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1. Introduction

aggregate functions. There is also a special type of query

There are many types of SQL queries for calculating
upon data and returning execution result as a table. Some of
them support select, project, joins and where predicates (SPJ
queries). Some others may support group by predicate with

called recursive query. In SQL, it goes with Common Table
Expression (CTE).

There is the kind of view as virtual by default because
the query that the view is based on will be executed from
the scratch each time when the view is accessed. The query



execution result is not stored anywhere. This kind of view
exists and is supported parallelly by many database manage-
ment systems.

From 1998, Oracle started supporting another kind of
view called materialized view (MV) although its idea was
raised from the 1980s. Essentially, MV is a table that stores
the execution result of a query. When a future query that
can partially or fully use the result stored in MV appears,
that table content can be used to answer the query instead
of calculation from the scratch. This may help to support
real-time applications.

It is known that query execution requires system re-
source, mainly of CPU time, main memory and disk load.
The join and group by operations of a query often require
much of CPU time and memory load. Disk load often leads
to bottleneck because of reading a large volume of needed
data for the query execution through the low speed disk
interface.

If the MV has small enough number of records that are
based on a complex query, it means that including joins and
group by operations will use a large volume of data to answer
a query [1-9], it could improve the query execution time and
required system resources in many times. The above effec-
tiveness may be respectively multiplied with the appearance
frequency of the queries that use MV. The queries are often
being rewritten to be answered using M Vs if possible.

However, when data in the base tables that related to
MV query is changed, the stored query execution result in
MYV becomes inaccurate, i. e. to be inconsistent with MV
definition. It must be updated to be actual to the latest data
in the base tables, then it could reflect the MV definition.

There are two types of MV update according to actu-
alization time. The first type is synchronous (immediate)
that does the update of MV as a part of transaction which
changes data in the base tables. The second one is asynchro-
nous (deferred, lazy) that does the update outside of that
transaction, so that the update will be done periodically with
some schedule or when users call the update procedure or
when the MV is accessed. Some ideas from asynchronous in-
cremental update algorithms are useful to synchronous ones.

There are incremental (differential) update [10—15] and
complete (fully refresh) update according to the ways of
maintenance process. Fully refresh update clears the MV ta-
ble content, then re-executes the MV query and fills the re-
sult into the MV table. Incremental update does the changes
forward the MV table according to the changes in the base
tables, and vise versa.

Certainly, MV brings not only benefit but also main-
tenance process that requires additional system resources.
This might significantly impact the system performance,
sometimes the maintenance cost and negative cost of change
may go over the benefit. The query DBMS optimization
engine must work harder with existed MVs. This additional
cost comes from analysis, choosing MV for query answering
and rewriting the query using the chosen MV. So that selec-
tion of views [16—19] to be materialized is a very important
task. The views may be chosen to be materialized periodi-
cally and/or schedulable based on the organization working
schedules [17].

All published papers are devoted to the MV with SPJ
queries, queries with aggregations, recursive queries in da-
talog that product transitive closures. This research focuses
mainly on the synchronous incremental update of MV based
on recursive query (recursive MV) in SQL (CTE) whose

execution results are directed tree-structured data. The al-
gorithms undertaking incremental update of recursive MV
for different combinations of the parameters are proposed:

1) set of base table records being manipulated (describ-
ing tree nodes or tree edges);

2) types of the relationship between tree nodes (one child
can have one parent or many parents);

3) referential integrity (enforcing or not).

A generator that synthesizes source codes in C language
for implementing proposed algorithms that supports Post-
greSQL is built. Experiments on large sample database and
sample recursive query in PostgreSQL to verify the rightness
of the trigger function source code generating algorithm, the
incremental update algorithms and the effectiveness of the
proposed method are performed. Experimental results and
discussion of the results are also provided.

2. Literature review and problem statement

The work [20] summarized all the aspects of MV using
almost of the works which were published till 2019, re-
viewed them, recommended related algorithms and future
directions in research and application of MV. We remind the
representative papers related to synchronous incremental
maintenance of MV algorithms and implementing those
ones, which help additionally proving the possibility of pro-
posed methods and understanding the provided discussions.

Obviously, there is nothing interesting in completely
new updates of MV although sometimes it’s effective. On
the contrary, a large number of publications are devoted to
incremental update of MVs [10-15, 21-25].

Data manipulation events in the base table let MV
change are insert, delete and update actions. Insert opera-
tion increases a set of new records that will be inserted into
the base table. Delete operation decreases a set of old records
that will be removed from the base table. Update events are
often divided into two sequences: delete old records from the
base table and then insert new records [12—14]. Therefore,
the incremental update algorithm must separately perform
“delete event” procedure and “insert event” procedure.
Sometimes, this division is not necessary [15]. It means that
update events are manipulated in only one operation instead
of two steps like above.

For SPJ views, the work [15] suggested adding at least
one key of each base table into the MV, so that we can do in-
sert, update and delete directly in MV based on the set of key
values corresponding to changed records in the base table.

The work [23] approached existing incremental update
methods that are proposed in the works [21] and suggested
an algorithm. This algorithm bases on the concept of ver-
sion store for older versions of the base tables and trans-
action ID in data warehouse environment. The work [26]
analyzed MVs in data warehouse environment by collect-
ing 25 papers that were published until 2010. These papers
not only dedicated incremental update of MV in data
warehouse environment but also in general. They showed
techniques, issues addressed, changes handled, types of
queries, the advantages and disadvantages of each proposed
solution via tabular manner. The work [25] developed MV
that are stored and incrementally updated by asynchro-
nous way in the distributed databases based on distributed
log-structured merge-tree, which provides high data write
performance.



The work [24] proposed the first solution for incremental
maintenance of positive nested relational calculus on bags
for collection processing engine, which supports also XML
data. The work [27] introduced a framework called ViewDF
that focuses on the problem of incrementally propagating
changes to MV according to appending a set of new data
from streams. It is effective when the base tables, MV and
data stream are partitioned by time such that each part can
be accessed directly, and the incremental update process
requires only a small number of parts.

Most of incremental update algorithms of MV using que-
ries with aggregate functions [12, 15] (sum, count, avg, min,
max...) are based on the ones of SP] MV. The approach has
its own reason. Indeed, although sometimes the aggregations
can move up and down in the query tree for optimization on
some classes of queries, the order of intrinsic evaluation of
relational algebra expressions that contain group by opera-
tions and aggregate functions is as follows: SPJ (joins, where
predicates, select) and then aggregation (group by, aggregate
functions, having). It seems reasonable to build algorithms
of MV incremental update with aggregations based on the
ones of SP] MV. So that, we can calculate the set of deleted
(and/or inserted) records for the SPJ part, and then group
by combine calculate aggregate functions. Each record in the
result of this step corresponds to one record of MV.

The work [15] suggested some improvements in incre-
mental update process of MV with aggregate functions.
When referential integrity is enforced, the inserted records
into parent base tables do not affect MV, so that, they can be
ignored. Once an attribute only participates in the group by
predicate, not in parameters of aggregate functions, its value
changes in the base table can transfer directly into the cor-
responding attribute in MV. Otherwise, once all attributes
from a key of the base table participate in group by predicate,
each their value set presents a reference between a record in
the base table and records in MV, so that, we can delete the
corresponding records from MV directly as soon as a record
is deleted from the base table. The authors also show that
it is necessary to transfer the query before materialization
because of usefulness of MV in future toward some cases of
selection expression.

All the incremental update of recursive MV algorithms
are dedicated to the type of recursive queries that they can
calculate transitive closures. The paper [28] has compre-
hensive reviews about relative issues and recommended
algorithms for recursive MVs published to 2017. It focused
on DRed and EPF algorithms introduced by many works
before. It also indicated that EPF algorithm is more effective
than DRed algorithm. Those algorithms cannot be applied
to MV based on SQL CTE. In this paper, we focus on incre-
mental update of recursive MVs, concretely, MVs here are
based on SQL recursive queries using CTE.

Although a large number of works are devoted to algo-
rithmsdoingincremental update of MV, the works [15, 22, 23]
showed those algorithms are implemented rarely. The work
[22] presents how to manually write trigger functions and
how triggers are executed when data in the base table are be-
ing changed /changed. It did not provide any incremental up-
date algorithm as others. The work [15] shows the method to
synthesize the source code of triggers and triggers functions
in C programming language implementing algorithms that
undertake synchronous incremental update of MVs in Post-
greSQL. It provided source code generating algorithm for
each MV incremental update algorithms (for events: insert,

update, delete; for types of queries: SPJ, with aggregations;
for cases of optimization) and the generator as well. The
authors compared source codes of many trigger functions for
each combination (group) of <type of query, event, update
algorithm> and separated them into two types: fixed codes
and variable codes. Fixed codes are the same for a group of
triggers functions. Variable codes depend on the base tables,
attributes, expression and data types. Their experiments
show that the generated codes satisfy all the requirements,
fully coincide with the triggers written manually.

Thus, there is an absolutely large number of published
works relative to incremental maintenance of MV based on
SPJ queries, queries with aggregations, queries with outer
joins and based on recursive queries as well. In case of MV
based on SPJ queries, queries with aggregations and que-
ries with outer joins, existing solutions are effective, cover
almost cases of queries and optimization. They may imple-
ment synchronous incremental update of MV based on SQL
queries and datalog language automatically. The absence of
good abstraction within the implementation of incremental
update system may be the latest remain problem. On the
other hand, in case of MV based on recursive queries, the
published solutions are devoted to datalog recursive queries,
which tend to transitive closures calculation and cannot
apply for SQL recursive queries with CTE.

This work addresses the algorithms for incremental
update of MV devoted to SQL recursive queries with CTE
containing inner join SPJ queries. Furthermore, we create a
generator tool that does automatic synthesis of source codes
in C programming language which implements the proposed
incremental update algorithms in PostgreSQL.

3. The aim and objectives of the study

The study aims to understand underlying approaches for
incremental update of MV implementation. More specifical-
ly, it focuses on solving issues related to incremental update
of MV which base on SQL recursive queries.

To achieve this aim, the following objectives are accom-
plished to:

— carefully and thoroughly review related works regard-
ing to incremental update of MV problem, especially for the
case of MV based on SQL recursive query and then formally
formulate the problem;

— build the algorithms for incremental maintenance of
MYV with SQL recursive query basing on relational algebra;

—build the generator to synthesize source codes of
trigger functions that undertake incremental update of MV
with SQL recursive queries implementing the proposed
algorithms;

— provide experiments to prove the accuracy of the built
generator, discussions on algorithms and testing results.

4. The proposed method

4.1. SPJ query
Each x™ SPJ query Q' which x™ MV is based on
consists of:

QX(S:(,TIY‘].XYW,k)’ (1)

where:



S — set of fields that are selected and

-5 :{S“ Si,
presented in SELECT predicates;
- T = {TY T),. ,Tx} — set of the base tables that partici-

pate in FROM predicates. FROM predicate F* is the combina-

tionof T* and J*: F*=
— J*join conditions between the base tables in T,
—W* — WHERE predicates, the conditions on each re-
cord in joining result of F*. In case of implicit joins, J* is
empty and it is contained in W* . Otherwise, it is not empty.
Let C* = J* AW™. Suppose that J* and W* are converted
into conjunctive canonical form.

o< T, pa T T . D TS

4. 2. Incremental update of MV based on SPJ query
Inner joins have distributive property, so that:

newF* =

=T7 > T, < > (ﬂxudnewﬂx)..m , T =
1 i-1

o

=TTe Iea o Tepa (TP

T e T e a’newa..><1J;71 T* (2)
and

oldF* =

=T ea T, and (Til \dOldTir)..de;;‘ T =

=17 > T DL Tf'..l><1M1 T\T" <

b T alolalT,,"..><1J’L1 T 3)

It is known that a record of the j™ base table T/ can
take participance in the result of Q' if and only if its carte-
sian product with records of other tables in T' satisfies J'
and W'

Now, suppose the current state (instance) of the database
is with the set of the base tables T* . The execution result of

Qx(SxyTxijny) is
M* =(Sx,Tx“]x’Wx). (4)

The eq. (4) can be presented in the form of a relational
algebra expression as follows:

Mi=n (T*m Tio ,.pa, T

" )

(s ) W) s

If there is a set of records dnewTix is inserted into T},
suppose

newT” =T* UdnewT?,
dnewT* ={1;"\T;",..dnewT;,.T} },
newl™ ={T;",T;",.newT;,.T | =
={1 1, (T dnewT ), T ).

The database now has new instance and inferring from
eq. (2)—(4), new execution result of Q" is then:

newM™ :(S’,newT'”,]x,W")z
=(§7.1%,J" W) U(S* dnewT™, J*,W*); (5)

newM™ is in the form of a relational algebra expression
as follows:

newM™ =

:n( ) (W)(T > T i [><1J;\71Ti..l><1j,"\4Tn)u

X X X X
UTC(SX)G(W*)(YI > T, S dnewT.>a , T; )

Ji ! Joa

dnewM* = (S",dnewT",]x,W") is the set of records that
must be inserted into MV M" according to insertion of
dnewT into T".

If there is a set of records doldT;" is deleted from T,
suppose

oldT* =T \ doldT}",

doldT* ={1;", T, .doldT;,.T} },

oldT* ={T;",T;},.0ldT},.T;} } =
={1 15, (T \ doldT;),.T; |

The database now has a new instance and new execution
result of Q" as in eq. (6) below:

oldM* =(S*,0ldT", J*,W*)=
=(§,7, J W\ (S doldT*, J*\W*); (6)

oldM™* is in the form of a relational algebra expression
as follows:

oldM* = n(s“,)cs(wj,)

T o T o T
(1 JE T JE T

1\ o

;5. doldT . T,

(100, T o

doldM* =(S"',doldT"‘,J"',W" is the set of records that
must be deleted from MV M* according to deleting opera-
tion of dnewT from T;".

If there is a set of records doldT" of T;* is updated to
dnewT}, it is equivalent with delete a set of records doldT;*
from T;" and then insert a new one dnewT," into T;". The da-

i

tabase now has new instance and new execution result of Q" is:
updM* =(S*,updT*, J*,W*)=
= (877, " W™ doldT™, J*, W)U
U(S* dnewT™, J*,W*). (7)

It means that the update operation is converted into a
delete operation followed by an insert operation. It is enough
clear for MV with SPJ query and can be applied to MV with
recursive query when it is converted to an iterative program.

4. 3. SQL recursive query

There may be many types of recursive queries producing
different sorts of results. We focus on the most important
type of recursive queries that produce the results with hier-
archical or tree-structured data, which are in tabular form
and can be presented by the directed tree. Suppose that
there may be many trees and the trees that time can share
common edges. So that, the result table does not contain
duplicates. For the case of one — many relationships, i. e. one
child can have only one parent, the key of the result table is



the key that identifies a unique tree node. For the many —
many relationships, i.e. one child can have more than one
parent, the set of attributes help link two records of the re-
sult table, i. e. describe edges of trees will be key of the result
table, for example, the set {id, parentId}. Each record (child)
in the result table has at least one “directed” link to (at least
one) other records (parents), except the root record. The
graph can be cyclic or acyclic. We choose the case of acyclic
graphs first to solve the problem of incremental update of
recursive MV. The general SQL recursive query may have a
form as Fig. 1.

1: R: WITHRECURSIVE R AS
2: (

3: nrt_query

4: UNION

5: rt_query

6:

7:

)
SELECT * FROM R
Fig. 1. Original general recursive query

SQL recursive queries have two parts: non-recursive
term nrt_query (anchor) and recursive term rt_query. The
terms nrt_query and rt_query are SPJ queries. They can
have select, project and join predicates. The

—

v=M" =(S”,T",J”,W”)

2: k=0

32 M,=v

4:  WHILE (M, is not empty)

5: {

6: M, =M =(8"1".J" W)
7. v=vyUM,,

8: k=k+1

9: 1}

10: Returnv

Fig. 2. Transferred general recursive query

4. 4. Tree evaluation with recursive query

For example, we have the base table in Fig. 4, a with
schema people(id, parentld, fullName, city). It is necessary
to build a genealogy tree of persons who were born in the city
“c1” and recursive query in Fig. 3 can support this. It returns
the result in Fig. 4, b. The recursive query is executed and
builds trees as an iterative process shown in Fig. 5.

The example shows that the execution result of one recur-
sive query may construct more than one tree. The nrt_query
creates roots of trees and decides the number of trees. The

rt_query has join predicates including exactly ; RQ: EVITH RECURSIVE ctefamilyincl AS
Qne.tlme inner-joining with R. This const?alnt 3:  nrt_query: SELECT id, parentld, fullname, city FROM people WHERE
is given by SQL standard. Our paper considers city="cl'
rt_query has join predicates that contains |g4. UNION
only inner join, not outer join operations. |5: rt _query: SELECT people.id, ctefamilyincl.id, fullname, city FROM
The UNION operation discarding duplicate ctefamilyincl join people on
records is used excluding “UNTON ALL” be- people.parentld=ctefamilyinc1.id
cause of the chosen type of recursive queries. 6: ) o
Rin Fig. 1 is evaluated as follows: T: SELECT * FROM ctefamilyincl
1) nrt_query is calculated and returns the Fig. 3. Example of recursive query
result as a table; this table is the intermediate
result of recursive query R too; id | idparent | fullname | city
2) rt_query is calculated, certainly, it calls join operation 1 |null namel cl
with the intermediate result of recursive query R; empty in- 2 |null name2 cl
termediate table and fill it with the current result; do UNION 3 |1 name3 c3
. . . . L 4 1 name4 c3
operation removing any duplicates with the previous result; =13 p— o
the process repeats until current rt_query returns empty table. ¢ 12 p—— o
Fromeq. (1), (4), nrt_query and nrt_ query have the form 712 name? ol
of Q"(S”,T",j”,W") and Q’(S',T",j",W") with the execu- s |4 names )
tion results M”" :(S",T”,]",W") and M":(S',Tr,‘]’,W’) 9 |4 name9 2
respectively. Since rt_query contains inner join recursive 10 |9 namel0 2
query, so that T” :{T[,..,Tf,.];’, R} . J', certainly, contains 11 |9 namel | c3
joining condition between R and remaining in the 7" base 12 | Null Namel2 2
tables. This join operation creates an edge between children 13 | Null Namel3 3
created by {T[,..,Ti",..Tn’} and parents created by R. Suppose a
Til is a member Qf both 7" and. er ! r =,{T1n’“’Tix’“Tv:}‘ Id_mvy | Idparent | id | fullname | city
The observations show that it is iterative process but not 1 Null 1 Inamel el
recursive essentially, recursive terminology is chosen by the 2 Null 2 | name2  |cl
SQL standards committee. It is an important confirmation 3 2 7 |name7 |cl
and the algorithms proposed within this paper are based on it. 4 1 4 |name4 |3
So that, R in Fig. 1 which has execution result v is now 5 1 3 | name3 3
can be converted to the program using loop structure as in 6 2 6 |name6 | c4
Fig. 2, in which the indexing variable % just has a role pre- 7 2 5 |name5 | c4
senting the number of iteration. Certainly, 7" and J" in 8 4 9 |name9 | c2
the equation in step 6 Fig. 2 contain join operation with o. ?0 g ?1 22225131 g
The “programs” illustrated in Fig. 1,2 are equivalent, T 5 10 mamelo o>

but it seems to be unable to build an incremental update
algorithm for the one in Fig. 1 because it is in the form of
recursive calculation. All the algorithms developed within
this paper are based on the program in Fig. 2.

b

Fig. 4. Tree evaluation by recursive query:
a — base table people, b — CTE execution result



rt_query develops tree branches step by step through its
iterations.

1 2

/N

3 4 5 6 7

N\

8§ 9 rt_query 2" iteration

AN

10 11

nrt_query

rt_query 1% iteration

rt_query 3 iteration

Fig. 5. Tree evaluation by recursive query

4. 5. Problem Formulation

Problem Definition. Given a SQL recursive query R that
produces execution result v as tree-structured data. There is
a table MV that contains and equal to execution result . The
problem is how to do synchronous incremental maintenance
of MV according to data changes in the base tables that par-
ticipate in R upon data manipulation events on them.

We focus on the type of recursive queries having execution
result in the table which is tree-structured data, only the data
create structure of the tree is interested; properties of tree nodes
can be skipped. Tree structure is determined by join operation
between one base table (or join expression) and the CTE. There
are two considered cases of relationship between entities in real
world that may create edges between tree nodes: one — many
and many — many. Without loss of generality when suppose
that T" has only one or two base tables that determine the
parent — child relationship, and 7" has only two or three tables
(i. e. one or two base tables and the CTE itself depending on the
type of relationship between entities creating the parent — child
relationship). Certainly, a tree node can have many child nodes.
On the opposite side, we consider two separate cases, they are:

1) a child node may have only one parent node;

2) a child node may have many parent nodes.

For one — many relationships, there are key values of
record describing parent node in the record describing child.
Those fields are set as null to delete the relationship. For
many — many relationships, there is a record in a separate
table that contains key values of both records describing
children and parents. That record describing a concrete re-
lationship is deleted to remove a relationship, i.e. a tree edge
linking a child node and a parent node. Deletion of records —
nodes and deletion of records — edges must be considered
differently.

The data in the base tables are always in one of the two cas-
es: either forced to ensure the referential integrity or not forced
to ensure the referential integrity. Enforcing referential integri-
ty also sets options (no action, cascade, set null) on update and
delete events. The insurance of referential integrity on attri-
butes creating tree structure is the most important issue needed
to be considered. Two cases above may also lead to different
algorithms for incremental maintenance of recursive MV.

Finally, there should be a solution to implement all the
being developed algorithms for incremental update automati-
cally for every SQL recursive MV. Source code synthesis may
be an appreciate approach that can help to solve the problem.

4. 6. Algorithms for incremental update of recursive MV

4. 6. 1. Without enforcing referential integrity

The case that each tree child node has only one parent
node is firstly considered. We try to build an algorithm for

incremental update of MV for data manipulation events
(insert, update, delete) on each base table.

Once a SQL recursive query is converted to an iterative
program, each iteration consists of rt_query, which is an
SPJ query. The eq. (5), (6) could be applied to calculate the
set of records that will be inserted into/deleted from the
MYV table within each iteration and then for the whole iter-
ative program. Combination of this with the eq. (7) helps to
calculate the set record that will be deleted from MV and
the set record that will be inserted into MV.

So that, updating a set of records doldT* of T* to
dnewT can be considered equivalent to delete a set of re-
cords doldT;" from T;" and then insert a new one dnewT;"

i

into T;*. The algorithm in Fig. 8 will be called and then the

i

algorithm in Fig. 7 will be executed.

4.6.1. 1. Insert

Generally, the record inserted into the base table may
satisfy nrt_query and/or rt_ query. If it satisfies nrt_ query,
it creates a new root of a tree. This new root can link to
already existed nodes — records in the base table to create
anew tree. If it satisfies rt_query, it creates a tree node that
can become child or parents of already existed nodes — re-
cords in the base table. All nodes that can be its parent have
already existed in MV. All its children nodes — records are
in the base table.

In the case of non-enforcing referential integrity, paren-
tId values may be not found in id column but the base tables
can contain other “sub-trees” that don’t exist in MV. When
a new record is inserted, it can link the tree contained al-
ready in MV with some of those sub-trees and subtree cre-
ated within new inserted data. The edges with solid lines in
Fig. 6 demonstrate edges that have been described already
in the base tables, and the dashed lines (8—20 and 6—26)
show edges described by new inserted data.

MV
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3 4 567
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8 o9 :'
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S 10 11 !
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3 24 ~
¥
25 new inserted léase table

Fig. 6. Insert in case of without referential integrity

The algorithm in Fig. 7 calculates the record set that will
be added into MV according to the new inserted record set
dnewo being inserted dnewT" to the base table T}" . dnewv
creates the nodes and edges that will be added into the tree.
It creates a new being inserted set of roots, does union with
new being inserted set of nodes that are children of already
existed one in the tree nodes and then finds all nodes that
are their children.



Input: M, dnewT,", T", T"
Output: dnewv
I dnewM" =(S" dnewT",J"\W") = (8" (T} ,...dnewT;",.T; },J", ")
2: k=0
dnewM” =(S" dnewT",J" W' )= (S" (T} ,...dnewT",.T;, M},J" W)

3 dnewv =M, =dnewM" O dnewM"
4: WHILE (M, is not empty)
5:  Begin
6: M,M=M'=(S',newT",J’,W’)
=7 T (T O dnent), T M
7 dnewv = dnewv U M,
8: k=k+1
9:  End

10: Return dnewv

Fig. 7. Incremental update for insert event
without enforcing referential integrity

of nodes {(id=k+1, city=c2"), (id=k+2, city=‘c2")}
has to be deleted recursively from MV. But the node
(id=k+3, city="c1") now becomes root and {(id=k+3,
city=‘c1"), (id=k+4, city="c2’)} are still retained in
MYV. Anyway, if the node (id=k+3, city=‘c1’) itself
is in the set of being deleted nodes doldT", then all
mentioned nodes will be removed.

The algorithm in Fig. 8 calculates the record
set doldv that is necessary to be deleted from
MYV according to the deletion of the record set
doldT;" from the base table T in case of that T}
describes tree nodes. It is the set of nodes that are
necessary to be deleted from the tree. The condition
M idNOT INdRootld is used at each iteration to
skip removing the nodes that become root after de-
leting some relationships.

It isn’t difficult to see that after step 5 in Fig. 8,
doldv can contain many records creating the trees.
Each of those trees can be a subtree of each other’s.

Because of ignoring referential integrity, the searching
space in step 6 includes T;" UdnewT" to search not only within
the set of new being inserted records dnewT ", but also the old

Although all duplicates will be filtered in the iterative pro-
cess, omitting records that can create trees within doldo
after this step can significantly improve the performance.

instance of the database containing T;".

4.6.1.2. Delete
MV contains all possibly linked records
that satisfy nrt_query and rt_query. The

Input: doldT;",T",M
Output: doldv

1:

(being) deleted set of records doldT; from [
the base table T that satisfy nrt_query and |5.
rt_query can create nodes and branches of the
tree only within existing trees in M'V.

As mentioned above, because rt_query |4.
contains inner join recursive query, so that
T ={T1',..,7f,..Tn", R}. J ', certainly, contains
joining condition between R and remaining in  |5:

the T" basetables;oncearecord wouldliketosat-

doldM" =(S"doldT",.J" . W") = {id| {T",...doldT;,.T;' | .J",W"
M =(sm1 0" W)= ({id) T T T
dRootld =({M.id},{M,M"| {Mid = M"1d} {})
\({Mid},{M,doldm"},{ M id = doldM" 1d} {})
doldM" =({M.id} oldT",.J".W")
=({M.d} (T} ...doldT;,.T; ,M},J",W" U {M.id NOT IN dRootld})
doldv=({M.id} {M,doldM" | ,{M id = doldM" Id},,{M id NOT IN dRootld}| s

isfy (87T} oo T T, REJ7 W )it finstly has | doldh”

to'satisfy 1t _temp=(S"{T/ TSI L W) o k=0

including only fields and conditions that re- |7: M, =doldv

quires only the base tables {T[Tl"Tn’; 8:  WHILE (M, is not empty)
M contains all records that are the result |9: Begin

of joining between 7t temp and execu- |10 M, =M"=({Mid}.{M.M}.{M parentld =M.id}.{M id NOT IN dRootld})
doldv = doldv o M
k=k+1

tion result of each iteration of rt query. |i1:
Infer, M contains all records that satisfy |12.

(s7{1y,..,doldr?,.T;, M}, ", W"). 13: End

Return doldv

k+1

A node visually can participate in a tree |14
many times with many roles. It may be a root
node because it satisfies nrt_query and/or a
descendant of other roots because it satisfies
rt_query. If a node is being deleted, all its descendants
must be deleted. Once a record M that creates a node of a
tree is deleted, we must delete all the records that create its
children and the process goes on recursively. But if a rela-
tionship is being deleted, some inferred relationships gen-
erated by rt_query will be deleted. At that time, a node can
change its state of child node and becomes root if it satisfies
nrt_query. For example, node with (id=k, city=‘c1") isaroot
that has a set of descendants {(id=k+1, city='c2"), (id=k+2,
city=c2"), (id=k+3, city=‘c1’), (id=k+4, city=‘c2")}. Node
(id=k+3, city=‘c1’) has child (id=k+4, city=c2’). Re-
cursive query builds the trees of people that has rooted
born in city ‘¢1’. If we delete parent-child relationship
between (id=k, city=‘c1’) and (id=k+1, city=‘c2"), the set

Fig. 8. Incremental update for delete event
without enforcing referential integrity

4. 6. 2. Enforcing referential integrity

When enforcing referential integrity is set to enabled,
any foreign key field must either agree with the primary key
that is referenced by the foreign key or be null. It focuses on
only the reference between id and parentld columns that
creates links between records in MV, i. e. the branches of the
trees. parentld values are always found in id column.

4.6.2.1. Insert

Because of enforcing referential integrity, every re-
cord-node existed in the base tables already has a parent
record-node, a new being inserted item can be a parent
of other items added with or after it. So that, if the set of
records dnewT;" is inserted into the base table T, a child

i



of any new tree node created by any record from dnewT;*
can be only produced by some record from dnewT;", but
not from the base table T. The algorithm in Fig.9 re-
turns the set of records that will be inserted into MV
according to insertion of the set of records dnewT;" into
the base table T;".

i

Input:  gpewr™ M,T"\ {T} T\ {T}
Output:  dnewv
L: dnew. ”:(S”,dnewT”,J",W”)
2: k=0
dnewM’ = (" (T} ,...dnewT",.T,, M},J" W)
3 dnewv =M, = dnewM" L dnewM"
4: WHILE (M, is not empty)
5: Begin
6: My =M =(S" (T ..dnewT",.T;, R},J" W)
7: dnewv = dnewv UM, |
8: k=k+1
9: End
10: Return dnewv

Fig. 9. Incremental update for insert event with enforcing
referential integrity

The decreasing of searching space from T" UdnewT"
(step 6 in Fig.7) down to dnewT;" (step 6, Fig.9) which
is often much smaller should improve the performance sig-
nificantly.

4.6.2.2. Delete

There are three options (no action, cascade, set null)
on update and delete events. Suppose null option is never
set, so that the user must do update setting foreign key
values to null before update or delete the related referenced
record. Suppose that the enforcing referential integrity op-
tion set to update/delete cascade, so that deletion of a node
will infer deletion of all the descendant nodes. All the being
removed nodes will be in being deleted set doldT;".

Anyway, all satisfying records — nodes that can infer
from being deleted nodes have already existed in MV. The
algorithm in this case is the same as when enforcing referen-
tial integrity is disabled.

4. 6. 2. 3. Update

It seems that in the case of enforcing referential in-
tegrity for delete and update events having cascade op-
tion, we cannot divide updating a set of records doldT;" of
T* to dnewT into the equivalent sequence of operations:
1) delete a set of records doldT;" from T and then 2)in-
sert a new one dnewT;" into T and apply two algo-
rithms for incremental update mentioned in Fig. 8,9; but
it is not true. For example, suppose that there is already
the record (0, null, name0, ¢2) in the base table. We do
update {(0, null, name0, ¢2), (1, null, namel, c1)} into {(0,
null, name0, c1), (1, 0, namel, c1)}. It is equivalent to delete
doldT} = {(0, null, name0, ¢2) , (1, null, namet, c1)} and then
insert dnewT” ={(0, null, nameo, 01), (1,0, namel, 01)}. It
seems that deleting (1, null, namel, ¢1) may call deleting the
records with id 3, 4, 8,9, 10 and 11, but it may be only true
when we do remove using delete command separately. So, the
algorithm for incremental update of MV is the same, i. e. apply
removing the algorithm in Fig. 8 for a set of records doldT;"

from T;" following by the algorithm in Fig. 9 for the insertion
of a new one dnewT;" into T;".

4. 6. 3. One child has many parents

We consider the case of a tree node can have only one parent
node, i. e. one — many relationships between entities. Normally,
a tree node has many parents, i. e. the type of relationships be-
tween entities is many — many. Then, each MV record describes
an edge of the tree. The set {id, parentID} now is the key of MV
table. The case is much more sophisticated and requires other
algorithms for incremental maintenance for delete event.

The default understanding is removing records that de-
scribe tree nodes. In fact, we can remove edges too. In case
of one — many relationships between entities, an edge can be
deleted by updating parentld to NULL. In case of many —
many relationships, an edge can be removed by deleting the
record that describes that edge. If we delete a set of records —
edges, we must detect the set of direct children within that
set of edges first.

Because a node can have more than one parent, we can
only remove it accordingly data changes in the base tables
when it is not a child of any other ones that records of which
will have to be retained. It can solve by using bag algebra,
but that time it is necessary to implement some operators
of this calculus, such as IN, MINUS/EXCEPT. PL/pgSQL
does not support bag algebra for those operators. We have
another approach using counting idea. At each iteration of
procedure to calculate a set of nodes that will be removed
from MV, we separate it into two sets:

1. the set of nodes that have the number of being removed
parents equal to the current number of its parents;

2. the set of nodes that have the current number of par-
ents that is greater than the number of parents being delet-
ed. So that, we have to modify the algorithm in Fig. 8 as in
Fig. 10 for the case of that:

1) one child can have more than one parent;

2) nrt_query calculates nodes that will be removed;

3) base T;" describes node properties.

doldv contains object ID M.oid that serves for the op-
eration of removing records from MV. Without oid, the key
{id, parentID} is used, but it would be disadvantageous when
the number of being removed records is large because in this
case, we have to remove each record instead of a set of records
once using IN operator. If T} describes child — parent rela-
tionships and/or nrt_query returns the set of being removed
edges, another algorithm with modifications accordingly will
be applied.

It is necessary to define the query with group by and ag-
gregation such as Q" (S T J "‘,W’f,G"') to count parents of
each one from children nodes. $* now can contain aggregate
functions. G* is the set of group by fields.

Let consider the case when rt_query calculates and returns
tree edges. If nrt_query determines edges, i. e. the “root edges”,
the algorithm in Fig. 10 must be modified, especially for steps
1-7 and step 10, as shown in Fig. 11, “Root edge” is the edge
that can start a tree, i. e. the node has id equivalent to parentId
of this edge that will become a root node of a tree. This time we
cannot remove an edge that can become a new “root edge” but
not belong to the set of “root edges” that are initially removed.

The differences between algorithms shown in Fig. 10, 11
consist in the last one has an additional step to find child
nodes of edges that were returned by nrt_query. It is inferred
from the difference between two nrt_query.



Input:  doldT;*,T" .M
Output:  doldv

1:

=% 0o vk

15:
16:
17:

0:

doldM" =(S",doldT",J",W"):({id},{Tl",..,doldT;,..T;},J",W")
M =(s" 10" )= ({id}. 1", ")
dRootld =({M.id},{M,M"} (M id =M"id}, })
\({M.id} M. doldM" | | M.id = doldM"Id | ,{})
k=0
doldld, = doldM"

doldAres, =&

doldv=20

WHILE (doldld, is not empty)

Begin
doldAres,,, =M" = ({M.oid,M.id,M.parentId} ,{M,M,{},

{M.parentld =M, id}.{M id NOT IN dRootld ||
doldParentsCnt = ({ id ,count ( parentld ) as cntOldParents} s
{doldAres, . },1}.{id})

dParentsCnt = ({id,count(parent[d) as cntParents} R { M} {}s { id})
doldld, ,, = ({doldParentanl.id } R { doldParentsCnt, dParentant} ,

{doldParentant.id = dParentsCnt.id } ,{cntOldParents = cntParents})
doldv = doldv L doldArcs,,,

k=k+1
End
Return doldv

Fig. 10. Incremental update without enforcing referential integrity for delete event

Input:

Output:

doldT",T" ,M
doldv

1:
2:
3:
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10:

11:
12:

13:

14:
15:

16:
17:
18:
19:

doldM" =(S" doldT",.J".W")=({id. parentld| {T"....doldT},.T;'} .J".W")
M= (S",T”,J”,W") =({id, parentld ,T",J”,W”)
dRootOid = ({M oid},{M.M"},{M id = M".Id A M .parentld = M".parentld}.{})
\({M oid},{M,doldM "} | M id = doldM".Id x M parentld = doldM" parentld}, })
k=0
doldParentsCnt = ({id,count(parentld) as cntOldParents} s { doldM™" } 4, { id})
dParentsCnt = ({id,count(parentld) as cntParents} ,{M} ,{}s { id})
doldld, = ({ doldParentsCnt.id } s { doldParentant,dParentant} s
{doldParentant.id = dParentsCnt.id } ,{cntOldParents = cntParents})
doldArcs, = ({M.oid,M.id,M.parent[d} R {M,daldM" } s
{M.id =doldM" .1d A M .parentld = doldM" .parentld} ,{})

doldv = doldArcs,
WHILE (doldld, is not empty)
Begin

doldArcs,, =M" :({M,oid,M.id,M.parentld},{M,Mk},

{M.parentld =M _id} .{M 0id NOT IN dRootOid |
doldParentsCnt = ({ id ,count ( parentld ) as cntOldParents} s
{dolddres, .} .{}.{id})
dParentsCnt = ({id,count(parenlld) as cntParents} ,{M} ,{},{id})
doldld, ,, = ({ doldParentant.id} s { doldParentsCnt, dParentant} s
{doldParentant.id = dParentsCnt.id } s {cmOldParents = cmParents})

doldv = doldv L doldArcs,,,
k=k+1

End

Return doldv

Fig. 11. The case when nrt_query returns tree edges




4.7. Generating source codes of triggers

Firstly, it is necessary to determine the type of relationship
between entities in real world that the tree will illustrate. Once
again, the join between the base tables and the CTE inrt_que-
ry decides relationship and the tree structure. If id and parentId
come from one base table and only id is key of that table, then
the relationship type is one — many. If id and parentId are two
foreign keys of the base table referenced to two keys of two
separate ones, then the relationship type is many — many. Sec-
ondly, we must analyze and confirm whether nrt_ query returns
tree nodes or tree edges. After that, the source code generating
procedure can start.

In the framework of this research, the same technique
as introduced in [15] is used for code generating. Since
PostgreSQL currently supports trigger for each statement
which can see the (being) changed data, the being generated
triggers will be fired for each statement. The trigger headers
are generated in PL/pgSQL language. The trigger functions
are generated in C language. The procedure has main steps as
shown in Fig. 12. A triggers and trigger functions source code
generator is built as well.

The input query must have non-recursive and recursive terms
that are SPJ queries with inner joins. The output source codes
of trigger functions are synthesized in C language. The script
describes trigger headers and does registration of triggers in
PL/pgSQL. Certainly, nested query and temporary table con-
cepts are employed here, especially, subqueries as virtual tables
are used to implement the algorithms that were shown in
Fig. 10, 11. The triggers are registered to be fired before events,
otherwise, the algorithms must be modified accordingly con-

relationships type is one — many. For the case of many — many
relationships, there is an additional table that describes the
relationships with the number of records of 1,000,000 and the
referential integrity is not enforced. Each insert/delete/update
statement is issued upon 50,000 records. The being changed
data is generated randomly and inserted into separate tables
for insert/delete/update event accordingly, so that the process
of data preparing almost does not impact on the evaluation.
The being manipulated nodes/edges may be closer to the roots
or the leaves of the tree. The system hardware and software
configuration are Intel G4560 CPU, RAM 8GB DDR3, SSD
WD Green 256GB drive, Win10 64bit, PostgreSQL v10 32bit.

The triggers and trigger functions source codes are synthe-
sized using the built generator for any input recursive queries.
Those source codes implement incremental update algorithms
and are executed when data in the base tables are being insert-
ed/updated /deleted. All synthesized codes by generator satisfy
requirements and are equivalent to the codes written manually.

We tried to evaluate and compare the performance of
the system while it executes the SQL commands like select,
insert, delete, update when:

a) the MV are switched on;

b) the MV are switched off. Experiments are provided
for different combinations of the cases:

1) the two cases of relationships between entities (One —
Many and Many — Many);

2) the two cases of enforcing referential integrity; the
two cases of objects to manipulate (tree-nodes and tree-edg-
es). Execution time is milliseconds and shown in Table 1.

cerning the instance of the base table which is being manipulated. Table 1
Experimental results

Input: SQL recursive query, base tables’ metadata

Output: Trigger functions and triggers registration codes Rela- Many — Many

1 Foreach base_table doldT* tionships|  One — Many | Manipulat- | Manipulat-

2:  Begin type ing edges | ingnodes

3 Begin //trigger function for insert event MV/ MV Non- MV Non- MV Non-

4: If (enforced referential integrity is true) NoMV MV MV MV

S: Generate code implements the algorithm in Fig. 9 Select 603 5682| 715 [3,825] 715 | 3,825

6: else

7 Generate code implements the algorithm in Fig. 7 Delete 1,642 183 |5:808] 193 |2,014] 284

8: End Update 3,685 531 16,593| 390 |2,796| 329

9: Begin //trigger function for delete event Enforcing . .

10: If (type of relationship is one — many) ref. int.? Not enforcing ref. int.

11: Generate code implements the algorithm in Fig. 8 Insert G eeTNo | 797

12: else 2,584 401 [3,590( 228

13: Begin 1,249 (1,967

14: If (nrt_query returns a set of tree nodes)

15: Generate code implements the algorithm in Fig. 10 When the incremental maintenance of MV is

L6: Else _ S switched on, certainly the triggers for each state-

17: Generate code implements the algorithm in Fig. 11 ment undertaking incremental update will be

18: End . . .

1o End fired accordingly and it affects the performance

20: Begin //trigger function for update event of the data manipulating operations.

21: Generate code for delete event

22: Generate code for insert event

23: End 6. Discussion of the research results

24: Generate script for compilation of trigger functions of the method

25: Generate trigger headers for all events

26: End

Fig. 12. Procedure for trigger source code generating

5. Experiments and performance evaluation

The experiments were provided. Suppose there is a table
with 1,000,000 records describing tree nodes and tree edges
as well and query as mentioned in section 4 for the case of that

The experimental results confirm:

1) the correctness of the proposed incremental
update of MV with recursive queries;

2) the correctness of the source code synthesizer;

3) the effectiveness of MV in terms of it can decrease the
execution time of the queries significantly.

With the current experimental configuration, query
execution time is different in 5.5-9.5 times. On the opposite



side, using of MV can increase data manipulating time with
insert/delete/update events. For insertion of 50,000 records
into the base table describing tree nodes and one — many
relationships, the time is increased in 1.5-2.5 times with
MV. The result shows that considering enforcing referential
integrity minimizes the searching space, so that execution
time is down from 2.5 times into 1.5 times. For the many —
many relationships, adding 50,000 tree nodes causes auge
mentation of execution time in 15.7 times versus 6.5 times
when adding the same number of tree edges.

For the case of delete event, the speed is higher in
7.1-9 times for tree nodes, especially in 30.1 times for the
deletion of tree edges. In the frame of this work, updating
is considered as deletion next to insertion, the execution
time is augmented in 7-8.5 and 16.9 times accordingly. It is
proportional to augmentation of execution time of deletion
plus insertion. Other data for testing may yield very differ-
ent results in terms of execution time. The closer node/edge
being removed to the root, the larger number of nodes/edges
which are its descendants may be deleted consequently and
the higher execution time certainly.

However, several challenges remain:

— It is mentioned that the result table of the recursive
queries may present more than one tree separately, i. e. the
MYV may contain duplicates. The proposed incremental up-
date algorithms using operations of relational algebra on set,
which does not allow duplicates. So that, other algorithms
must be developed for the case.

— Doing estimation and making choice between update
strategies which are incremental update or full refresh can get
an important role especially in case of MV based on recursive
queries. If there is enforcing referential integrity, deletion of one
record from the base table also can lead to deletion of a large
number of records from themselves. Anyway, even in case of
without enforcing referential integrity that deletion of one re-
cord does not lead to deletion of other records in the base tables,
deletion of one record from the base tables may infer to deletion
of alarge number records from MV in case of recursive MV. For
example, deletion of an edge from the graph can lead to deletion
of the whole large branch from the tree. The calculation of the
being deleted part with a large number of records of the base
tables plus deleting process on a large number of records from
MYV to perform incremental maintenance may much overs the
full refresh with a small number of records this time.

— The proposed incremental update of MV algorithms
for the insertion event does not take place into account that
case of records that are already in the MV table, which may
occur when there is more than one tree and they share some
tree edges. Although the duplicated records can be omitted
during insertion into MV, the prodigal calculation is pro-
portional to their volume. In the opposite side, the checking
process will be repeated with the iterations.

— To simplify and improve the performance of the in-
cremental maintenance of MV, the work [15] suggested a
solution for MV based on SPJ query, so that at least one key
of each base table is added into S and then we can manipu-

late records in MV directly according to the being changed
records in the base table. For the case of the MV based on
recursive queries, this solution can be applied but it may
help improving performance only for the first from a large
number of possible iterations of recursive query processing.

—The nrt_query and rt_query may be queries with
aggregate functions. Anyway, they must produce summa-
ries that can be joined with each other to build trees as the
final result. Let them as SPJ queries, it is possible to create
MVs for them and replace them in recursive queries by M Vs
accordingly. We must generate triggers undertaking incre-
mental updates of those MVs too.

— Let consider the case that nrt _query and/or rt_query
contains outer joins. Since we focus on the recursive query
that produces tree-structure data, the join between CTE and
the remaining part in rt_query must be inner join. Now, we
can modify the algorithms proposed in this paper to use the
algorithms for incremental update of MV with outer joins.

7. Conclusions

1. We suggested to transfer recursive queries into the
iterative process and then proposed the algorithms for in-
cremental maintenance of MV with SQL recursive query
considering the combinations of cases:

1) enforcing referential integrity of data or not;

2) types of relationships between entities in the real
world — one — many and many — many;

3) manipulating of records that describe tree nodes or
tree edges.

2. We built a generator that synthesizes source codes of
trigger functions in C language and script that does triggers
registration in PL/pgSQL implementing the proposed algo-
rithms. The input SQL recursive query is the one with inner
join SPJ queries in both of non-recursive and recursive terms,
but it can be extended to support outer join and aggregation.

3. We provided the experiments to prove the accuracy of
the proposed algorithms, built the generator and did exhaust-
ed discussion on the execution result of the experimentally
synthesized source codes and the proposed algorithms as
well. The MV helps to improve the queries’ execution speed
in 5.5-9.5 times. On the opposite side, MV slows down data
insertion in 1.5-15.7 times and 7.1-30.1 for deletion.

4. However, some challenges on incremental mainte-
nance of MV with recursive queries exist and query rewrit-
ing problem to use those MVs to answer queries is opened
for future work.
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