuous trajectories. Often the discontinuities of
certain dependences in the studied system are their essential
characteristics.

An example of such behavior is the movement of a steel
ball falling freely from a certain height onto a horizontal
steel surface. We can see that in the mathematical model of
this process the velocity of the ball “instantly” changes its
sign at the moment of hitting the steel plate.

The results of the paper can be successfully used for the
study of vibrational processes in a variety of mechanical and
electromechanical systems with discontinuous characteris-
tics and in the study of multi-frequency vibrational processes
of discontinuous systems.

often has to deal with evolutionary processes, which are

2. Literature review and problem statement

described by ordinary differential equations and undergo
short-term perturbations. During the mathematical mod-
eling of such processes, it is often convenient to neglect
the duration of such perturbations and consider them as an
impulse (push, shock).

Such idealization leads to the need to study the systems
of differential equations, the solutions of which change

The most fruitful and effective studies of impulsive
systems have been conducted in the last decade. Sufficient
conditions for the asymptotic stability of zero solution to
nonlinear systems on the basis of the Lyapunov’s direct
method are obtained in [1]. In [2], the review of the most
modern methods of stability analysis of solutions to impulse



differential equations and their application to the problems
of impulse control is carried out. In [3], the invariance and
stability of global attractors in multi-valued impulsive dy-
namical systems are investigated.

In [4], sufficient conditions for the existence of as-
ymptotically stable invariant toroidal manifold of linear
extensions of dynamical systems on torus in the case when
the system matrix commutes with its integral are obtained.
The proposed approach is applied to the study of stability
of invariant sets of a class of discontinuous dynamical
systems. Exponential stability of the trivial torus for a
certain class of nonlinear extensions of dynamical systems
on torus is proved in [5]. The obtained results are applied
to the study of stability of toroidal manifolds of impulsive
dynamical systems. In [6], the problem of constructing ap-
proximate adaptive control, including the case of impulse
control, for a certain infinite-dimensional problem with
the cost functional of the Nemytsky type is considered. The
method of averaging for obtaining approximate adaptive
control is justified. The concept of impulsive non-autono-
mous dynamical system is introduced in [7]. The existence
and properties of the impulsive attracting set are investi-
gated for such systems. The obtained results are applied to
the study of stability of the two-dimensional impulsively
perturbed Navier-Stokes system. In [8], the recursive prop-
erties of almost periodic motions of impulsive dynamical
systems are studied. The obtained results are applied to
the study of qualitative behavior of discrete-time systems.
In [9], the stability properties with respect to the external
(controlling) perturbations for systems of the differential
equations with impulsive influences at the fixed moments of
time are considered. Necessary and sufficient stability con-
ditions for the classes of impulsive systems possessing the
function of Lyapunov type are obtained. In [10], non-au-
tonomous systems of the reaction-diffusion type with im-
pulsive effects at fixed moments of time are considered. The
corresponding non-autonomous dynamical system is con-
structed, for which the existence of a uniform attractor is
proved. In [11], a non-autonomous evolution inclusion with
impulse effects at fixed time moments is considered. The
corresponding non-autonomous multi-valued dynamical
system is constructed, for which a compact global attractor
in the phase space is proved to exist. In [12], the existence
of global attractors in discontinuous infinite-dimensional
dynamical systems, which can have trajectories with an
infinite number of impulsive perturbations, is proved. The
obtained results are applied to the study of asymptotic be-
havior of weakly nonlinear impulsively perturbed parabolic
equations. In [13], the model of neuron firing is considered,
which is defined by the system of differential equations
with impulsive influence. The system describes the dynam-
ics of the potential on the membrane, when some current is
applied to the input, the voltage on the membrane increases
with time to some critical value.

In all the above papers, the bases of the qualitative the-
ory of differential equations with impulses are presented. In
fact, the foundations of the qualitative theory of impulsive
systems are established, based on the qualitative theory of
ordinary differential equations, methods of asymptotic inte-
gration of such equations, and theory of difference equations
and generalized functions. Nevertheless, the question of the
existence of solutions to hyperbolic linear impulsive systems
is not considered. At the same time, some classes of impul-
sive systems, such as multi-dimensional nonhomogeneous

impulsive systems, are not fully investigated. The questions
of the existence and structural arrangement of integral sets
of systems of differential equations subject to impulsive per-
turbations at the fixed moments of time, and at the moments
when a phase point hits predefined subsets of the phase space
remain unsolved.

3. The aim and objectives of the study

The aim of the present study is to find bounded solutions
to multidimensional nonhomogeneous systems of differential
equations with impulsive perturbations at fixed moments of
time. This will allow using impulsive systems of the specified
type for modeling the dynamics of evolutionary processes
which parameters are exposed to sharp changes at the pre-
defined moments of time as a result of almost instantaneous
external influences.

In order to achieve this aim, the following objectives
are set:

— to find sufficient conditions of hyperbolicity of solu-
tions to the homogeneous multidimensional system of differ-
ential equations with impulsive influences;

— to use the obtained conditions for the theoretical study
of bounded solutions to the nonhomogeneous impulsive
system,;

—to test the possibility of obtaining solutions on the
example of the “integrate-and-fire” neuron model.

4. Finding bounded solutions of multidimensional
nonhomogeneous systems of differential equations with
impulsive influences at fixed moments of time

4. 1. Sufficient conditions for the hyperbolicity of a
homogeneous system

We consider a linear system of ordinary differential
equations with impulses at fixed moments of time

dx
E:P(t)x+f(t), t#£T,

Ax|_ =x(t,+0)-x(t,—0)=Bx+a, )

t=1
where xeR", P(t) — continuous (piecewise continuous)
in the interval I=((x,[3) nxn — dimensional matrix and
bounded on R; B; — constant matrices; @, — constant vec-
tors, f(¢) — vector-function. The sequence of the moments
of impulsive jumps {t,} are such that T, > —co when i — —eo
and T, >+ when i— +co. This assumption rules out the
possibility of the existence of finite accumulation points in
the impulsive sequence and prevents the emergence of so-
called Zeno solutions. Additionally, we assume that uniform-
ly with respect to TeR there exists a finite limit

_i(tt+T)
hmiT . (2)

T—eo

Limit (2) is widely used in stability analysis of impulsive
systems [1] and may be interpreted as an inverse average
time between moments of jumps [9].

In sequel, we are interested in the study of the existence
of solutions to linear nonhomogeneous system (1) that are
bounded on the entire real axis, based on the properties



of the corresponding homogeneous system, which has the
following form

%:p(r)ﬂ S(0). t%7, Av|_ =B 3)

The relationship between the properties of solutions of
systems (1) and (3) will be defined in Theorems 1 and 2.

We introduce the necessary definitions.

Definition 1. Homogeneous system (3) is called weak-
ly regular on R if the corresponding nonhomogeneous
system (1) has at least one bounded on R solution for any
bounded on R vector-function f(¢).

Definition 2. Homogeneous system (3) is called regular
on R if the corresponding nonhomogeneous system (1) has
aunique bounded on R solution for any bounded on R vec-
tor-function f(¢) and any bounded sequence {a,}.

Definition 3. Homogeneous system (3) is called hyper-
bolic (or exponential dichotomous) on R if the phase
space R” can be decomposed into a direct sum of subspaces
R"=R*®R""* so that any solution x(t,x,) to (3) with
x, €R* satisfying the estimate

(e, )| < Ke

x|, 21 4)

and any solution x(¢,x,) to (3), with x, e R"™* satisfying
the estimate

e (e, x, )| < Kie ™

x(r,xo)", t<n, 5)

for any teR and some positive K, v, Ky, y1, which do not
depend on xpand .

The following lemma holds true.

Lemma 1. For system (3) to be a hyperbolic on the en-
tire real axis it is necessary and sufficient that there exist
a projecting map P:R"—R" and positive numbers K and
v, such that

|X(c)Px~ (z)| < Ke ™, 127,
|X(e)(E-P)X (1)) < Ke ™, t<r. (6)

Definition 4. A set of initial values x, that lead to
bounded on the entire axis R (or semi-axis R,, R _, respec-
tively) solutions x(¢,x,) to (3) will be denoted by P(P,,P.)
in the assumption that system (3) is defined on the entire
axis R (on semi-axis R,, R_, respectively).

4. 2. Bounded solutions of a nonhomogeneous impul-
sive system

Theorem 1. Let system (3) be weakly regular on R
and the projection map P project R" on A. Then, for
any bounded on R function f(¢) and sequence {ai} the
system has a unique bounded on the entire axis solution
x=¢(t) that satisfies the condition P@(0)=0. Moreover,
there exists a constant ¢ that does not depend on f(¢) and

{a,} such that
SLE;? ||(p(t)|| < cmax{sz?"f(t)", S:zp "ai"}~ (7)

Proof. Let f(¢) be arbitrary continuous (piecewise
continuous with discontinuities of the first kind at ¢=rt,)
bounded on R function, {ai} be a bounded sequence. Due

to the weak regularity of (3) the nonhomogeneous system (1)
has a bounded solution x=¢(¢).

Let us denote by w(¢) a solution to the homogeneous
system (3) satisfying the condition y(0)=P¢(0). Obvi-
ously, the difference z(¢)=¢(¢)—wy(¢) is a solution to the
nonhomogeneous system (1) and Pz(0)=0. The solution z(¢)
is unique, since assuming the existence of another solution
z,(¢) the nonhomogeneous system (1) satisfies the condition
Pz, 20): 0. Then, their difference should be bounded on the
entire real axis solution to the homogeneous system (3) sat-
isfying the condition P[z(t)-z(0)]=0, which is possible for
the zero solution only.

Let us denote by M the set of tuples (f(t),{al.}), where
f (t) is continuous (piecewise continuous with discontinu-
ities of the first kind at ¢=1,) bounded on the entire axis
vector-function, {a;} is bounded sequence from R". By
introducing the norm

I ©)4a},, =max{supl (0] suple ]}

we turn M into a normed space. On the normed space M, let
us define the operator F

F:(f(t),{a,»})ﬁq’(t)’

that maps every element (f(t),{ai})eM to the unique bo-
unded solution of (1) satisfying P@(0)=0. Operator F is
invertible.

Let M =FM be its image. By introducing the norm

lo(@)l,, =suple(@)+[F (),

operator F becomes continuous. Let us check that space M is a
complete metric space. Indeed, if {¢, } =M, meN isa funda-
mental sequence, then it converges to some piecewise bounded
function. Due to the continuity of the operator F! the sequence

{Fo, @} ={,(0).{a"}}, men

is fundamental in M and converges to some element

(tifaen. " | |
On the continuity intervals (t,,7,,),i€Z the functions
9,,(¢) are solutions to the corresponding differential equations

dx
E:P(t)xﬂ‘n(t),

and, hence, for ¢ # 1, function (p(t) satisfies the equation

dx
T P(e)x+ /(1)

At t=r1, functions ¢, (¢) undergo the discontinuity of
the first kind with jumps

A, |, = B, (Ti ) + al(m)’

and, hence, the limit function (p(t) satisfies the relation

Since every function ¢, (¢) satisfies the condition
Pg, (0)=0it holds that Po(0)=0and, hence, ¢(¢) e M which
proves the completeness of the space M.



Since operator F! is continuous, due to Banach the-
orem on inverse operator, the operator F is also contin-
uous and there ex1sts a positive constant & such that if

( (t)a; }) ), then
supfo(e)|<[o(2)], < kmax{s{ggllf ()} suple, II},

which completes the proof.

In sequel, we develop conditions for weak regularity of (3)
on semi-axis ¢>0 and on the entire axis.

Theorem 2. Let in system (3) matrix P(¢) be continuous
(piecewise continuous with discontinuities of the first kind
at t=1,) and bounded for all ¢ >0, matrices E+B i=1,2,..
be non-degenerate, and (E+B;) and (E+ B, ) be bounded
Additionally, we assume that there exists a finite limit (2).
Then for the weak regularity of system (3) on semi-axis ¢ >0
it is necessary and sufficient that system (3) is hyperbolic on
semi-axis ¢=0.

Proof. Assuming the hyperbolicity of (3) we may assume
(without loss of generality) that the matrices P(¢) and B,
have the following block-diagonal structure

P(t)=[P1(§t) pjt)} B":(%} f??}

and if X,(¢,7) and X, (£,7)
sponding linear systems

— the matriciants of the corre-

%: P(6)X,, t#t; AX|_ =BX,
and
dj% =B ()X, t#1; AX,|_ =B'X,
then it holds that
|X,(t1)| < Ke 7™, 2120,
|X,(t.1)|<Ke ™, 0si<t. ®)

Let us denote by G(z,

6(t)= {diag()q (£1),0), ¢>120,

B diag(0,X,(t,7)), 0<t<t.

‘c) the Green-Samoilenko function

Due to the inequality (1) the Green-Samoilenko function
G(¢,7) satisfies the estimate

|G(tr)|<Ke ™, 20, 1>0. )

Utilizing the Green-Samoilenko function G(t,r), let us
define the function

(0)=[6(67) /(x)

0

dt+Y G (1,1, +0)a,. 10)
-0

The right-hand side of (10) is well-defined since the con-
ditions of the existence of the limit (2) and the inequality (9)
guarantee the uniform convergence of the integral and the
sum from (10).

Indeed, from (10) we have
Je(e)] < [ Ke (o) e+
0
o —’Y‘L—’[,‘ oo —y‘L—r,‘
+Y Ke
i=0

K
Jal < supl (0 Ksupl [ ¢
12 12 i=0

Since, from (2), any interval of time of the length / con-
tains no more than g elements of the sequence {1}, for j>i

we have
T. T.—7T.
’:|+1ng( I 1+1).
i

T, -
j—i+1£q([’_
1
1 i
T-—’Ciél(—i)+ j-1).
P )

Hence,

Consequently,
ze—v\t ol _ 2 PG r>+ze—v(r i < 2 e VT 4
O<t;<t >t Ost;<7;

1
v(T—T 71(171) o 0 € !

AN q q —

+ E e <e Ze = EE

> m=0
J 1—e 7

Summarizing, we have shown that

"x(t)" < c(s{liop"f(t)" + sgg) "“1:"),

where
1
K Kew[ﬁ)
C =max| —, ;
] K
1—-e ¢

Let us show that function x(¢) defined in (10) is the
solution to (1). For this purpose, we represent x(¢) in the
following form

=jG 1)/ dt+JG (t,7) f(t)dz+

+> G tt+0a+2Gm+O)

O<t;<t 1>t

(11

Differentiating x(¢) at ¢ #1, we get

dr $dG(t,1) dG(t,7,+0)
dt_j P f(r)dr+§ TRECE

2dG(t,1) dG(t,1)
_[[ f(x) +§;7dt a,+
+(G(t,t=0)-G(t,t+0)) f(t)=P(t)x+ f (¢),

dG(¢,1)
de

=P(¢)G(t,n), t#1, t#1,

and for t=1, t#7,



G(t,t-0)-G(t,t+0)=E

From (12) we also conclude that for ¢ =T,

o3 o

_}ak +a,=Bx(1,)+a,

meaning that the function x(¢) is bounded for all 20 solu-
tion to (1).

Let us prove the necessity of the conditions of theorem 2.

Assume that x,€A,. Let us show that the solution
x(t,x,) to (1), which comes out when ¢=0 from the point
x, satisfies the estimate (5).

For any s>0 and 6>0 we define function &(¢) given
by the formula

x(1,+0)—

= [G(t,+0,7,+0)
+
| -G(t, 1,+0)

1, if 0<t<s+o0,
E(t)={1-t+s+o, if s+o<i<s+o+1,
0, if t>s+o+1,

and utilizing this function we construct another function

_ (t)j &(1)

2 [x(7)

By a direct check, we verify that this function is the
bounded for ¢>0 solution to (1) when

a =0.

i

Based on the statement of theorem 1, there exists a con-
stant ¢, >0 such that

sup"y(t)" < c-sup"f(t)" =q,.
=0 20

Therefore, when 0<6<0, we have

5+0 dT
= —<c,. 12
||y(s+9)|| ||x(s+9)||‘(|;"x(t)"<c1 12)
Assuming that
¢ dr
Ik

we rewrite the estimate (12) in the form

-1
= 1
["x ol T ||J 5

If 6>1 then integrating the latter inequality with re-
spect to 8 on the interval 1<0<¢ we obtain
o1 1

o(s+0)=(s+1)e (13)

By the theorem, there exists such a positive number b
that |[E+B[<b for any i=1,2,.. and the interval [¢,¢+/]
holds no more than ¢ elements of the sequence {t,}. Hence,
forany se[t,t+[], 120

[r()=x(s x>t |x(m)|=e [x(x)], A9
where
a=sup A(t)", a,=al+qlnb

>0

is a constant which does not depend on t. Without limit-
ing generality of reasoning, we may always consider [>1.
Then,

e[ IR r e o
and consequently, when 6>1 we get
ot el
[ s+c)||<(p(scjr0)s(p(5+ )e a SC1€( 1J><
><e_§~ x[s]"Se“ze_% (s)", (16)
where
a,=a, +i+1ncl.
1
If 0<6<1 then based on (14) we have
o
| ( x(s)"Se “xe @ ||x(s)|| 17)

Inequalities (16) and (17) state the existence of an esti-
mate for the solution x(¢) of the form (5), that is

"x(t,xo)" <Ke

(T, )| 12120,

where

aj+—
K,=e “max{lc}.

Assume that x, e R"\ A,. Let us show that the solution

x(t,xo),

satisfies an estimate of the form (6).
For the solution x(¢,x,)=x(t) and defined above func-
tion &(¢) consider the following function

_ (t)T &(1) dr

)]

x(0,x,)=x,€ R"\ A,

It is easy to verify that this function is the bounded,
when >0, solution to the system of equations

dx
E: A(t)x+f(t), t#7T; ML:T =B,
that is, equations (1) when @,=0, i=1, 2, ...

Due to theorem 1, the following estimate is true



o=l e =e.

Jx(x

Let us rewrite the latter relation as follows:

[@)-v(0)=e.

where

or

Hence, we get that

Y(s)<y(t)e. 18)
If
T,<t<T,<T,<1<T

J+

then
||x(T)|| < ||X(T,[f)x(t)|| < ea(‘[—L) %

b [ (0)] s ) [%(r—t)w]lnbllfc(t)ll-

Since the estimate is the same when ¢ e [1:1.,1 ], we have

i+l

| (@) v ()= "x(t)":j"xdé)" e h! (a +%ln c) =c,.

Taking into consideration (18), it follows that

()=

which means that

||x(t,x0 )" < K1ey1(”r) x(T,%, )",
where
K1 :Clr Y= !
G G

This completes the proof of theorem 2.

4. 3. Model of the “integrate-and-fire” neuron

The results obtained in the paper can be used in the
study of various problems of natural science, mathematical
models of which are reduced to the study of the qualitative
behavior of solutions of impulse differential equations. In
particular, the results of the work can be applied to the study
of the existence and finding bounded solutions to the nonho-
mogeneous impulsive system that describes the behavior of
the neuronal system and is based on the “integrate-and-fire”

model proposed by Louis Lapicque. The model is described
by the following system:

0, = [,(0,05,...,0,),

[o,(+0)-2,(1)]

0 (¢)=Ey,

where v,(t) — the membrane potential on the neuron i,
i=1n, E, — the threshold value of the i-th neuron poten-
tial, E, ~ the value of the potential corresponding to the
resting state of the i-th neuron, ¢, — the parameter of the
i-th neuron.

The impulse occurs when the membrane potential on the
neuron U(t) reaches the threshold value E7, after which the
static currents are activated immediately and the potential
value drops down to Ek, as shown in Fig. 1.

Membrane potgntial, \%

Time

Fig. 1. The process of impulse exposure in
the “integrate-and-fire” neuron model for n=1

5. Discussion on the results of finding bounded solutions
to linear impulsive systems

The problem of studying the bounded solutions to the
differential equations with impulsive influences is poorly
studied in the general case of multidimensional spaces. Until
recently, the main interest of researchers was concentrated
on one-dimensional and two-dimensional systems, where it
is possible to obtain a general solution to the impulsive sys-
tem in an explicit form. This approach is not applicable for
the multidimensional systems. Therefore, a fundamentally
different approach based on the analysis of the qualitative
properties of the corresponding homogeneous systems, such
as regularity and hyperbolicity, is developed (Lemma 1). On
the one hand, these properties can be effectively tested for
wide classes of impulsive systems, and on the other hand,
they provide an opportunity to prove a number of qualita-
tive properties for nonhomogeneous impulsively perturbed
systems. Thus, the conditions of the existence of bounded
solutions to linear differential equations can be extended
to the classes of linear impulsive systems (Theorem 1). New
effective conditions are also derived (Theorem 2), which
guarantee the existence of bounded solutions to linear sys-
tems of differential equations with impulsive jumps at fixed
moments of time.

6. Conclusions

1. The conditions guaranteeing the hyperbolicity of
the systems of differential equations with impulsive jumps



are established. An important aspect from the viewpoint 2. The obtained hyperbolicity conditions allow for the
of applications is the fact that these conditions are formu-  investigation of the existence of bounded solutions to non-
lated in terms of coefficients of the initial problem. This  homogeneous multidimensional systems of differential equa-
essentially expands the class of evolutionary systems with  tions with impulsive perturbations. This makes it possible to
short-term perturbations to which these conditions can  study such important qualitative characteristics of solutions
be applied. as stability, periodicity and quasi-periodicity in the future.
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