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aggregate functions. There is also a special type of query 
called recursive query. In SQL, it goes with Common Table 
Expression (CTE).

There is the kind of view as virtual by default because 
the query that the view is based on will be executed from 
the scratch each time when the view is accessed. The query 

1. Introduction

There are many types of SQL queries for calculating 
upon data and returning execution result as a table. Some of 
them support select, project, joins and where predicates (SPJ 
queries). Some others may support group by predicate with 
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Матерiалiзованi представлення – це надлиш-
ково збереженi в базi даних результати вико-
нання запитiв. Вони можуть бути використанi 
для часткової або повної вiдповiдi на запити, якi 
будуть з’являтися в подальшому замiсть повтор-
ного виконання запиту з нуля. Iснує велика кiль-
кiсть опублiкованих робiт, присвячених обслу-
говуванню, особливо iнкрементному оновленню, 
матерiалiзованих уявлень i переписуванню запитiв 
для їх використання. Деякi з них пiдтримують 
матерiалiзованi уявлення на основi рекурсивно-
го запиту на мовi datalog. Хоча бiльшiсть datalog 
запитiв можуть бути перетворенi в SQL запи-
ти i навпаки, це не вiдноситься до рекурсив-
них запитiв. Рекурсивнi запити на мовi datalog 
намагаються знайти всi можливi транзитив-
нi замикання. Рекурсивнi запити в SQL (Common 
Table Expression – CTE (узагальнений табличний 
вираз – УТВ) повертають прямi посилання, але 
не транзитивнi замикання. У данiй статтi запро-
поновано ефективнi методи iнкрементного онов-
лення матерiалiзованих уявлень на основi CTE, а 
також алгоритм генерацiї вихiдних кодiв на мовi 
програмування Сi для будь-яких вхiдних рекурсив-
них SQL запитiв. Синтезованi вихiднi коди реалiзу-
ють запропонованi нами алгоритми iнкрементного 
оновлення вiдповiдно до набору вставлених/видале-
них/оновлених записiв в базових таблицях. В данiй 
статтi основна увага придiляється рекурсивним 
запитам, результатами виконання яких є спрямо-
ванi деревовиднi структури даних. Розглянуто два 
випадки вузла дерева. У першому випадку дочiр-
нiй вузол має тiльки один батькiвський вузол, 
а в другому випадку дочiрнiй вузол може мати 
багато батькiвських вузлiв. Цi два випадки пред-
ставляють два типи зв’язкiв мiж сутностями в 
реальному свiтi: один-до-багатьох i багато-до-ба-
гатьох вiдповiдно. Для зв’язку один-до-багатьох 
данi зв'язку супроводжуються записами, що опи-
сують дочiрнiй елемент з використанням деяких 
полiв. Цi поля задаються порожнiми при видаленнi 
конкретного зв’язку. Для зв’язку багато-до-бага-
тьох, зберiгаються в окремiй таблицi, а конкретнi 
зв’язки видаляються шляхом видалення описуючих 
записiв з цiєї таблицi. Розгляд забезпечення поси-
лальної цiлiсностi може допомогти зменшити про-
стiр пошуку i, отже, пiдвищити продуктивнiсть. 
Проте, набором вузлiв або ребер дерева можна 
управляти. Всi цi комбiнацiї призводять до рiз-
них алгоритмiв. Для пiдтвердження ефективностi 
запропонованих в данiй роботi методiв наводяться 
й обговорюються результати експерименту
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execution result is not stored anywhere. This kind of view 
exists and is supported parallelly by many database manage-
ment systems.

From 1998, Oracle started supporting another kind of 
view called materialized view (MV) although its idea was 
raised from the 1980s. Essentially, MV is a table that stores 
the execution result of a query. When a future query that 
can partially or fully use the result stored in MV appears, 
that table content can be used to answer the query instead 
of calculation from the scratch. This may help to support 
real-time applications.

It is known that query execution requires system re-
source, mainly of CPU time, main memory and disk load. 
The join and group by operations of a query often require 
much of CPU time and memory load. Disk load often leads 
to bottleneck because of reading a large volume of needed 
data for the query execution through the low speed disk 
interface.

If the MV has small enough number of records that are 
based on a complex query, it means that including joins and 
group by operations will use a large volume of data to answer 
a query [1–9], it could improve the query execution time and 
required system resources in many times. The above effec-
tiveness may be respectively multiplied with the appearance 
frequency of the queries that use MV. The queries are often 
being rewritten to be answered using MVs if possible.

However, when data in the base tables that related to 
MV query is changed, the stored query execution result in 
MV becomes inaccurate, i. e. to be inconsistent with MV 
definition. It must be updated to be actual to the latest data 
in the base tables, then it could reflect the MV definition.

There are two types of MV update according to actu-
alization time. The first type is synchronous (immediate) 
that does the update of MV as a part of transaction which 
changes data in the base tables. The second one is asynchro-
nous (deferred, lazy) that does the update outside of that 
transaction, so that the update will be done periodically with 
some schedule or when users call the update procedure or 
when the MV is accessed. Some ideas from asynchronous in-
cremental update algorithms are useful to synchronous ones.

There are incremental (differential) update [10–15] and 
complete (fully refresh) update according to the ways of 
maintenance process. Fully refresh update clears the MV ta-
ble content, then re-executes the MV query and fills the re-
sult into the MV table. Incremental update does the changes 
forward the MV table according to the changes in the base 
tables, and vise versa.

Certainly, MV brings not only benefit but also main-
tenance process that requires additional system resources. 
This might significantly impact the system performance, 
sometimes the maintenance cost and negative cost of change 
may go over the benefit. The query DBMS optimization 
engine must work harder with existed MVs. This additional 
cost comes from analysis, choosing MV for query answering 
and rewriting the query using the chosen MV. So that selec-
tion of views [16–19] to be materialized is a very important 
task. The views may be chosen to be materialized periodi-
cally and/or schedulable based on the organization working 
schedules [17]. 

All published papers are devoted to the MV with SPJ 
queries, queries with aggregations, recursive queries in da-
talog that product transitive closures. This research focuses 
mainly on the synchronous incremental update of MV based 
on recursive query (recursive MV) in SQL (CTE) whose 

execution results are directed tree-structured data. The al-
gorithms undertaking incremental update of recursive MV 
for different combinations of the parameters are proposed: 

1) set of base table records being manipulated (describ-
ing tree nodes or tree edges); 

2) types of the relationship between tree nodes (one child 
can have one parent or many parents); 

3) referential integrity (enforcing or not). 
A generator that synthesizes source codes in C language 

for implementing proposed algorithms that supports Post-
greSQL is built. Experiments on large sample database and 
sample recursive query in PostgreSQL to verify the rightness 
of the trigger function source code generating algorithm, the 
incremental update algorithms and the effectiveness of the 
proposed method are performed. Experimental results and 
discussion of the results are also provided.

2. Literature review and problem statement

The work [20] summarized all the aspects of MV using 
almost of the works which were published till 2019, re-
viewed them, recommended related algorithms and future 
directions in research and application of MV. We remind the 
representative papers related to synchronous incremental 
maintenance of MV algorithms and implementing those 
ones, which help additionally proving the possibility of pro-
posed methods and understanding the provided discussions. 

Obviously, there is nothing interesting in completely 
new updates of MV although sometimes it’s effective. On 
the contrary, a large number of publications are devoted to 
incremental update of MVs [10–15, 21–25]. 

Data manipulation events in the base table let MV 
change are insert, delete and update actions. Insert opera-
tion increases a set of new records that will be inserted into 
the base table. Delete operation decreases a set of old records 
that will be removed from the base table. Update events are 
often divided into two sequences: delete old records from the 
base table and then insert new records [12–14]. Therefore, 
the incremental update algorithm must separately perform 
“delete event” procedure and “insert event” procedure. 
Sometimes, this division is not necessary [15]. It means that 
update events are manipulated in only one operation instead 
of two steps like above.

For SPJ views, the work [15] suggested adding at least 
one key of each base table into the MV, so that we can do in-
sert, update and delete directly in MV based on the set of key 
values corresponding to changed records in the base table. 

The work [23] approached existing incremental update 
methods that are proposed in the works [21] and suggested 
an algorithm. This algorithm bases on the concept of ver-
sion store for older versions of the base tables and trans-
action ID in data warehouse environment. The work [26] 
analyzed MVs in data warehouse environment by collect-
ing 25 papers that were published until 2010. These papers 
not only dedicated incremental update of MV in data 
warehouse environment but also in general. They showed 
techniques, issues addressed, changes handled, types of 
queries, the advantages and disadvantages of each proposed 
solution via tabular manner. The work [25] developed MV 
that are stored and incrementally updated by asynchro-
nous way in the distributed databases based on distributed 
log-structured merge-tree, which provides high data write 
performance. 
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The work [24] proposed the first solution for incremental 
maintenance of positive nested relational calculus on bags 
for collection processing engine, which supports also XML 
data. The work [27] introduced a framework called ViewDF 
that focuses on the problem of incrementally propagating 
changes to MV according to appending a set of new data 
from streams. It is effective when the base tables, MV and 
data stream are partitioned by time such that each part can 
be accessed directly, and the incremental update process 
requires only a small number of parts. 

Most of incremental update algorithms of MV using que-
ries with aggregate functions [12, 15] (sum, count, avg, min, 
max...) are based on the ones of SPJ MV. The approach has 
its own reason. Indeed, although sometimes the aggregations 
can move up and down in the query tree for optimization on 
some classes of queries, the order of intrinsic evaluation of 
relational algebra expressions that contain group by opera-
tions and aggregate functions is as follows: SPJ (joins, where 
predicates, select) and then aggregation (group by, aggregate 
functions, having). It seems reasonable to build algorithms 
of MV incremental update with aggregations based on the 
ones of SPJ MV. So that, we can calculate the set of deleted 
(and/or inserted) records for the SPJ part, and then group 
by combine calculate aggregate functions. Each record in the 
result of this step corresponds to one record of MV. 

The work [15] suggested some improvements in incre-
mental update process of MV with aggregate functions. 
When referential integrity is enforced, the inserted records 
into parent base tables do not affect MV, so that, they can be 
ignored. Once an attribute only participates in the group by 
predicate, not in parameters of aggregate functions, its value 
changes in the base table can transfer directly into the cor-
responding attribute in MV. Otherwise, once all attributes 
from a key of the base table participate in group by predicate, 
each their value set presents a reference between a record in 
the base table and records in MV, so that, we can delete the 
corresponding records from MV directly as soon as a record 
is deleted from the base table. The authors also show that 
it is necessary to transfer the query before materialization 
because of usefulness of MV in future toward some cases of 
selection expression.

All the incremental update of recursive MV algorithms 
are dedicated to the type of recursive queries that they can 
calculate transitive closures. The paper [28] has compre-
hensive reviews about relative issues and recommended 
algorithms for recursive MVs published to 2017. It focused 
on DRed and EPF algorithms introduced by many works 
before. It also indicated that EPF algorithm is more effective 
than DRed algorithm. Those algorithms cannot be applied 
to MV based on SQL CTE. In this paper, we focus on incre-
mental update of recursive MVs, concretely, MVs here are 
based on SQL recursive queries using CTE.

Although a large number of works are devoted to algo-
rithms doing incremental update of MV, the works [15, 22, 23] 
showed those algorithms are implemented rarely. The work 
[22] presents how to manually write trigger functions and 
how triggers are executed when data in the base table are be-
ing changed/changed. It did not provide any incremental up-
date algorithm as others. The work [15] shows the method to 
synthesize the source code of triggers and triggers functions 
in C programming language implementing algorithms that 
undertake synchronous incremental update of MVs in Post-
greSQL. It provided source code generating algorithm for 
each MV incremental update algorithms (for events: insert, 

update, delete; for types of queries: SPJ, with aggregations; 
for cases of optimization) and the generator as well. The 
authors compared source codes of many trigger functions for 
each combination (group) of <type of query, event, update 
algorithm> and separated them into two types: fixed codes 
and variable codes. Fixed codes are the same for a group of 
triggers functions. Variable codes depend on the base tables, 
attributes, expression and data types. Their experiments 
show that the generated codes satisfy all the requirements, 
fully coincide with the triggers written manually.

Thus, there is an absolutely large number of published 
works relative to incremental maintenance of MV based on 
SPJ queries, queries with aggregations, queries with outer 
joins and based on recursive queries as well. In case of MV 
based on SPJ queries, queries with aggregations and que-
ries with outer joins, existing solutions are effective, cover 
almost cases of queries and optimization. They may imple-
ment synchronous incremental update of MV based on SQL 
queries and datalog language automatically. The absence of 
good abstraction within the implementation of incremental 
update system may be the latest remain problem. On the 
other hand, in case of MV based on recursive queries, the 
published solutions are devoted to datalog recursive queries, 
which tend to transitive closures calculation and cannot 
apply for SQL recursive queries with CTE. 

This work addresses the algorithms for incremental 
update of MV devoted to SQL recursive queries with CTE 
containing inner join SPJ queries. Furthermore, we create a 
generator tool that does automatic synthesis of source codes 
in C programming language which implements the proposed 
incremental update algorithms in PostgreSQL.

3. The aim and objectives of the study

The study aims to understand underlying approaches for 
incremental update of MV implementation. More specifical-
ly, it focuses on solving issues related to incremental update 
of MV which base on SQL recursive queries.

To achieve this aim, the following objectives are accom-
plished to:

– carefully and thoroughly review related works regard-
ing to incremental update of MV problem, especially for the 
case of MV based on SQL recursive query and then formally 
formulate the problem;

– build the algorithms for incremental maintenance of 
MV with SQL recursive query basing on relational algebra;

– build the generator to synthesize source codes of 
trigger functions that undertake incremental update of MV 
with SQL recursive queries implementing the proposed 
algorithms;

– provide experiments to prove the accuracy of the built 
generator, discussions on algorithms and testing results.

4. The proposed method

4. 1. SPJ query
Each thx  SPJ query xQ  which thx  MV is based on 

consists of: 

( ), , , ,x x x x xQ S T J W 		   		  (1)

where:
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–  { }1 2, ,..,x x x x
pS S S S=  – set of fields that are selected and 

presented in SELECT predicates;
–  { }1 2, ,..,x x x x

nT T T T=  – set of the base tables that partici-
pate in FROM predicates. FROM predicate xF  is the combina-
tion of xT  and xJ : 

1 2 1 1
1 2 .. ..x x x x

i n

x x x x x
i nJ J J J

F T T T T
− −

=    ;
–  xJ  join conditions between the base tables in xT ; 
–  xW  – WHERE predicates, the conditions on each re-

cord in joining result of .xF  In case of implicit joins, xJ  is 
empty and it is contained in xW . Otherwise, it is not empty. 
Let .x x xC J W∧=  Suppose that xJ  and xW  are converted 
into conjunctive canonical form.

4. 2. Incremental update of MV based on SPJ query
Inner joins have distributive property, so that:

( )
1 2 1 1

1 2 1 1

1 2 1 1

1 2

1 2

1 2

.. ..

.. ..

.. ..

x x x x
i n

x x x x
i n

x x x x
i n

x

x x x x x
i i nJ J J J

x x x x
i nJ J J J

x x x x
i nJ J J J

newF

T T T dnewT T

T T T T

T T dnewT T

− −

− −

− −

∪ =

∪

=

=

∪

=

 

  

 



  





 



  (2)

and 

( )
1 2 1 1

1 2 1 1

1 2 1 1

1

1 2

1 2

2

.. ..

.. .. \

. .. .

\

.

x x x x
i n

x x x x
i n

i x x x
i n

x

x x x x x
i i nJ J J J

x x x x x
i nJ J J J

x x x
i nJ J J J

oldF

T T T doldT T

T T T T T

T doldT T

− −

− −

− −

=

=

=

= 

 

  



  

  	 (3)

It is known that a record of the thj  base table i
jT  can 

take participance in the result of iQ  if and only if its carte-
sian product with records of other tables in iT  satisfies iJ  
and .iW

Now, suppose the current state (instance) of the database 
is with the set of the base tables xT . The execution result of 

( ), , ,x x x x xQ S T J W  is:

( ), , , .x x x x xM S T J W=
			 

	 (4)

The eq. (4) can be presented in the form of a relational 
algebra expression as follows:

( ) ( )
1 2 1 1

1 2( )
.. .. .x x x x xx

i n

x x x x x
i nW J J J JS

M T T T T
− −

= π σ    

If there is a set of records x
idnewT  is inserted into x

iT , 
suppose

,x x x
i i inewT T dnewT= ∪

{ }1 2, ,.. ,.. ,x x x x x
i ndnewT T T dnewT T=

{ }
( ){ }

1 2

1 2

� , ,.. ,..

, ,.. ,.. .

x x x x x
i n

x x x x x
i i n

newT T T newT T

T T T dnewT T

= =

= ∪

The database now has new instance and inferring from 
eq. (2)–(4), new execution result of xQ  is then: 

( )
( ) ( )

, , ,

, , , , , , ;

x x x x x

x x x x x x x x

newM S newT J W

S T J W S dnewT J W

= =

= ∪ 		  (5)

xnewM  is in the form of a relational algebra expression 
as follows:

( ) ( )
( ) ( )

1 2 1 1

1 2 1 1

1 2( )

1 2( )

.. ..

.. .. .

x x x x xx
i n

x x x x xx
i n

x

x x x x
i nW J J J JS

x x x x
i nW J J J JS

newM

T T T T

T T dnewT T

− −

− −

=

= π σ ∪

∪π σ

   

   

( ), , ,x x x x xdnewM S dnewT J W=  is the set of records that 
must be inserted into MV xM  according to insertion of 

x
idnewT  into .x

iT
If there is a set of records x

idoldT  is deleted from ,x
iT  

suppose

 \ ,x x x
i i ioldT T doldT=

{ }1 2, ,.. ,.. ,x x x x x
i ndoldT T T doldT T=  

{ }
( ){ }
1 2

1 2

� , ,.. ,..

, ,.. \ ,.. .

x x x x x
i n

x x x x x
i i n

oldT T T oldT T

T T T doldT T

= =

=

The database now has a new instance and new execution 
result of xQ  as in eq. (6) below: 

( )
( ) ( )

, , , �

, , , \ , , , ;

x x x x x

x x x x x x x x

oldM S oldT J W

S T J W S doldT J W

= =

= 		  (6)

xoldM is in the form of a relational algebra expression 
as follows:

( ), , ,x x x x xdoldM S doldT J W=  is the set of records that 
must be deleted from MV xM  according to deleting opera-
tion of x

idnewT  from .x
iT

If there is a set of records x
idoldT  of x

iT  is updated to 
x

idnewT , it is equivalent with delete a set of records x
idoldT  

from x
iT  and then insert a new one x

idnewT  into x
iT . The da-

tabase now has new instance and new execution result of xQ  is: 

( )
( ) ( )( )
( )

, , ,

, , , \ , , ,

, , , .

x x x x x

x x x x x x x x

x x x x

updM S updT J W

S T J W S doldT J W

S dnewT J W

= =

= ∪

∪ 		 (7)

It means that the update operation is converted into a 
delete operation followed by an insert operation. It is enough 
clear for MV with SPJ query and can be applied to MV with 
recursive query when it is converted to an iterative program.

4. 3. SQL recursive query
There may be many types of recursive queries producing 

different sorts of results. We focus on the most important 
type of recursive queries that produce the results with hier-
archical or tree-structured data, which are in tabular form 
and can be presented by the directed tree. Suppose that 
there may be many trees and the trees that time can share 
common edges. So that, the result table does not contain 
duplicates. For the case of one – many relationships, i. e. one 
child can have only one parent, the key of the result table is 

( ) ( )

( ) ( ) ( )

( )
1 2 1 1

1 2 1 1

1 2

1 2

.. .. \�

.. .. .

x x

x x x x x x
i n

x x x x
i n

x

S W

x x x x
i nJ J J J S W

x x x x
i nJ J J J

oldM

T T T T

T T doldT T

− −

− −

= π σ

π σ   

   
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the key that identifies a unique tree node. For the many – 
many relationships, i.e. one child can have more than one 
parent, the set of attributes help link two records of the re-
sult table, i. e. describe edges of trees will be key of the result 
table, for example, the set {id, parentId}. Each record (child) 
in the result table has at least one “directed” link to (at least 
one) other records (parents), except the root record. The 
graph can be cyclic or acyclic. We choose the case of acyclic 
graphs first to solve the problem of incremental update of 
recursive MV. The general SQL recursive query may have a 
form as Fig. 1.

SQL recursive queries have two parts: non-recursive 
term nrt_query (anchor) and recursive term rt_query. The 
terms nrt_query and rt_query are SPJ queries. They can 
have select, project and join predicates. The 
rt_query has join predicates including exactly 
one time inner-joining with R. This constraint 
is given by SQL standard. Our paper considers 
rt_query has join predicates that contains 
only inner join, not outer join operations. 
The UNION operation discarding duplicate 
records is used excluding “UNION ALL” be-
cause of the chosen type of recursive queries.

R in Fig. 1 is evaluated as follows: 
1) nrt_query is calculated and returns the 

result as a table; this table is the intermediate 
result of recursive query R too;

2) rt_query is calculated, certainly, it calls join operation 
with the intermediate result of recursive query R; empty in-
termediate table and fill it with the current result; do UNION 
operation removing any duplicates with the previous result; 
the process repeats until current rt_query returns empty table. 

From eq. (1), (4), nrt_query and nrt_query have the form 
of ( ), , ,n n n n nQ S T J W  and ( ), , ,r r r r rQ S T J W  with the execu-
tion results ( ), , ,n n n n nM S T J W=  and ( ), , ,r r r r rM S T J W=  
respectively. Since rt_query contains inner join recursive 
query, so that { }1 ,.., ,.. , �r r x r

i nT T T T R= . ,rJ  certainly, contains 
joining condition between R and remaining in the rT  base 
tables. This join operation creates an edge between children 
created by { }1 ,.., ,..r x r

i nT T T  and parents created by R. Suppose 
x

iT  is a member of both nT  and rT , { }1 ,.., ,.. .n n x n
i mT T T T=

The observations show that it is iterative process but not 
recursive essentially, recursive terminology is chosen by the 
SQL standards committee. It is an important confirmation 
and the algorithms proposed within this paper are based on it. 

So that, R in Fig. 1 which has execution result v is now 
can be converted to the program using loop structure as in 
Fig. 2, in which the indexing variable k just has a role pre-
senting the number of iteration. Certainly, rT  and rJ  in 
the equation in step 6 Fig. 2 contain join operation with v. 

The “programs” illustrated in Fig. 1, 2 are equivalent, 
but it seems to be unable to build an incremental update 
algorithm for the one in Fig. 1 because it is in the form of 
recursive calculation. All the algorithms developed within 
this paper are based on the program in Fig. 2. 

4. 4. Tree evaluation with recursive query
For example, we have the base table in Fig. 4, a with 

schema people(id, parentId, fullName, city). It is necessary 
to build a genealogy tree of persons who were born in the city 
“c1” and recursive query in Fig. 3 can support this. It returns 
the result in Fig. 4, b. The recursive query is executed and 
builds trees as an iterative process shown in Fig. 5.

The example shows that the execution result of one recur-
sive query may construct more than one tree. The nrt_query 
creates roots of trees and decides the number of trees. The  

Fig. 1. Original general recursive query

1: R: WITH RECURSIVE R AS 
2: (
3: nrt_query
4: UNION
5: rt_query
6: )
7: SELECT * FROM R

1:  , , , n n n n nv M S T J W
2: 0k
3: kM v
4: WHILE ( kM is not empty)
5: {
6:  1 , , ,  r r r r r

kM M S T J W
7: 1  kv v M
8: 1 k k
9: }
10: Return v

Fig. 2. Transferred general recursive query

1: RQ: WITH RECURSIVE ctefamilyinc1 AS
2: (
3: nrt_query: SELECT id, parentId, fullname, city FROM people WHERE 

city='c1'
4: UNION
5: rt_query: SELECT people.id, ctefamilyinc1.id, fullname, city FROM 

ctefamilyinc1 join people on 
people.parentId=ctefamilyinc1.id

6:
7:

)
SELECT * FROM ctefamilyinc1 

Fig. 3. Example of recursive query

Fig. 4. Tree evaluation by recursive query: 	
a – base table people, b – CTE execution result

Id_mv Idparent id fullname city
1 Null 1 name1 c1
2 Null 2 name2 c1
3 2 7 name7 c1
4 1 4 name4 c3
5 1 3 name3 c3
6 2 6 name6 c4
7 2 5 name5 c4
8 4 9 name9 c2
9 4 8 name8 c2
10 9 11 name11 c3
11 9 10 name10 c2

id idparent fullname city
1 null name1 c1
2 null name2 c1
3 1 name3 c3
4 1 name4 c3
5 2 name5 c4
6 2 name6 c4
7 2 name7 c1
8 4 name8 c2
9 4 name9 c2
10 9 name10 c2
11 9 name11 c3
12 Null Name12 c2
13 Null Name13 c3

a

Id_mv Idparent id fullname city
1 Null 1 name1 c1
2 Null 2 name2 c1
3 2 7 name7 c1
4 1 4 name4 c3
5 1 3 name3 c3
6 2 6 name6 c4
7 2 5 name5 c4
8 4 9 name9 c2
9 4 8 name8 c2
10 9 11 name11 c3
11 9 10 name10 c2

id idparent fullname city
1 null name1 c1
2 null name2 c1
3 1 name3 c3
4 1 name4 c3
5 2 name5 c4
6 2 name6 c4
7 2 name7 c1
8 4 name8 c2
9 4 name9 c2
10 9 name10 c2
11 9 name11 c3
12 Null Name12 c2
13 Null Name13 c3

b
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rt_query develops tree branches step by step through its 
iterations. 

4. 5. Problem Formulation
Problem Definition. Given a SQL recursive query R that 

produces execution result v as tree-structured data. There is 
a table MV that contains and equal to execution result v. The 
problem is how to do synchronous incremental maintenance 
of MV according to data changes in the base tables that par-
ticipate in R upon data manipulation events on them.

We focus on the type of recursive queries having execution 
result in the table which is tree-structured data, only the data 
create structure of the tree is interested; properties of tree nodes 
can be skipped. Tree structure is determined by join operation 
between one base table (or join expression) and the CTE. There 
are two considered cases of relationship between entities in real 
world that may create edges between tree nodes: one – many 
and many – many. Without loss of generality when suppose 
that nT  has only one or two base tables that determine the 
parent – child relationship, and rT  has only two or three tables 
(i. e. one or two base tables and the CTE itself depending on the 
type of relationship between entities creating  the parent – child 
relationship). Certainly, a tree node can have many child nodes. 
On the opposite side, we consider two separate cases, they are: 

1) a child node may have only one parent node; 
2) a child node may have many parent nodes.
For one – many relationships, there are key values of 

record describing parent node in the record describing child. 
Those fields are set as null to delete the relationship. For 
many – many relationships, there is a record in a separate 
table that contains key values of both records describing 
children and parents. That record describing a concrete re-
lationship is deleted to remove a relationship, i.e. a tree edge 
linking a child node and a parent node. Deletion of records – 
nodes and deletion of records – edges must be considered 
differently.

The data in the base tables are always in one of the two cas-
es: either forced to ensure the referential integrity or not forced 
to ensure the referential integrity. Enforcing referential integri-
ty also sets options (no action, cascade, set null) on update and 
delete events. The insurance of referential integrity on attri-
butes creating tree structure is the most important issue needed 
to be considered. Two cases above may also lead to different 
algorithms for incremental maintenance of recursive MV.

Finally, there should be a solution to implement all the 
being developed algorithms for incremental update automati-
cally for every SQL recursive MV. Source code synthesis may 
be an appreciate approach that can help to solve the problem.

4. 6. Algorithms for incremental update of recursive MV
4. 6. 1. Without enforcing referential integrity
The case that each tree child node has only one parent 

node is firstly considered. We try to build an algorithm for 

incremental update of MV for data manipulation events 
(insert, update, delete) on each base table.

Once a SQL recursive query is converted to an iterative 
program, each iteration consists of rt_query, which is an 
SPJ query. The eq. (5), (6) could be applied to calculate the 
set of records that will be inserted into/deleted from the 
MV table within each iteration and then for the whole iter-
ative program. Combination of this with the eq. (7) helps to 
calculate the set record that will be deleted from MV and 
the set record that will be inserted into MV. 

So that, updating a set of records x
idoldT  of x

iT  to 
x

idnewT  can be considered equivalent to delete a set of re-
cords x

idoldT  from x
iT  and then insert a new one x

idnewT  
into .x

iT  The algorithm in Fig. 8 will be called and then the 
algorithm in Fig. 7 will be executed.

4. 6. 1. 1. Insert
Generally, the record inserted into the base table may 

satisfy nrt_query and/or rt_query. If it satisfies nrt_query, 
it creates a new root of a tree. This new root can link to 
already existed nodes – records in the base table to create 
a new tree. If it satisfies rt_query, it creates a tree node that 
can become child or parents of already existed nodes – re-
cords in the base table. All nodes that can be its parent have 
already existed in MV. All its children nodes – records are 
in the base table.

In the case of non-enforcing referential integrity, paren-
tId values may be not found in id column but the base tables 
can contain other “sub-trees” that don’t exist in MV. When 
a new record is inserted, it can link the tree contained al-
ready in MV with some of those sub-trees and subtree cre-
ated within new inserted data. The edges with solid lines in 
Fig. 6 demonstrate edges that have been described already 
in the base tables, and the dashed lines (8→20 and 6→26) 
show edges described by new inserted data. 

The algorithm in Fig. 7 calculates the record set that will 
be added into MV according to the new inserted record set 
dnewv  being inserted n

idnewT  to the base table n
iT . dnewv 

creates the nodes and edges that will be added into the tree. 
It creates a new being inserted set of roots, does union with 
new being inserted set of nodes that are children of already 
existed one in the tree nodes and then finds all nodes that 
are their children.

Fig. 5. Tree evaluation by recursive query

nrt_query 

rt_query 1st iteration 

rt_query 2nd iteration 

rt_query 3rd iteration 

1 

3 4 6 

8 

2 

9 

5 7 

10 11 

1 

3 4 6 

8 

2 

9 

5 7 

10 11 

MV 

20 

23 24 

25 

26 

14 

13 

new inserted base table 

Fig. 6. Insert in case of without referential integrity
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Because of ignoring referential integrity, the searching 
space in step 6 includes x x

i iT dnewT∪  to search not only within 
the set of new being inserted records ,x

idnewT  but also the old 
instance of the database containing x

iT .

4. 6. 1. 2. Delete
MV contains all possibly linked records 

that satisfy nrt_query and rt_query. The 
(being) deleted set of records x

jdoldT  from 
the base table x

jT  that satisfy nrt_query and 
rt_query can create nodes and branches of the 
tree only within existing trees in MV. 

As mentioned above, because rt_query 
contains inner join recursive query, so that 

{ }1 ,.., ,.. , �r r x r
i nT T T T R= . ,rJ  certainly, contains 

joining condition between R and remaining in 
the  rT  base tables; once a record would like to sat-
isfy { }( )1, , .., , .. , � , , ,r r x r r r

i nS T T T R J W
 
it firstly has 

to satisfy { }( )1_ , ,.., ,.. , ,r r x r r r
i nrt temp S T T T J W=  

including only fields and conditions that re-
quires only the base tables { }1 , .., , .. .r x r

i nT T T  
M contains all records that are the result 
of joining between rt_temp and execu-
tion result of each iteration of rt_query. 
Infer, M contains all records that satisfy 

{ }( )1, , .., , .. , � , , .r r x r r r
i nS T doldT T M J W

A node visually can participate in a tree 
many times with many roles. It may be a root 
node because it satisfies nrt_query and/or a 
descendant of other roots because it satisfies 
rt_query. If a node is being deleted, all its descendants 
must be deleted. Once a record M that creates a node of a 
tree is deleted, we must delete all the records that create its 
children and the process goes on recursively. But if a rela-
tionship is being deleted, some inferred relationships gen-
erated by rt_query will be deleted. At that time, a node can 
change its state of child node and becomes root if it satisfies 
nrt_query. For example, node with (id=k, city=‘c1’) is a root 
that has a set of descendants {(id=k+1, city=‘c2’), (id=k+2, 
city=‘c2’), (id=k+3, city=‘c1’), (id=k+4, city=‘c2’)}. Node 
(id=k+3, city=‘c1’) has child (id=k+4, city=‘c2’). Re-
cursive query builds the trees of people that has rooted 
born in city ‘c1’. If we delete parent-child relationship 
between (id=k, city=‘c1’) and (id=k+1, city=‘c2’), the set 

of nodes {(id=k+1, city=‘c2’), (id=k+2, city=‘c2’)} 
has to be deleted recursively from MV. But the node 
(id=k+3, city=‘c1’) now becomes root and {(id=k+3, 
city=‘c1’), (id=k+4, city=‘c2’)} are still retained in 
MV. Anyway, if the node (id=k+3, city=‘c1’) itself 
is in the set of being deleted nodes ,x

jdoldT  then all 
mentioned nodes will be removed.

The algorithm in Fig. 8 calculates the record 
set doldv  that is necessary to be deleted from 
MV according to the deletion of the record set 

x
jdoldT  from the base table x

jT  in case of that x
jT  

describes tree nodes. It is the set of nodes that are 
necessary to be deleted from the tree. The condition 

.id�NOT�IN� RootIdM d  is used at each iteration to 
skip removing the nodes that become root after de-
leting some relationships.

It isn’t difficult to see that after step 5 in Fig. 8, 
doldv  can contain many records creating the trees. 
Each of those trees can be a subtree of each other’s. 

Although all duplicates will be filtered in the iterative pro-
cess, omitting records that can create trees within doldv 
after this step can significantly improve the performance.

4. 6. 2. Enforcing referential integrity
When enforcing referential integrity is set to enabled, 

any foreign key field must either agree with the primary key 
that is referenced by the foreign key or be null. It focuses on 
only the reference between id and parentId columns that 
creates links between records in MV, i. e. the branches of the 
trees. parentId values are always found in id column. 

4. 6. 2. 1. Insert
Because of enforcing referential integrity, every re-

cord-node existed in the base tables already has a parent 
record-node, a new being inserted item can be a parent 
of other items added with or after it. So that, if the set of 
records x

idnewT  is inserted into the base table ,x
iT  a child 

Fig. 7. Incremental update for insert event 	
without enforcing referential integrity

Input: M, x
idnewT , nT , rT

Output: dnewv
1:     1, , , , ,.., ,.. , , n n n n n n n x n n n

i ndnewM S dnewT J W S T dnewT T J W
2: 0k

    1, , , , ,.., ,.. ,  , , r r r r r r r x r r r
i ndnewM S dnewT J W S T dnewT T M J W

3:   n r
kdnewv M dnewM dnewM

4: WHILE ( kM is not empty)
5: Begin
6:  1 , , ,  r r r r r

kM M S newT J W

   1 2, , ,.. ,.. , , , r r r x x r r r
i i n kS T T T dnewT T M J W

7 1  kdnewv dnewv M
8: 1 k k
9: End
10: Return dnewv

Fig. 8. Incremental update for delete event 	
without enforcing referential integrity

Input: , , x n
idoldT T M

Output: doldv
1:       1, , , , ,.., ,.. , , n n n n n n x n n n

i ndoldM S doldT J W id T doldT T J W
2:       1, , , , ,.., ,.. , , n n n n n n x n n n

i nM S T J W id T T T J W
3:       . , , , . . ,{} n ndRootId M id M M M id M Id

\       . , , , . . ,{}n nM id M doldM M id doldM Id
4:   . , , ,r r r rdoldM M id oldT J W

      1. , ,.., ,.. , , , .     r x r r r
i nM id T doldT T M J W M id NOT IN dRootId

5:         . , , , . . , .      n ndoldv M id M doldM M id doldM Id M id NOT IN dRootId

6: 0k
7: kM doldv
8: WHILE ( kM is not empty)
9: Begin
10:         1 . , , , .  . , .       r

k k kM M M id M M M parentId M id M id NOT IN dRootId
11: 1  kdoldv doldv M
12: 1 k k
13: End
14: Return doldv

Fig. 8. Incremental update for delete event without enforcing referential integrity 

It isn’t difficult to see that after step 5 in Fig. 8,  can contain many records 
creating the trees. Each of those trees can be a subtree of each other’s. Although all 
duplicates will be filtered in the iterative process, omitting records that can create 
trees within  after this step can significantly improve the performance. 

4. 6. 2. Enforcing referential integrity
When enforcing referential integrity is set to enabled, any foreign key field

must either agree with the primary key that is referenced by the foreign key or be 
null. It focuses on only the reference between id and parentId columns that creates 
links between records in MV, i. e. the branches of the trees. parentId values are 

  rdoldM))))))
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of any new tree node created by any record from x
idnewT  

can be only produced by some record from ,x
idnewT  but 

not from the base table .x
iT  The algorithm in Fig. 9 re-

turns the set of records that will be inserted into MV 
according to insertion of the set of records x

idnewT  into 
the base table .x

iT  

The decreasing of searching space from x x
i iT dnewT∪  

(step 6 in Fig. 7) down to x
idnewT  (step 6, Fig. 9) which 

is often much smaller should improve the performance sig-
nificantly.

4. 6. 2. 2. Delete
There are three options (no action, cascade, set null) 

on update and delete events. Suppose null option is never 
set, so that the user must do update setting foreign key 
values to null before update or delete the related referenced 
record. Suppose that the enforcing referential integrity op-
tion set to update/delete cascade, so that deletion of a node 
will infer deletion of all the descendant nodes. All the being 
removed nodes will be in being deleted set .x

idoldT
Anyway, all satisfying records – nodes that can infer 

from being deleted nodes have already existed in MV. The 
algorithm in this case is the same as when enforcing referen-
tial integrity is disabled.

4. 6. 2. 3. Update
It seems that in the case of enforcing referential in-

tegrity for delete and update events having cascade op-
tion, we cannot divide updating a set of records x

idoldT  of 
x

iT  to x
idnewT  into the equivalent sequence of operations: 

1) delete a set of records x
idoldT  from x

iT  and then 2) in- 
sert a new one x

idnewT  into x
iT  and apply two algo-

rithms for incremental update mentioned in Fig. 8, 9; but 
it is not true. For example, suppose that there is already 
the record (0, null, name0, c2) in the base table. We do 
update {(0, null, name0, c2), (1, null, name1, c1)} into {(0, 
null, name0, c1), (1, 0, name1, c1)}. It is equivalent to delete 

( ) ( ){ }0,  null,  name0, 2 �, 1,  null, name1, 1x
idoldT c c=  and then 

insert ( ) ( ){ }0, null, name0, 1 ,  1, 0, name1, 1 .x
idnewT c c=  It 

seems that deleting (1, null, name1, c1) may call deleting the 
records with id 3, 4, 8, 9, 10 and 11, but it may be only true 
when we do remove using delete command separately. So, the 
algorithm for incremental update of MV is the same, i. e. apply 
removing the algorithm in Fig. 8 for a set of records x

idoldT  

from x
iT  following by the algorithm in Fig. 9 for the insertion 

of a new one x
idnewT  into .x

iT

4. 6. 3. One child has many parents
We consider the case of a tree node can have only one parent 

node, i. e. one – many relationships between entities. Normally, 
a tree node has many parents, i. e. the type of relationships be-
tween entities is many – many. Then, each MV record describes 
an edge of the tree. The set {id, parentID} now is the key of MV 
table. The case is much more sophisticated and requires other 
algorithms for incremental maintenance for delete event. 

The default understanding is removing records that de-
scribe tree nodes. In fact, we can remove edges too. In case 
of one – many relationships between entities, an edge can be 
deleted by updating parentId to NULL. In case of many – 
many relationships, an edge can be removed by deleting the 
record that describes that edge. If we delete a set of records – 
edges, we must detect the set of direct children within that 
set of edges first.

Because a node can have more than one parent, we can 
only remove it accordingly data changes in the base tables 
when it is not a child of any other ones that records of which 
will have to be retained. It can solve by using bag algebra, 
but that time it is necessary to implement some operators 
of this calculus, such as IN, MINUS/EXCEPT. PL/pgSQL 
does not support bag algebra for those operators. We have 
another approach using counting idea. At each iteration of 
procedure to calculate a set of nodes that will be removed 
from MV, we separate it into two sets: 

1. the set of nodes that have the number of being removed 
parents equal to the current number of its parents;

2. the set of nodes that have the current number of par- 
ents that is greater than the number of parents being delet-
ed. So that, we have to modify the algorithm in Fig. 8 as in 
Fig. 10 for the case of that:

1) one child can have more than one parent; 
2) nrt_query calculates nodes that will be removed;
3) base x

jT  describes node properties.
doldv  contains object ID M.oid that serves for the op-

eration of removing records from MV. Without oid, the key 
{id, parentID} is used, but it would be disadvantageous when 
the number of being removed records is large because in this 
case, we have to remove each record instead of a set of records 
once using IN operator. If x

jT  describes child – parent rela-
tionships and/or nrt_query returns the set of being removed 
edges, another algorithm with modifications accordingly will 
be applied.

It is necessary to define the query with group by and ag-
gregation such as ( ), , , ,x x x x x xQ S T J W G  to count parents of 
each one from children nodes. xS  now can contain aggregate 
functions. xG  is the set of group by fields.

Let consider the case when rt_query calculates and returns 
tree edges. If nrt_query determines edges, i. e. the “root edges”, 
the algorithm in Fig. 10 must be modified, especially for steps 
1–7 and step 10, as shown in Fig. 11, “Root edge” is the edge 
that can start a tree, i. e. the node has id equivalent to parentId 
of this edge that will become a root node of a tree. This time we 
cannot remove an edge that can become a new “root edge” but 
not belong to the set of “root edges” that are initially removed. 

The differences between algorithms shown in Fig. 10, 11 
consist in the last one has an additional step to find child 
nodes of edges that were returned by nrt_query. It is inferred 
from the difference between two nrt_query.  

Input:    , , \ , \x n x r x
i i idnewT M T T T T

Output: dnewv
1:  , , ,n n n n ndnewM S dnewT J W
2: 0k

  1, ,.., ,.. ,  , ,r r r x r r r
i ndnewM S T dnewT T M J W

3:   n r
kdnewv M dnewM dnewM

4: WHILE ( kM is not empty)
5: Begin
6:   1 1, ,.., ,.. ,  , ,  r r r x r r r

k i nM M S T dnewT T R J W
7: 1  kdnewv dnewv M
8: 1 k k
9: End
10: Return dnewv

Fig. 9. Incremental update for insert event with enforcing 
referential integrity
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Input: , , x n
idoldT T M

Output: doldv
1:       1, , , , , ,.., ,.. , , n n n n n n x n n n

i ndoldM S doldT J W id parentId T doldT T J W
2:     , , , , , , , n n n n n n n nM S T J W id parentId T J W
3:  { . },{ , },{ . . . . },{}   n n ndRootOid M oid M M M id M Id M parentId M parentId

\       . , , , . . . . ,{}  n n nM oid M doldM M id doldM Id M parentId doldM parentId
4: 0k
5:        ,   , ,{}, ndoldParentsCnt id count parentId ascntOldParents doldM id
6:        ,   , ,{},dParentsCnt id count parentId ascntParents M id
7:     . , , ,kdoldId doldParentsCnt id doldParentsCnt dParentsCnt

   . . , doldParentsCnt id dParentsCnt id cntOldParents cntParents
8:     . , . , . , , , n

kdoldArcs M oid M id M parentId M doldM

  . . . . ,{}  n nM id doldM Id M parentId doldM parentId
9:  kdoldv doldArcs
10: WHILE ( kdoldId is not empty)
11: Begin
12:    1 . , . , . , , ,  r

k kdoldArcs M M oid M id M parentId M M

   .  . , .     kM parentId M id M oid NOT IN dRootOid
13:    ,   ,doldParentsCnt id count parentId ascntOldParents

   1 ,{},kdoldArcs id
14:        ,   , ,{},dParentsCnt id count parentId ascntParents M id
15:    1 . , , , kdoldId doldParentsCnt id doldParentsCnt dParentsCnt

   . . , doldParentsCnt id dParentsCnt id cntOldParents cntParents
16: 1  kdoldv doldv doldArcs
17: 1 k k
18: End
19: Return  doldv

The differences between algorithms shown in Fig. 10, 11 consist in the last one 

Fig. 11. The case when nrt_query returns tree edges

Input: , , x n
idoldT T M

Output: doldv
1:       1, , , , ,.., ,.. , , n n n n n n x n n n

i ndoldM S doldT J W id T doldT T J W
2:     , , , , , , n n n n n n n nM S T J W id T J W
3:       . , , , . . ,{} n ndRootId M id M M M id M id

      . , , , .\ . ,{}n nM id M doldM M id doldM Id
4: 0k
5:  n

kdoldId doldM
6:  kdoldArcs
7: doldv
8: WHILE ( kdoldId is not empty)
9: Begin
10:    1 . , . , . , , ,  r

k kdoldArcs M M oid M id M parentId M M

   .  . , .     kM parentId M id M id NOT IN dRootId
11:    ,   ,doldParentsCnt id count parentId ascntOldParents

   1 ,{},kdoldArcs id
12:        ,   , ,{},dParentsCnt id count parentId ascntParents M id
13:    1 . , , , kdoldId doldParentsCnt id doldParentsCnt dParentsCnt

   . . , doldParentsCnt id dParentsCnt id cntOldParents cntParents
14: 1  kdoldv doldv doldArcs
15: 1 k k
16: End
17: Return doldv

Fig. 10. Incremental update without enforcing referential integrity for delete event
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4. 7. Generating source codes of triggers
Firstly, it is necessary to determine the type of relationship 

between entities in real world that the tree will illustrate. Once 
again, the join between the base tables and the CTE in rt_que-
ry decides relationship and the tree structure. If id and parentId 
come from one base table and only id is key of that table, then 
the relationship type is one – many. If id and parentId are two 
foreign keys of the base table referenced to two keys of two 
separate ones, then the relationship type is many – many. Sec-
ondly, we must analyze and confirm whether nrt_query returns 
tree nodes or tree edges. After that, the source code generating 
procedure can start.

In the framework of this research, the same technique 
as introduced in [15] is used for code generating. Since 
PostgreSQL currently supports trigger for each statement 
which can see the (being) changed data, the being generated 
triggers will be fired for each statement. The trigger headers 
are generated in PL/pgSQL language. The trigger functions 
are generated in C language. The procedure has main steps as 
shown in Fig. 12. A triggers and trigger functions source code 
generator is built as well.

The input query must have non-recursive and recursive terms 
that are SPJ queries with inner joins. The output source codes 
of trigger functions are synthesized in C language. The script 
describes trigger headers and does registration of triggers in  
PL/pgSQL. Certainly, nested query and temporary table con-
cepts are employed here, especially, subqueries as virtual tables 
are used to implement the algorithms that were shown in 
Fig. 10, 11. The triggers are registered to be fired before events, 
otherwise, the algorithms must be modified accordingly con-
cerning the instance of the base table which is being manipulated.

5. Experiments and performance evaluation

The experiments were provided. Suppose there is a table 
with 1,000,000 records describing tree nodes and tree edges 
as well and query as mentioned in section 4 for the case of that 

relationships type is one – many. For the case of many – many 
relationships, there is an additional table that describes the 
relationships with the number of records of 1,000,000 and the 
referential integrity is not enforced. Each insert/delete/update 
statement is issued upon 50,000 records. The being changed 
data is generated randomly and inserted into separate tables 
for insert/delete/update event accordingly, so that the process 
of data preparing almost does not impact on the evaluation. 
The being manipulated nodes/edges may be closer to the roots 
or the leaves of the tree. The system hardware and software 
configuration are Intel G4560 CPU, RAM 8GB DDR3, SSD 
WD Green 256GB drive, Win10 64bit, PostgreSQL v10 32bit. 

The triggers and trigger functions source codes are synthe-
sized using the built generator for any input recursive queries. 
Those source codes implement incremental update algorithms 
and are executed when data in the base tables are being insert-
ed/updated/deleted. All synthesized codes by generator satisfy 
requirements and are equivalent to the codes written manually.

We tried to evaluate and compare the performance of 
the system while it executes the SQL commands like select, 
insert, delete, update when:

a) the MV are switched on;
b) the MV are switched off. Experiments are provided 

for different combinations of the cases: 
1) the two cases of relationships between entities (One – 

Many and Many – Many); 
2) the two cases of enforcing referential integrity; the 

two cases of objects to manipulate (tree-nodes and tree-edg-
es). Execution time is milliseconds and shown in Table 1.

Table 1

Experimental results

Rela-
tionships 

type
One – Many

Many – Many

Manipulat-
ing edges

Manipulat-
ing nodes

MV/
NoMV

MV
Non-
MV

MV
Non-
MV

MV
Non-
MV

Select 603 5,682 715 3,825 715 3,825

Delete 1,642 183 5,808 193 2,014 284

Update 3,685 531 6,593 390 2,796 329

Insert

Enforcing 
ref. int.?

797

Not enforcing ref. int.

YES NO
2,584 401 3,590 228

1,249 1,967

When the incremental maintenance of MV is 
switched on, certainly the triggers for each state-
ment undertaking incremental update will be 
fired accordingly and it affects the performance 
of the data manipulating operations.

6. Discussion of the research results  
of the method 

The experimental results confirm: 
1) the correctness of the proposed incremental 

update of MV with recursive queries; 
2) the correctness of the source code synthesizer; 
3) the effectiveness of MV in terms of it can decrease the 

execution time of the queries significantly. 
With the current experimental configuration, query 

execution time is different in 5.5–9.5 times. On the opposite 

Input: SQL recursive query, base tables’ metadata
Output: Trigger functions and triggers registration codes 
1: Foreach base_table x

idoldT
2: Begin
3: Begin //trigger function for insert event
4: If (enforced referential integrity is true)
5: Generate code implements the algorithm in Fig. 9
6: else
7: Generate code implements the algorithm in Fig. 7
8: End
9: Begin //trigger function for delete event
10: If (type of relationship is one – many)
11: Generate code implements the algorithm in Fig. 8
12: else
13: Begin
14: If (nrt_query returns a set of tree nodes)
15: Generate code implements the algorithm in Fig. 10
16: Else
17: Generate code implements the algorithm in Fig. 11
18: End
19: End
20: Begin //trigger function for update event
21: Generate code for delete event
22: Generate code for insert event
23: End
24: Generate script for compilation of trigger functions
25: Generate trigger headers for all events
26: End

Fig. 12. Procedure for trigger source code generating
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side, using of MV can increase data manipulating time with 
insert/delete/update events. For insertion of 50,000 records 
into the base table describing tree nodes and one – many 
relationships, the time is increased in 1.5–2.5 times with 
MV. The result shows that considering enforcing referential 
integrity minimizes the searching space, so that execution 
time is down from 2.5 times into 1.5 times. For the many – 
many relationships, adding 50,000 tree nodes causes aug�-
mentation of execution time in 15.7 times versus 6.5 times 
when adding the same number of tree edges. 

For the case of delete event, the speed is higher in 
7.1–9 times for tree nodes, especially in 30.1 times for the 
deletion of tree edges. In the frame of this work, updating 
is considered as deletion next to insertion, the execution 
time is augmented in 7–8.5 and 16.9 times accordingly. It is 
proportional to augmentation of execution time of deletion 
plus insertion. Other data for testing may yield very differ-
ent results in terms of execution time. The closer node/edge 
being removed to the root, the larger number of nodes/edges 
which are its descendants may be deleted consequently and 
the higher execution time certainly.  

However, several challenges remain:
– It is mentioned that the result table of the recursive 

queries may present more than one tree separately, i. e. the 
MV may contain duplicates. The proposed incremental up-
date algorithms using operations of relational algebra on set, 
which does not allow duplicates. So that, other algorithms 
must be developed for the case.

– Doing estimation and making choice between update 
strategies which are incremental update or full refresh can get 
an important role especially in case of MV based on recursive 
queries. If there is enforcing referential integrity, deletion of one 
record from the base table also can lead to deletion of a large 
number of records from themselves. Anyway, even in case of 
without enforcing referential integrity that deletion of one re-
cord does not lead to deletion of other records in the base tables, 
deletion of one record from the base tables may infer to deletion 
of a large number records from MV in case of recursive MV. For 
example, deletion of an edge from the graph can lead to deletion 
of the whole large branch from the tree. The calculation of the 
being deleted part with a large number of records of the base 
tables plus deleting process on a large number of records from 
MV to perform incremental maintenance may much overs the 
full refresh with a small number of records this time.

– The proposed incremental update of MV algorithms 
for the insertion event does not take place into account that 
case of records that are already in the MV table, which may 
occur when there is more than one tree and they share some 
tree edges. Although the duplicated records can be omitted 
during insertion into MV, the prodigal calculation is pro-
portional to their volume. In the opposite side, the checking 
process will be repeated with the iterations.

– To simplify and improve the performance of the in-
cremental maintenance of MV, the work [15] suggested a 
solution for MV based on SPJ query, so that at least one key 
of each base table is added into xS  and then we can manipu-

late records in MV directly according to the being changed 
records in the base table. For the case of the MV based on 
recursive queries, this solution can be applied but it may 
help improving performance only for the first from a large 
number of possible iterations of recursive query processing.

– The nrt_query and rt_query may be queries with 
aggregate functions. Anyway, they must produce summa-
ries that can be joined with each other to build trees as the 
final result. Let them as SPJ queries, it is possible to create 
MVs for them and replace them in recursive queries by MVs 
accordingly. We must generate triggers undertaking incre-
mental updates of those MVs too.

– Let consider the case that nrt_query and/or rt_query 
contains outer joins. Since we focus on the recursive query 
that produces tree-structure data, the join between CTE and 
the remaining part in rt_query must be inner join. Now, we 
can modify the algorithms proposed in this paper to use the 
algorithms for incremental update of MV with outer joins.

7. Conclusions 

1. We suggested to transfer recursive queries into the 
iterative process and then proposed the algorithms for in-
cremental maintenance of MV with SQL recursive query 
considering the combinations of cases: 

1) enforcing referential integrity of data or not; 
2) types of relationships between entities in the real 

world – one – many and many – many; 
3) manipulating of records that describe tree nodes or 

tree edges.
2. We built a generator that synthesizes source codes of 

trigger functions in C language and script that does triggers 
registration in PL/pgSQL implementing the proposed algo-
rithms. The input SQL recursive query is the one with inner 
join SPJ queries in both of non-recursive and recursive terms, 
but it can be extended to support outer join and aggregation. 

3. We provided the experiments to prove the accuracy of 
the proposed algorithms, built the generator and did exhaust-
ed discussion on the execution result of the experimentally 
synthesized source codes and the proposed algorithms as 
well. The MV helps to improve the queries’ execution speed 
in 5.5–9.5 times. On the opposite side, MV slows down data 
insertion in 1.5–15.7 times and 7.1–30.1 for deletion.  

4. However, some challenges on incremental mainte-
nance of MV with recursive queries exist and query rewrit-
ing problem to use those MVs to answer queries is opened 
for future work.
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