
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 (101) 2019

6

aggregate functions. There is also a special type of query
called recursive query. In SQL, it goes with Common Table
Expression (CTE).

There is the kind of view as virtual by default because
the query that the view is based on will be executed from
the scratch each time when the view is accessed. The query

1. Introduction

There are many types of SQL queries for calculating
upon data and returning execution result as a table. Some of
them support select, project, joins and where predicates (SPJ
queries). Some others may support group by predicate with

INFORMATION TECHNOLOGY

A SOLUTION FOR
SYNCHRONOUS

INCREMENTAL
MAINTENANCE OF

MATERIALIZED VIEWS BASED
ON SQL RECURSIVE QUERY

N g u y e n T r a n Q u o c V i n h
PhD*

Е-mail: ntquocvinh@ued.udn.vn
D a n g T h a n h H a o

Student*
Е-mail: dngthnhhao@gmail.com

P h a m D u o n g T h u H a n g
PhD Student*

Е-mail: ntquocvinh@ued.udn.vn
P W C h a n d a n a P r a s a d

PhD, Associate Professor**
Email: CWithana@studygroup.com

A b e e r A l s a d o o n
PhD, Associate Professor**

Email: AAlsadoon@studygroup.com
N g u y e n V i e t A n h

PhD
Department of Data Science and Application

Institute of Information Technology
Vietnam Academy of Science and Technology

Hoang Quoc Viet, 108, Cau Giay Dist., Hanoi City, Vietnam, 100000
Е-mail: anhnv@ioit.ac.vn

*Faculty of Information Technology
The University of Da Nang – University of Science and Education

Ton Duc Thang, 459, Lien Chieu Dist., 	
Da Nang city, Vietnam, 550000

**School of Computing and Mathematics, Sydney Campus
Charles Sturt University

Level 1, 63 Oxford str., Darlinghurst NSW 2010, Australia

Матерiалiзованi представлення – це надлиш-
ково збереженi в базi даних результати вико-
нання запитiв. Вони можуть бути використанi
для часткової або повної вiдповiдi на запити, якi
будуть з’являтися в подальшому замiсть повтор-
ного виконання запиту з нуля. Iснує велика кiль-
кiсть опублiкованих робiт, присвячених обслу-
говуванню, особливо iнкрементному оновленню,
матерiалiзованих уявлень i переписуванню запитiв
для їх використання. Деякi з них пiдтримують
матерiалiзованi уявлення на основi рекурсивно-
го запиту на мовi datalog. Хоча бiльшiсть datalog
запитiв можуть бути перетворенi в SQL запи-
ти i навпаки, це не вiдноситься до рекурсив-
них запитiв. Рекурсивнi запити на мовi datalog
намагаються знайти всi можливi транзитив-
нi замикання. Рекурсивнi запити в SQL (Common
Table Expression – CTE (узагальнений табличний
вираз – УТВ) повертають прямi посилання, але
не транзитивнi замикання. У данiй статтi запро-
поновано ефективнi методи iнкрементного онов-
лення матерiалiзованих уявлень на основi CTE, а
також алгоритм генерацiї вихiдних кодiв на мовi
програмування Сi для будь-яких вхiдних рекурсив-
них SQL запитiв. Синтезованi вихiднi коди реалiзу-
ють запропонованi нами алгоритми iнкрементного
оновлення вiдповiдно до набору вставлених/видале-
них/оновлених записiв в базових таблицях. В данiй
статтi основна увага придiляється рекурсивним
запитам, результатами виконання яких є спрямо-
ванi деревовиднi структури даних. Розглянуто два
випадки вузла дерева. У першому випадку дочiр-
нiй вузол має тiльки один батькiвський вузол,
а в другому випадку дочiрнiй вузол може мати
багато батькiвських вузлiв. Цi два випадки пред-
ставляють два типи зв’язкiв мiж сутностями в
реальному свiтi: один-до-багатьох i багато-до-ба-
гатьох вiдповiдно. Для зв’язку один-до-багатьох
данi зв'язку супроводжуються записами, що опи-
сують дочiрнiй елемент з використанням деяких
полiв. Цi поля задаються порожнiми при видаленнi
конкретного зв’язку. Для зв’язку багато-до-бага-
тьох, зберiгаються в окремiй таблицi, а конкретнi
зв’язки видаляються шляхом видалення описуючих
записiв з цiєї таблицi. Розгляд забезпечення поси-
лальної цiлiсностi може допомогти зменшити про-
стiр пошуку i, отже, пiдвищити продуктивнiсть.
Проте, набором вузлiв або ребер дерева можна
управляти. Всi цi комбiнацiї призводять до рiз-
них алгоритмiв. Для пiдтвердження ефективностi
запропонованих в данiй роботi методiв наводяться
й обговорюються результати експерименту

Ключовi слова: матерiалiзоване уявлення;
рекурсивний SQL запит; CTE (УТВ); iнкрементне
оновлення; генерацiя вихiдного коду

UDC 004.65
DOI: 10.15587/1729-4061.2019.180226

Copyright © 2019, Nguyen Tran Quoc Vinh, Dang Thanh Hao,

Pham Duong Thu Hang, Abeer Alsadoon, PW Chandana Prasad, Nguyen Viet Anh

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

Received date 16.07.2019

Accepted date 02.10.2019

Published date 31.10.2019

Information technology

7

execution result is not stored anywhere. This kind of view
exists and is supported parallelly by many database manage-
ment systems.

From 1998, Oracle started supporting another kind of
view called materialized view (MV) although its idea was
raised from the 1980s. Essentially, MV is a table that stores
the execution result of a query. When a future query that
can partially or fully use the result stored in MV appears,
that table content can be used to answer the query instead
of calculation from the scratch. This may help to support
real-time applications.

It is known that query execution requires system re-
source, mainly of CPU time, main memory and disk load.
The join and group by operations of a query often require
much of CPU time and memory load. Disk load often leads
to bottleneck because of reading a large volume of needed
data for the query execution through the low speed disk
interface.

If the MV has small enough number of records that are
based on a complex query, it means that including joins and
group by operations will use a large volume of data to answer
a query [1–9], it could improve the query execution time and
required system resources in many times. The above effec-
tiveness may be respectively multiplied with the appearance
frequency of the queries that use MV. The queries are often
being rewritten to be answered using MVs if possible.

However, when data in the base tables that related to
MV query is changed, the stored query execution result in
MV becomes inaccurate, i. e. to be inconsistent with MV
definition. It must be updated to be actual to the latest data
in the base tables, then it could reflect the MV definition.

There are two types of MV update according to actu-
alization time. The first type is synchronous (immediate)
that does the update of MV as a part of transaction which
changes data in the base tables. The second one is asynchro-
nous (deferred, lazy) that does the update outside of that
transaction, so that the update will be done periodically with
some schedule or when users call the update procedure or
when the MV is accessed. Some ideas from asynchronous in-
cremental update algorithms are useful to synchronous ones.

There are incremental (differential) update [10–15] and
complete (fully refresh) update according to the ways of
maintenance process. Fully refresh update clears the MV ta-
ble content, then re-executes the MV query and fills the re-
sult into the MV table. Incremental update does the changes
forward the MV table according to the changes in the base
tables, and vise versa.

Certainly, MV brings not only benefit but also main-
tenance process that requires additional system resources.
This might significantly impact the system performance,
sometimes the maintenance cost and negative cost of change
may go over the benefit. The query DBMS optimization
engine must work harder with existed MVs. This additional
cost comes from analysis, choosing MV for query answering
and rewriting the query using the chosen MV. So that selec-
tion of views [16–19] to be materialized is a very important
task. The views may be chosen to be materialized periodi-
cally and/or schedulable based on the organization working
schedules [17].

All published papers are devoted to the MV with SPJ
queries, queries with aggregations, recursive queries in da-
talog that product transitive closures. This research focuses
mainly on the synchronous incremental update of MV based
on recursive query (recursive MV) in SQL (CTE) whose

execution results are directed tree-structured data. The al-
gorithms undertaking incremental update of recursive MV
for different combinations of the parameters are proposed:

1) set of base table records being manipulated (describ-
ing tree nodes or tree edges);

2) types of the relationship between tree nodes (one child
can have one parent or many parents);

3) referential integrity (enforcing or not).
A generator that synthesizes source codes in C language

for implementing proposed algorithms that supports Post-
greSQL is built. Experiments on large sample database and
sample recursive query in PostgreSQL to verify the rightness
of the trigger function source code generating algorithm, the
incremental update algorithms and the effectiveness of the
proposed method are performed. Experimental results and
discussion of the results are also provided.

2. Literature review and problem statement

The work [20] summarized all the aspects of MV using
almost of the works which were published till 2019, re-
viewed them, recommended related algorithms and future
directions in research and application of MV. We remind the
representative papers related to synchronous incremental
maintenance of MV algorithms and implementing those
ones, which help additionally proving the possibility of pro-
posed methods and understanding the provided discussions.

Obviously, there is nothing interesting in completely
new updates of MV although sometimes it’s effective. On
the contrary, a large number of publications are devoted to
incremental update of MVs [10–15, 21–25].

Data manipulation events in the base table let MV
change are insert, delete and update actions. Insert opera-
tion increases a set of new records that will be inserted into
the base table. Delete operation decreases a set of old records
that will be removed from the base table. Update events are
often divided into two sequences: delete old records from the
base table and then insert new records [12–14]. Therefore,
the incremental update algorithm must separately perform
“delete event” procedure and “insert event” procedure.
Sometimes, this division is not necessary [15]. It means that
update events are manipulated in only one operation instead
of two steps like above.

For SPJ views, the work [15] suggested adding at least
one key of each base table into the MV, so that we can do in-
sert, update and delete directly in MV based on the set of key
values corresponding to changed records in the base table.

The work [23] approached existing incremental update
methods that are proposed in the works [21] and suggested
an algorithm. This algorithm bases on the concept of ver-
sion store for older versions of the base tables and trans-
action ID in data warehouse environment. The work [26]
analyzed MVs in data warehouse environment by collect-
ing 25 papers that were published until 2010. These papers
not only dedicated incremental update of MV in data
warehouse environment but also in general. They showed
techniques, issues addressed, changes handled, types of
queries, the advantages and disadvantages of each proposed
solution via tabular manner. The work [25] developed MV
that are stored and incrementally updated by asynchro-
nous way in the distributed databases based on distributed
log-structured merge-tree, which provides high data write
performance.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 (101) 2019

8

The work [24] proposed the first solution for incremental
maintenance of positive nested relational calculus on bags
for collection processing engine, which supports also XML
data. The work [27] introduced a framework called ViewDF
that focuses on the problem of incrementally propagating
changes to MV according to appending a set of new data
from streams. It is effective when the base tables, MV and
data stream are partitioned by time such that each part can
be accessed directly, and the incremental update process
requires only a small number of parts.

Most of incremental update algorithms of MV using que-
ries with aggregate functions [12, 15] (sum, count, avg, min,
max...) are based on the ones of SPJ MV. The approach has
its own reason. Indeed, although sometimes the aggregations
can move up and down in the query tree for optimization on
some classes of queries, the order of intrinsic evaluation of
relational algebra expressions that contain group by opera-
tions and aggregate functions is as follows: SPJ (joins, where
predicates, select) and then aggregation (group by, aggregate
functions, having). It seems reasonable to build algorithms
of MV incremental update with aggregations based on the
ones of SPJ MV. So that, we can calculate the set of deleted
(and/or inserted) records for the SPJ part, and then group
by combine calculate aggregate functions. Each record in the
result of this step corresponds to one record of MV.

The work [15] suggested some improvements in incre-
mental update process of MV with aggregate functions.
When referential integrity is enforced, the inserted records
into parent base tables do not affect MV, so that, they can be
ignored. Once an attribute only participates in the group by
predicate, not in parameters of aggregate functions, its value
changes in the base table can transfer directly into the cor-
responding attribute in MV. Otherwise, once all attributes
from a key of the base table participate in group by predicate,
each their value set presents a reference between a record in
the base table and records in MV, so that, we can delete the
corresponding records from MV directly as soon as a record
is deleted from the base table. The authors also show that
it is necessary to transfer the query before materialization
because of usefulness of MV in future toward some cases of
selection expression.

All the incremental update of recursive MV algorithms
are dedicated to the type of recursive queries that they can
calculate transitive closures. The paper [28] has compre-
hensive reviews about relative issues and recommended
algorithms for recursive MVs published to 2017. It focused
on DRed and EPF algorithms introduced by many works
before. It also indicated that EPF algorithm is more effective
than DRed algorithm. Those algorithms cannot be applied
to MV based on SQL CTE. In this paper, we focus on incre-
mental update of recursive MVs, concretely, MVs here are
based on SQL recursive queries using CTE.

Although a large number of works are devoted to algo-
rithms doing incremental update of MV, the works [15, 22, 23]
showed those algorithms are implemented rarely. The work
[22] presents how to manually write trigger functions and
how triggers are executed when data in the base table are be-
ing changed/changed. It did not provide any incremental up-
date algorithm as others. The work [15] shows the method to
synthesize the source code of triggers and triggers functions
in C programming language implementing algorithms that
undertake synchronous incremental update of MVs in Post-
greSQL. It provided source code generating algorithm for
each MV incremental update algorithms (for events: insert,

update, delete; for types of queries: SPJ, with aggregations;
for cases of optimization) and the generator as well. The
authors compared source codes of many trigger functions for
each combination (group) of <type of query, event, update
algorithm> and separated them into two types: fixed codes
and variable codes. Fixed codes are the same for a group of
triggers functions. Variable codes depend on the base tables,
attributes, expression and data types. Their experiments
show that the generated codes satisfy all the requirements,
fully coincide with the triggers written manually.

Thus, there is an absolutely large number of published
works relative to incremental maintenance of MV based on
SPJ queries, queries with aggregations, queries with outer
joins and based on recursive queries as well. In case of MV
based on SPJ queries, queries with aggregations and que-
ries with outer joins, existing solutions are effective, cover
almost cases of queries and optimization. They may imple-
ment synchronous incremental update of MV based on SQL
queries and datalog language automatically. The absence of
good abstraction within the implementation of incremental
update system may be the latest remain problem. On the
other hand, in case of MV based on recursive queries, the
published solutions are devoted to datalog recursive queries,
which tend to transitive closures calculation and cannot
apply for SQL recursive queries with CTE.

This work addresses the algorithms for incremental
update of MV devoted to SQL recursive queries with CTE
containing inner join SPJ queries. Furthermore, we create a
generator tool that does automatic synthesis of source codes
in C programming language which implements the proposed
incremental update algorithms in PostgreSQL.

3. The aim and objectives of the study

The study aims to understand underlying approaches for
incremental update of MV implementation. More specifical-
ly, it focuses on solving issues related to incremental update
of MV which base on SQL recursive queries.

To achieve this aim, the following objectives are accom-
plished to:

– carefully and thoroughly review related works regard-
ing to incremental update of MV problem, especially for the
case of MV based on SQL recursive query and then formally
formulate the problem;

– build the algorithms for incremental maintenance of
MV with SQL recursive query basing on relational algebra;

– build the generator to synthesize source codes of
trigger functions that undertake incremental update of MV
with SQL recursive queries implementing the proposed
algorithms;

– provide experiments to prove the accuracy of the built
generator, discussions on algorithms and testing results.

4. The proposed method

4. 1. SPJ query
Each thx SPJ query xQ which thx MV is based on

consists of:

(), , , ,x x x x xQ S T J W 		 		 (1)

where:

Information technology

9

– { }1 2, ,..,x x x x
pS S S S= – set of fields that are selected and

presented in SELECT predicates;
– { }1 2, ,..,x x x x

nT T T T= – set of the base tables that partici-
pate in FROM predicates. FROM predicate xF is the combina-
tion of xT and xJ :

1 2 1 1
1 2x x x x

i n

x x x x x
i nJ J J J

F T T T T
− −

=    ;
– xJ join conditions between the base tables in xT ;
– xW – WHERE predicates, the conditions on each re-

cord in joining result of .xF In case of implicit joins, xJ is
empty and it is contained in xW . Otherwise, it is not empty.
Let .x x xC J W∧= Suppose that xJ and xW are converted
into conjunctive canonical form.

4. 2. Incremental update of MV based on SPJ query
Inner joins have distributive property, so that:

()
1 2 1 1

1 2 1 1

1 2 1 1

1 2

1 2

1 2

.. ..

.. ..

.. ..

x x x x
i n

x x x x
i n

x x x x
i n

x

x x x x x
i i nJ J J J

x x x x
i nJ J J J

x x x x
i nJ J J J

newF

T T T dnewT T

T T T T

T T dnewT T

− −

− −

− −

∪ =

∪

=

=

∪

=

 

  

 



  





 



 (2)

and

()
1 2 1 1

1 2 1 1

1 2 1 1

1

1 2

1 2

2

.. ..

.. .. \

. .. .

\

.

x x x x
i n

x x x x
i n

i x x x
i n

x

x x x x x
i i nJ J J J

x x x x x
i nJ J J J

x x x
i nJ J J J

oldF

T T T doldT T

T T T T T

T doldT T

− −

− −

− −

=

=

=

= 

 

  



  

  	 (3)

It is known that a record of the thj base table i
jT can

take participance in the result of iQ if and only if its carte-
sian product with records of other tables in iT satisfies iJ
and .iW

Now, suppose the current state (instance) of the database
is with the set of the base tables xT . The execution result of

(), , ,x x x x xQ S T J W is:

(), , , .x x x x xM S T J W=
			

	 (4)

The eq. (4) can be presented in the form of a relational
algebra expression as follows:

() ()
1 2 1 1

1 2()
.. .. .x x x x xx

i n

x x x x x
i nW J J J JS

M T T T T
− −

= π σ    

If there is a set of records x
idnewT is inserted into x

iT ,
suppose

,x x x
i i inewT T dnewT= ∪

{ }1 2, ,.. ,.. ,x x x x x
i ndnewT T T dnewT T=

{ }
(){ }

1 2

1 2

� , ,.. ,..

, ,.. ,.. .

x x x x x
i n

x x x x x
i i n

newT T T newT T

T T T dnewT T

= =

= ∪

The database now has new instance and inferring from
eq. (2)–(4), new execution result of xQ is then:

()
() ()

, , ,

, , , , , , ;

x x x x x

x x x x x x x x

newM S newT J W

S T J W S dnewT J W

= =

= ∪ 		 (5)

xnewM is in the form of a relational algebra expression
as follows:

() ()
() ()

1 2 1 1

1 2 1 1

1 2()

1 2()

.. ..

.. .. .

x x x x xx
i n

x x x x xx
i n

x

x x x x
i nW J J J JS

x x x x
i nW J J J JS

newM

T T T T

T T dnewT T

− −

− −

=

= π σ ∪

∪π σ

   

   

(), , ,x x x x xdnewM S dnewT J W= is the set of records that
must be inserted into MV xM according to insertion of

x
idnewT into .x

iT
If there is a set of records x

idoldT is deleted from ,x
iT

suppose

 \ ,x x x
i i ioldT T doldT=

{ }1 2, ,.. ,.. ,x x x x x
i ndoldT T T doldT T=

{ }
(){ }
1 2

1 2

� , ,.. ,..

, ,.. \ ,.. .

x x x x x
i n

x x x x x
i i n

oldT T T oldT T

T T T doldT T

= =

=

The database now has a new instance and new execution
result of xQ as in eq. (6) below:

()
() ()

, , , �

, , , \ , , , ;

x x x x x

x x x x x x x x

oldM S oldT J W

S T J W S doldT J W

= =

= 		 (6)

xoldM is in the form of a relational algebra expression
as follows:

(), , ,x x x x xdoldM S doldT J W= is the set of records that
must be deleted from MV xM according to deleting opera-
tion of x

idnewT from .x
iT

If there is a set of records x
idoldT of x

iT is updated to
x

idnewT , it is equivalent with delete a set of records x
idoldT

from x
iT and then insert a new one x

idnewT into x
iT . The da-

tabase now has new instance and new execution result of xQ is:

()
() ()()
()

, , ,

, , , \ , , ,

, , , .

x x x x x

x x x x x x x x

x x x x

updM S updT J W

S T J W S doldT J W

S dnewT J W

= =

= ∪

∪ 		 (7)

It means that the update operation is converted into a
delete operation followed by an insert operation. It is enough
clear for MV with SPJ query and can be applied to MV with
recursive query when it is converted to an iterative program.

4. 3. SQL recursive query
There may be many types of recursive queries producing

different sorts of results. We focus on the most important
type of recursive queries that produce the results with hier-
archical or tree-structured data, which are in tabular form
and can be presented by the directed tree. Suppose that
there may be many trees and the trees that time can share
common edges. So that, the result table does not contain
duplicates. For the case of one – many relationships, i. e. one
child can have only one parent, the key of the result table is

() ()

() () ()

()
1 2 1 1

1 2 1 1

1 2

1 2

.. .. \�

.. .. .

x x

x x x x x x
i n

x x x x
i n

x

S W

x x x x
i nJ J J J S W

x x x x
i nJ J J J

oldM

T T T T

T T doldT T

− −

− −

= π σ

π σ   

   

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 (101) 2019

10

the key that identifies a unique tree node. For the many –
many relationships, i.e. one child can have more than one
parent, the set of attributes help link two records of the re-
sult table, i. e. describe edges of trees will be key of the result
table, for example, the set {id, parentId}. Each record (child)
in the result table has at least one “directed” link to (at least
one) other records (parents), except the root record. The
graph can be cyclic or acyclic. We choose the case of acyclic
graphs first to solve the problem of incremental update of
recursive MV. The general SQL recursive query may have a
form as Fig. 1.

SQL recursive queries have two parts: non-recursive
term nrt_query (anchor) and recursive term rt_query. The
terms nrt_query and rt_query are SPJ queries. They can
have select, project and join predicates. The
rt_query has join predicates including exactly
one time inner-joining with R. This constraint
is given by SQL standard. Our paper considers
rt_query has join predicates that contains
only inner join, not outer join operations.
The UNION operation discarding duplicate
records is used excluding “UNION ALL” be-
cause of the chosen type of recursive queries.

R in Fig. 1 is evaluated as follows:
1) nrt_query is calculated and returns the

result as a table; this table is the intermediate
result of recursive query R too;

2) rt_query is calculated, certainly, it calls join operation
with the intermediate result of recursive query R; empty in-
termediate table and fill it with the current result; do UNION
operation removing any duplicates with the previous result;
the process repeats until current rt_query returns empty table.

From eq. (1), (4), nrt_query and nrt_query have the form
of (), , ,n n n n nQ S T J W and (), , ,r r r r rQ S T J W with the execu-
tion results (), , ,n n n n nM S T J W= and (), , ,r r r r rM S T J W=
respectively. Since rt_query contains inner join recursive
query, so that { }1 ,.., ,.. , �r r x r

i nT T T T R= . ,rJ certainly, contains
joining condition between R and remaining in the rT base
tables. This join operation creates an edge between children
created by { }1 ,.., ,..r x r

i nT T T and parents created by R. Suppose
x

iT is a member of both nT and rT , { }1 ,.., ,.. .n n x n
i mT T T T=

The observations show that it is iterative process but not
recursive essentially, recursive terminology is chosen by the
SQL standards committee. It is an important confirmation
and the algorithms proposed within this paper are based on it.

So that, R in Fig. 1 which has execution result v is now
can be converted to the program using loop structure as in
Fig. 2, in which the indexing variable k just has a role pre-
senting the number of iteration. Certainly, rT and rJ in
the equation in step 6 Fig. 2 contain join operation with v.

The “programs” illustrated in Fig. 1, 2 are equivalent,
but it seems to be unable to build an incremental update
algorithm for the one in Fig. 1 because it is in the form of
recursive calculation. All the algorithms developed within
this paper are based on the program in Fig. 2.

4. 4. Tree evaluation with recursive query
For example, we have the base table in Fig. 4, a with

schema people(id, parentId, fullName, city). It is necessary
to build a genealogy tree of persons who were born in the city
“c1” and recursive query in Fig. 3 can support this. It returns
the result in Fig. 4, b. The recursive query is executed and
builds trees as an iterative process shown in Fig. 5.

The example shows that the execution result of one recur-
sive query may construct more than one tree. The nrt_query
creates roots of trees and decides the number of trees. The

Fig. 1. Original general recursive query

1: R: WITH RECURSIVE R AS
2: (
3: nrt_query
4: UNION
5: rt_query
6:)
7: SELECT * FROM R

1:  , , , n n n n nv M S T J W
2: 0k
3: kM v
4: WHILE (kM is not empty)
5: {
6:  1 , , ,  r r r r r

kM M S T J W
7: 1  kv v M
8: 1 k k
9: }
10: Return v

Fig. 2. Transferred general recursive query

1: RQ: WITH RECURSIVE ctefamilyinc1 AS
2: (
3: nrt_query: SELECT id, parentId, fullname, city FROM people WHERE

city='c1'
4: UNION
5: rt_query: SELECT people.id, ctefamilyinc1.id, fullname, city FROM

ctefamilyinc1 join people on
people.parentId=ctefamilyinc1.id

6:
7:

)
SELECT * FROM ctefamilyinc1

Fig. 3. Example of recursive query

Fig. 4. Tree evaluation by recursive query: 	
a – base table people, b – CTE execution result

Id_mv Idparent id fullname city
1 Null 1 name1 c1
2 Null 2 name2 c1
3 2 7 name7 c1
4 1 4 name4 c3
5 1 3 name3 c3
6 2 6 name6 c4
7 2 5 name5 c4
8 4 9 name9 c2
9 4 8 name8 c2
10 9 11 name11 c3
11 9 10 name10 c2

id idparent fullname city
1 null name1 c1
2 null name2 c1
3 1 name3 c3
4 1 name4 c3
5 2 name5 c4
6 2 name6 c4
7 2 name7 c1
8 4 name8 c2
9 4 name9 c2
10 9 name10 c2
11 9 name11 c3
12 Null Name12 c2
13 Null Name13 c3

a

Id_mv Idparent id fullname city
1 Null 1 name1 c1
2 Null 2 name2 c1
3 2 7 name7 c1
4 1 4 name4 c3
5 1 3 name3 c3
6 2 6 name6 c4
7 2 5 name5 c4
8 4 9 name9 c2
9 4 8 name8 c2
10 9 11 name11 c3
11 9 10 name10 c2

id idparent fullname city
1 null name1 c1
2 null name2 c1
3 1 name3 c3
4 1 name4 c3
5 2 name5 c4
6 2 name6 c4
7 2 name7 c1
8 4 name8 c2
9 4 name9 c2
10 9 name10 c2
11 9 name11 c3
12 Null Name12 c2
13 Null Name13 c3

b

Information technology

11

rt_query develops tree branches step by step through its
iterations.

4. 5. Problem Formulation
Problem Definition. Given a SQL recursive query R that

produces execution result v as tree-structured data. There is
a table MV that contains and equal to execution result v. The
problem is how to do synchronous incremental maintenance
of MV according to data changes in the base tables that par-
ticipate in R upon data manipulation events on them.

We focus on the type of recursive queries having execution
result in the table which is tree-structured data, only the data
create structure of the tree is interested; properties of tree nodes
can be skipped. Tree structure is determined by join operation
between one base table (or join expression) and the CTE. There
are two considered cases of relationship between entities in real
world that may create edges between tree nodes: one – many
and many – many. Without loss of generality when suppose
that nT has only one or two base tables that determine the
parent – child relationship, and rT has only two or three tables
(i. e. one or two base tables and the CTE itself depending on the
type of relationship between entities creating the parent – child
relationship). Certainly, a tree node can have many child nodes.
On the opposite side, we consider two separate cases, they are:

1) a child node may have only one parent node;
2) a child node may have many parent nodes.
For one – many relationships, there are key values of

record describing parent node in the record describing child.
Those fields are set as null to delete the relationship. For
many – many relationships, there is a record in a separate
table that contains key values of both records describing
children and parents. That record describing a concrete re-
lationship is deleted to remove a relationship, i.e. a tree edge
linking a child node and a parent node. Deletion of records –
nodes and deletion of records – edges must be considered
differently.

The data in the base tables are always in one of the two cas-
es: either forced to ensure the referential integrity or not forced
to ensure the referential integrity. Enforcing referential integri-
ty also sets options (no action, cascade, set null) on update and
delete events. The insurance of referential integrity on attri-
butes creating tree structure is the most important issue needed
to be considered. Two cases above may also lead to different
algorithms for incremental maintenance of recursive MV.

Finally, there should be a solution to implement all the
being developed algorithms for incremental update automati-
cally for every SQL recursive MV. Source code synthesis may
be an appreciate approach that can help to solve the problem.

4. 6. Algorithms for incremental update of recursive MV
4. 6. 1. Without enforcing referential integrity
The case that each tree child node has only one parent

node is firstly considered. We try to build an algorithm for

incremental update of MV for data manipulation events
(insert, update, delete) on each base table.

Once a SQL recursive query is converted to an iterative
program, each iteration consists of rt_query, which is an
SPJ query. The eq. (5), (6) could be applied to calculate the
set of records that will be inserted into/deleted from the
MV table within each iteration and then for the whole iter-
ative program. Combination of this with the eq. (7) helps to
calculate the set record that will be deleted from MV and
the set record that will be inserted into MV.

So that, updating a set of records x
idoldT of x

iT to
x

idnewT can be considered equivalent to delete a set of re-
cords x

idoldT from x
iT and then insert a new one x

idnewT
into .x

iT The algorithm in Fig. 8 will be called and then the
algorithm in Fig. 7 will be executed.

4. 6. 1. 1. Insert
Generally, the record inserted into the base table may

satisfy nrt_query and/or rt_query. If it satisfies nrt_query,
it creates a new root of a tree. This new root can link to
already existed nodes – records in the base table to create
a new tree. If it satisfies rt_query, it creates a tree node that
can become child or parents of already existed nodes – re-
cords in the base table. All nodes that can be its parent have
already existed in MV. All its children nodes – records are
in the base table.

In the case of non-enforcing referential integrity, paren-
tId values may be not found in id column but the base tables
can contain other “sub-trees” that don’t exist in MV. When
a new record is inserted, it can link the tree contained al-
ready in MV with some of those sub-trees and subtree cre-
ated within new inserted data. The edges with solid lines in
Fig. 6 demonstrate edges that have been described already
in the base tables, and the dashed lines (8→20 and 6→26)
show edges described by new inserted data.

The algorithm in Fig. 7 calculates the record set that will
be added into MV according to the new inserted record set
dnewv being inserted n

idnewT to the base table n
iT . dnewv

creates the nodes and edges that will be added into the tree.
It creates a new being inserted set of roots, does union with
new being inserted set of nodes that are children of already
existed one in the tree nodes and then finds all nodes that
are their children.

Fig. 5. Tree evaluation by recursive query

nrt_query

rt_query 1st iteration

rt_query 2nd iteration

rt_query 3rd iteration

1

3 4 6

8

2

9

5 7

10 11

1

3 4 6

8

2

9

5 7

10 11

MV

20

23 24

25

26

14

13

new inserted base table

Fig. 6. Insert in case of without referential integrity

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 (101) 2019

12

Because of ignoring referential integrity, the searching
space in step 6 includes x x

i iT dnewT∪ to search not only within
the set of new being inserted records ,x

idnewT but also the old
instance of the database containing x

iT .

4. 6. 1. 2. Delete
MV contains all possibly linked records

that satisfy nrt_query and rt_query. The
(being) deleted set of records x

jdoldT from
the base table x

jT that satisfy nrt_query and
rt_query can create nodes and branches of the
tree only within existing trees in MV.

As mentioned above, because rt_query
contains inner join recursive query, so that

{ }1 ,.., ,.. , �r r x r
i nT T T T R= . ,rJ certainly, contains

joining condition between R and remaining in
the rT base tables; once a record would like to sat-
isfy { }()1, , .., , .. , � , , ,r r x r r r

i nS T T T R J W

it firstly has

to satisfy { }()1_ , ,.., ,.. , ,r r x r r r
i nrt temp S T T T J W=

including only fields and conditions that re-
quires only the base tables { }1 , .., , .. .r x r

i nT T T
M contains all records that are the result
of joining between rt_temp and execu-
tion result of each iteration of rt_query.
Infer, M contains all records that satisfy

{ }()1, , .., , .. , � , , .r r x r r r
i nS T doldT T M J W

A node visually can participate in a tree
many times with many roles. It may be a root
node because it satisfies nrt_query and/or a
descendant of other roots because it satisfies
rt_query. If a node is being deleted, all its descendants
must be deleted. Once a record M that creates a node of a
tree is deleted, we must delete all the records that create its
children and the process goes on recursively. But if a rela-
tionship is being deleted, some inferred relationships gen-
erated by rt_query will be deleted. At that time, a node can
change its state of child node and becomes root if it satisfies
nrt_query. For example, node with (id=k, city=‘c1’) is a root
that has a set of descendants {(id=k+1, city=‘c2’), (id=k+2,
city=‘c2’), (id=k+3, city=‘c1’), (id=k+4, city=‘c2’)}. Node
(id=k+3, city=‘c1’) has child (id=k+4, city=‘c2’). Re-
cursive query builds the trees of people that has rooted
born in city ‘c1’. If we delete parent-child relationship
between (id=k, city=‘c1’) and (id=k+1, city=‘c2’), the set

of nodes {(id=k+1, city=‘c2’), (id=k+2, city=‘c2’)}
has to be deleted recursively from MV. But the node
(id=k+3, city=‘c1’) now becomes root and {(id=k+3,
city=‘c1’), (id=k+4, city=‘c2’)} are still retained in
MV. Anyway, if the node (id=k+3, city=‘c1’) itself
is in the set of being deleted nodes ,x

jdoldT then all
mentioned nodes will be removed.

The algorithm in Fig. 8 calculates the record
set doldv that is necessary to be deleted from
MV according to the deletion of the record set

x
jdoldT from the base table x

jT in case of that x
jT

describes tree nodes. It is the set of nodes that are
necessary to be deleted from the tree. The condition

.id�NOT�IN� RootIdM d is used at each iteration to
skip removing the nodes that become root after de-
leting some relationships.

It isn’t difficult to see that after step 5 in Fig. 8,
doldv can contain many records creating the trees.
Each of those trees can be a subtree of each other’s.

Although all duplicates will be filtered in the iterative pro-
cess, omitting records that can create trees within doldv
after this step can significantly improve the performance.

4. 6. 2. Enforcing referential integrity
When enforcing referential integrity is set to enabled,

any foreign key field must either agree with the primary key
that is referenced by the foreign key or be null. It focuses on
only the reference between id and parentId columns that
creates links between records in MV, i. e. the branches of the
trees. parentId values are always found in id column.

4. 6. 2. 1. Insert
Because of enforcing referential integrity, every re-

cord-node existed in the base tables already has a parent
record-node, a new being inserted item can be a parent
of other items added with or after it. So that, if the set of
records x

idnewT is inserted into the base table ,x
iT a child

Fig. 7. Incremental update for insert event 	
without enforcing referential integrity

Input: M, x
idnewT , nT , rT

Output: dnewv
1:     1, , , , ,.., ,.. , , n n n n n n n x n n n

i ndnewM S dnewT J W S T dnewT T J W
2: 0k

    1, , , , ,.., ,.. , , , r r r r r r r x r r r
i ndnewM S dnewT J W S T dnewT T M J W

3:   n r
kdnewv M dnewM dnewM

4: WHILE (kM is not empty)
5: Begin
6:  1 , , ,  r r r r r

kM M S newT J W

   1 2, , ,.. ,.. , , , r r r x x r r r
i i n kS T T T dnewT T M J W

7 1  kdnewv dnewv M
8: 1 k k
9: End
10: Return dnewv

Fig. 8. Incremental update for delete event 	
without enforcing referential integrity

Input: , , x n
idoldT T M

Output: doldv
1:       1, , , , ,.., ,.. , , n n n n n n x n n n

i ndoldM S doldT J W id T doldT T J W
2:       1, , , , ,.., ,.. , , n n n n n n x n n n

i nM S T J W id T T T J W
3:       . , , , . . ,{} n ndRootId M id M M M id M Id

\       . , , , . . ,{}n nM id M doldM M id doldM Id
4:   . , , ,r r r rdoldM M id oldT J W

      1. , ,.., ,.. , , , .  r x r r r
i nM id T doldT T M J W M id NOT IN dRootId

5:         . , , , . . , .   n ndoldv M id M doldM M id doldM Id M id NOT IN dRootId

6: 0k
7: kM doldv
8: WHILE (kM is not empty)
9: Begin
10:         1 . , , , . . , .    r

k k kM M M id M M M parentId M id M id NOT IN dRootId
11: 1  kdoldv doldv M
12: 1 k k
13: End
14: Return doldv

Fig. 8. Incremental update for delete event without enforcing referential integrity

It isn’t difficult to see that after step 5 in Fig. 8, can contain many records
creating the trees. Each of those trees can be a subtree of each other’s. Although all
duplicates will be filtered in the iterative process, omitting records that can create
trees within after this step can significantly improve the performance.

4. 6. 2. Enforcing referential integrity
When enforcing referential integrity is set to enabled, any foreign key field

must either agree with the primary key that is referenced by the foreign key or be
null. It focuses on only the reference between id and parentId columns that creates
links between records in MV, i. e. the branches of the trees. parentId values are

  rdoldM))))))

Information technology

13

of any new tree node created by any record from x
idnewT

can be only produced by some record from ,x
idnewT but

not from the base table .x
iT The algorithm in Fig. 9 re-

turns the set of records that will be inserted into MV
according to insertion of the set of records x

idnewT into
the base table .x

iT

The decreasing of searching space from x x
i iT dnewT∪

(step 6 in Fig. 7) down to x
idnewT (step 6, Fig. 9) which

is often much smaller should improve the performance sig-
nificantly.

4. 6. 2. 2. Delete
There are three options (no action, cascade, set null)

on update and delete events. Suppose null option is never
set, so that the user must do update setting foreign key
values to null before update or delete the related referenced
record. Suppose that the enforcing referential integrity op-
tion set to update/delete cascade, so that deletion of a node
will infer deletion of all the descendant nodes. All the being
removed nodes will be in being deleted set .x

idoldT
Anyway, all satisfying records – nodes that can infer

from being deleted nodes have already existed in MV. The
algorithm in this case is the same as when enforcing referen-
tial integrity is disabled.

4. 6. 2. 3. Update
It seems that in the case of enforcing referential in-

tegrity for delete and update events having cascade op-
tion, we cannot divide updating a set of records x

idoldT of
x

iT to x
idnewT into the equivalent sequence of operations:

1) delete a set of records x
idoldT from x

iT and then 2) in-
sert a new one x

idnewT into x
iT and apply two algo-

rithms for incremental update mentioned in Fig. 8, 9; but
it is not true. For example, suppose that there is already
the record (0, null, name0, c2) in the base table. We do
update {(0, null, name0, c2), (1, null, name1, c1)} into {(0,
null, name0, c1), (1, 0, name1, c1)}. It is equivalent to delete

() (){ }0, null, name0, 2 �, 1, null, name1, 1x
idoldT c c= and then

insert () (){ }0, null, name0, 1 , 1, 0, name1, 1 .x
idnewT c c= It

seems that deleting (1, null, name1, c1) may call deleting the
records with id 3, 4, 8, 9, 10 and 11, but it may be only true
when we do remove using delete command separately. So, the
algorithm for incremental update of MV is the same, i. e. apply
removing the algorithm in Fig. 8 for a set of records x

idoldT

from x
iT following by the algorithm in Fig. 9 for the insertion

of a new one x
idnewT into .x

iT

4. 6. 3. One child has many parents
We consider the case of a tree node can have only one parent

node, i. e. one – many relationships between entities. Normally,
a tree node has many parents, i. e. the type of relationships be-
tween entities is many – many. Then, each MV record describes
an edge of the tree. The set {id, parentID} now is the key of MV
table. The case is much more sophisticated and requires other
algorithms for incremental maintenance for delete event.

The default understanding is removing records that de-
scribe tree nodes. In fact, we can remove edges too. In case
of one – many relationships between entities, an edge can be
deleted by updating parentId to NULL. In case of many –
many relationships, an edge can be removed by deleting the
record that describes that edge. If we delete a set of records –
edges, we must detect the set of direct children within that
set of edges first.

Because a node can have more than one parent, we can
only remove it accordingly data changes in the base tables
when it is not a child of any other ones that records of which
will have to be retained. It can solve by using bag algebra,
but that time it is necessary to implement some operators
of this calculus, such as IN, MINUS/EXCEPT. PL/pgSQL
does not support bag algebra for those operators. We have
another approach using counting idea. At each iteration of
procedure to calculate a set of nodes that will be removed
from MV, we separate it into two sets:

1. the set of nodes that have the number of being removed
parents equal to the current number of its parents;

2. the set of nodes that have the current number of par-
ents that is greater than the number of parents being delet-
ed. So that, we have to modify the algorithm in Fig. 8 as in
Fig. 10 for the case of that:

1) one child can have more than one parent;
2) nrt_query calculates nodes that will be removed;
3) base x

jT describes node properties.
doldv contains object ID M.oid that serves for the op-

eration of removing records from MV. Without oid, the key
{id, parentID} is used, but it would be disadvantageous when
the number of being removed records is large because in this
case, we have to remove each record instead of a set of records
once using IN operator. If x

jT describes child – parent rela-
tionships and/or nrt_query returns the set of being removed
edges, another algorithm with modifications accordingly will
be applied.

It is necessary to define the query with group by and ag-
gregation such as (), , , ,x x x x x xQ S T J W G to count parents of
each one from children nodes. xS now can contain aggregate
functions. xG is the set of group by fields.

Let consider the case when rt_query calculates and returns
tree edges. If nrt_query determines edges, i. e. the “root edges”,
the algorithm in Fig. 10 must be modified, especially for steps
1–7 and step 10, as shown in Fig. 11, “Root edge” is the edge
that can start a tree, i. e. the node has id equivalent to parentId
of this edge that will become a root node of a tree. This time we
cannot remove an edge that can become a new “root edge” but
not belong to the set of “root edges” that are initially removed.

The differences between algorithms shown in Fig. 10, 11
consist in the last one has an additional step to find child
nodes of edges that were returned by nrt_query. It is inferred
from the difference between two nrt_query.

Input:    , , \ , \x n x r x
i i idnewT M T T T T

Output: dnewv
1:  , , ,n n n n ndnewM S dnewT J W
2: 0k

  1, ,.., ,.. , , ,r r r x r r r
i ndnewM S T dnewT T M J W

3:   n r
kdnewv M dnewM dnewM

4: WHILE (kM is not empty)
5: Begin
6:   1 1, ,.., ,.. , , ,  r r r x r r r

k i nM M S T dnewT T R J W
7: 1  kdnewv dnewv M
8: 1 k k
9: End
10: Return dnewv

Fig. 9. Incremental update for insert event with enforcing
referential integrity

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 (101) 2019

14

Input: , , x n
idoldT T M

Output: doldv
1:       1, , , , , ,.., ,.. , , n n n n n n x n n n

i ndoldM S doldT J W id parentId T doldT T J W
2:     , , , , , , , n n n n n n n nM S T J W id parentId T J W
3:  { . },{ , },{ },{}   n n ndRootOid M oid M M M id M Id M parentId M parentId

\       . , , , ,{}  n n nM oid M doldM M id doldM Id M parentId doldM parentId
4: 0k
5:        , , ,{}, ndoldParentsCnt id count parentId ascntOldParents doldM id
6:        , , ,{},dParentsCnt id count parentId ascntParents M id
7:     . , , ,kdoldId doldParentsCnt id doldParentsCnt dParentsCnt

   . . , doldParentsCnt id dParentsCnt id cntOldParents cntParents
8:     . , . , . , , , n

kdoldArcs M oid M id M parentId M doldM

  . . . . ,{}  n nM id doldM Id M parentId doldM parentId
9:  kdoldv doldArcs
10: WHILE (kdoldId is not empty)
11: Begin
12:    1 . , . , . , , ,  r

k kdoldArcs M M oid M id M parentId M M

   . . , .  kM parentId M id M oid NOT IN dRootOid
13:    , ,doldParentsCnt id count parentId ascntOldParents

   1 ,{},kdoldArcs id
14:        , , ,{},dParentsCnt id count parentId ascntParents M id
15:    1 . , , , kdoldId doldParentsCnt id doldParentsCnt dParentsCnt

   . . , doldParentsCnt id dParentsCnt id cntOldParents cntParents
16: 1  kdoldv doldv doldArcs
17: 1 k k
18: End
19: Return doldv

The differences between algorithms shown in Fig. 10, 11 consist in the last one

Fig. 11. The case when nrt_query returns tree edges

Input: , , x n
idoldT T M

Output: doldv
1:       1, , , , ,.., ,.. , , n n n n n n x n n n

i ndoldM S doldT J W id T doldT T J W
2:     , , , , , , n n n n n n n nM S T J W id T J W
3:       . , , , . . ,{} n ndRootId M id M M M id M id

      . , , , .\ . ,{}n nM id M doldM M id doldM Id
4: 0k
5:  n

kdoldId doldM
6:  kdoldArcs
7: doldv
8: WHILE (kdoldId is not empty)
9: Begin
10:    1 . , . , . , , ,  r

k kdoldArcs M M oid M id M parentId M M

   . . , .  kM parentId M id M id NOT IN dRootId
11:    , ,doldParentsCnt id count parentId ascntOldParents

   1 ,{},kdoldArcs id
12:        , , ,{},dParentsCnt id count parentId ascntParents M id
13:    1 . , , , kdoldId doldParentsCnt id doldParentsCnt dParentsCnt

   . . , doldParentsCnt id dParentsCnt id cntOldParents cntParents
14: 1  kdoldv doldv doldArcs
15: 1 k k
16: End
17: Return doldv

Fig. 10. Incremental update without enforcing referential integrity for delete event

Information technology

15

4. 7. Generating source codes of triggers
Firstly, it is necessary to determine the type of relationship

between entities in real world that the tree will illustrate. Once
again, the join between the base tables and the CTE in rt_que-
ry decides relationship and the tree structure. If id and parentId
come from one base table and only id is key of that table, then
the relationship type is one – many. If id and parentId are two
foreign keys of the base table referenced to two keys of two
separate ones, then the relationship type is many – many. Sec-
ondly, we must analyze and confirm whether nrt_query returns
tree nodes or tree edges. After that, the source code generating
procedure can start.

In the framework of this research, the same technique
as introduced in [15] is used for code generating. Since
PostgreSQL currently supports trigger for each statement
which can see the (being) changed data, the being generated
triggers will be fired for each statement. The trigger headers
are generated in PL/pgSQL language. The trigger functions
are generated in C language. The procedure has main steps as
shown in Fig. 12. A triggers and trigger functions source code
generator is built as well.

The input query must have non-recursive and recursive terms
that are SPJ queries with inner joins. The output source codes
of trigger functions are synthesized in C language. The script
describes trigger headers and does registration of triggers in
PL/pgSQL. Certainly, nested query and temporary table con-
cepts are employed here, especially, subqueries as virtual tables
are used to implement the algorithms that were shown in
Fig. 10, 11. The triggers are registered to be fired before events,
otherwise, the algorithms must be modified accordingly con-
cerning the instance of the base table which is being manipulated.

5. Experiments and performance evaluation

The experiments were provided. Suppose there is a table
with 1,000,000 records describing tree nodes and tree edges
as well and query as mentioned in section 4 for the case of that

relationships type is one – many. For the case of many – many
relationships, there is an additional table that describes the
relationships with the number of records of 1,000,000 and the
referential integrity is not enforced. Each insert/delete/update
statement is issued upon 50,000 records. The being changed
data is generated randomly and inserted into separate tables
for insert/delete/update event accordingly, so that the process
of data preparing almost does not impact on the evaluation.
The being manipulated nodes/edges may be closer to the roots
or the leaves of the tree. The system hardware and software
configuration are Intel G4560 CPU, RAM 8GB DDR3, SSD
WD Green 256GB drive, Win10 64bit, PostgreSQL v10 32bit.

The triggers and trigger functions source codes are synthe-
sized using the built generator for any input recursive queries.
Those source codes implement incremental update algorithms
and are executed when data in the base tables are being insert-
ed/updated/deleted. All synthesized codes by generator satisfy
requirements and are equivalent to the codes written manually.

We tried to evaluate and compare the performance of
the system while it executes the SQL commands like select,
insert, delete, update when:

a) the MV are switched on;
b) the MV are switched off. Experiments are provided

for different combinations of the cases:
1) the two cases of relationships between entities (One –

Many and Many – Many);
2) the two cases of enforcing referential integrity; the

two cases of objects to manipulate (tree-nodes and tree-edg-
es). Execution time is milliseconds and shown in Table 1.

Table 1

Experimental results

Rela-
tionships

type
One – Many

Many – Many

Manipulat-
ing edges

Manipulat-
ing nodes

MV/
NoMV

MV
Non-
MV

MV
Non-
MV

MV
Non-
MV

Select 603 5,682 715 3,825 715 3,825

Delete 1,642 183 5,808 193 2,014 284

Update 3,685 531 6,593 390 2,796 329

Insert

Enforcing
ref. int.?

797

Not enforcing ref. int.

YES NO
2,584 401 3,590 228

1,249 1,967

When the incremental maintenance of MV is
switched on, certainly the triggers for each state-
ment undertaking incremental update will be
fired accordingly and it affects the performance
of the data manipulating operations.

6. Discussion of the research results
of the method

The experimental results confirm:
1) the correctness of the proposed incremental

update of MV with recursive queries;
2) the correctness of the source code synthesizer;
3) the effectiveness of MV in terms of it can decrease the

execution time of the queries significantly.
With the current experimental configuration, query

execution time is different in 5.5–9.5 times. On the opposite

Input: SQL recursive query, base tables’ metadata
Output: Trigger functions and triggers registration codes
1: Foreach base_table x

idoldT
2: Begin
3: Begin //trigger function for insert event
4: If (enforced referential integrity is true)
5: Generate code implements the algorithm in Fig. 9
6: else
7: Generate code implements the algorithm in Fig. 7
8: End
9: Begin //trigger function for delete event
10: If (type of relationship is one – many)
11: Generate code implements the algorithm in Fig. 8
12: else
13: Begin
14: If (nrt_query returns a set of tree nodes)
15: Generate code implements the algorithm in Fig. 10
16: Else
17: Generate code implements the algorithm in Fig. 11
18: End
19: End
20: Begin //trigger function for update event
21: Generate code for delete event
22: Generate code for insert event
23: End
24: Generate script for compilation of trigger functions
25: Generate trigger headers for all events
26: End

Fig. 12. Procedure for trigger source code generating

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 (101) 2019

16

side, using of MV can increase data manipulating time with
insert/delete/update events. For insertion of 50,000 records
into the base table describing tree nodes and one – many
relationships, the time is increased in 1.5–2.5 times with
MV. The result shows that considering enforcing referential
integrity minimizes the searching space, so that execution
time is down from 2.5 times into 1.5 times. For the many –
many relationships, adding 50,000 tree nodes causes aug�-
mentation of execution time in 15.7 times versus 6.5 times
when adding the same number of tree edges.

For the case of delete event, the speed is higher in
7.1–9 times for tree nodes, especially in 30.1 times for the
deletion of tree edges. In the frame of this work, updating
is considered as deletion next to insertion, the execution
time is augmented in 7–8.5 and 16.9 times accordingly. It is
proportional to augmentation of execution time of deletion
plus insertion. Other data for testing may yield very differ-
ent results in terms of execution time. The closer node/edge
being removed to the root, the larger number of nodes/edges
which are its descendants may be deleted consequently and
the higher execution time certainly.

However, several challenges remain:
– It is mentioned that the result table of the recursive

queries may present more than one tree separately, i. e. the
MV may contain duplicates. The proposed incremental up-
date algorithms using operations of relational algebra on set,
which does not allow duplicates. So that, other algorithms
must be developed for the case.

– Doing estimation and making choice between update
strategies which are incremental update or full refresh can get
an important role especially in case of MV based on recursive
queries. If there is enforcing referential integrity, deletion of one
record from the base table also can lead to deletion of a large
number of records from themselves. Anyway, even in case of
without enforcing referential integrity that deletion of one re-
cord does not lead to deletion of other records in the base tables,
deletion of one record from the base tables may infer to deletion
of a large number records from MV in case of recursive MV. For
example, deletion of an edge from the graph can lead to deletion
of the whole large branch from the tree. The calculation of the
being deleted part with a large number of records of the base
tables plus deleting process on a large number of records from
MV to perform incremental maintenance may much overs the
full refresh with a small number of records this time.

– The proposed incremental update of MV algorithms
for the insertion event does not take place into account that
case of records that are already in the MV table, which may
occur when there is more than one tree and they share some
tree edges. Although the duplicated records can be omitted
during insertion into MV, the prodigal calculation is pro-
portional to their volume. In the opposite side, the checking
process will be repeated with the iterations.

– To simplify and improve the performance of the in-
cremental maintenance of MV, the work [15] suggested a
solution for MV based on SPJ query, so that at least one key
of each base table is added into xS and then we can manipu-

late records in MV directly according to the being changed
records in the base table. For the case of the MV based on
recursive queries, this solution can be applied but it may
help improving performance only for the first from a large
number of possible iterations of recursive query processing.

– The nrt_query and rt_query may be queries with
aggregate functions. Anyway, they must produce summa-
ries that can be joined with each other to build trees as the
final result. Let them as SPJ queries, it is possible to create
MVs for them and replace them in recursive queries by MVs
accordingly. We must generate triggers undertaking incre-
mental updates of those MVs too.

– Let consider the case that nrt_query and/or rt_query
contains outer joins. Since we focus on the recursive query
that produces tree-structure data, the join between CTE and
the remaining part in rt_query must be inner join. Now, we
can modify the algorithms proposed in this paper to use the
algorithms for incremental update of MV with outer joins.

7. Conclusions

1. We suggested to transfer recursive queries into the
iterative process and then proposed the algorithms for in-
cremental maintenance of MV with SQL recursive query
considering the combinations of cases:

1) enforcing referential integrity of data or not;
2) types of relationships between entities in the real

world – one – many and many – many;
3) manipulating of records that describe tree nodes or

tree edges.
2. We built a generator that synthesizes source codes of

trigger functions in C language and script that does triggers
registration in PL/pgSQL implementing the proposed algo-
rithms. The input SQL recursive query is the one with inner
join SPJ queries in both of non-recursive and recursive terms,
but it can be extended to support outer join and aggregation.

3. We provided the experiments to prove the accuracy of
the proposed algorithms, built the generator and did exhaust-
ed discussion on the execution result of the experimentally
synthesized source codes and the proposed algorithms as
well. The MV helps to improve the queries’ execution speed
in 5.5–9.5 times. On the opposite side, MV slows down data
insertion in 1.5–15.7 times and 7.1–30.1 for deletion.

4. However, some challenges on incremental mainte-
nance of MV with recursive queries exist and query rewrit-
ing problem to use those MVs to answer queries is opened
for future work.

Acknowledgment

This research is supported by the Ministry of Education
and Training (Vietnam) under the grant B2017.DNA.06_
KYTH-01 “Building a system for supporting materialized
views in open source database management systems”.

References

1.	 Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H., Urata, M. (2000). Answering complex SQL queries using automatic

summary tables. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD’00.

doi: https://doi.org/10.1145/342009.335390

2.	 Goldstein, J., Larson, P.-Å. (2001). Optimizing queries using materialized views. Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data - SIGMOD’01. doi: https://doi.org/10.1145/375663.375706

Information technology

17

3.	 Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB Journal, 10 (4), 270–294. doi: https://doi.org/10.1007/

s007780100054

4.	 Park, C.-S., Kim, M. H., Lee, Y.-J. (2002). Finding an efficient rewriting of OLAP queries using materialized views in data

warehouses. Decision Support Systems, 32 (4), 379–399. doi: https://doi.org/10.1016/s0167-9236(01)00123-3

5.	 Chirkova, R., Li, C., Li, J. (2005). Answering queries using materialized views with minimum size. The VLDB Journal, 15 (3), 191–210.

doi: https://doi.org/10.1007/s00778-005-0162-8

6.	 Ileana, I., Cautis, B., Deutsch, A., Katsis, Y. (2014). Complete yet practical search for minimal query reformulations under constraints.

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data - SIGMOD’14. doi: https://doi.org/

10.1145/2588555.2593683

7.	 Afrati, F., Chandrachud, M., Chirkova, R., Mitra, P. (2009). Approximate Rewriting of Queries Using Views. Lecture Notes in

Computer Science, 164–178. doi: https://doi.org/10.1007/978-3-642-03973-7_13

8.	 Larson, P.-Å., Zhou, J. (2006). View matching for outer-join views. The VLDB Journal, 16 (1), 29–53. doi: https://doi.org/10.1007/

s00778-006-0027-9

9.	 Cohen, S., Nutt, W., Sagiv, Y. (2006). Rewriting queries with arbitrary aggregation functions using views. ACM Transactions on

Database Systems, 31 (2), 672–715. doi: https://doi.org/10.1145/1138394.1138400

10.	 Chen, S., Rundensteiner, E. A. (2005). GPIVOT: Efficient Incremental Maintenance of Complex ROLAP Views. 21st International

Conference on Data Engineering (ICDE’05). doi: https://doi.org/10.1109/icde.2005.71

11.	 Lee, K. Y., Kim, M. H. (2005). Optimizing the incremental maintenance of multiple join views. Proceedings of the 8th ACM

International Workshop on Data Warehousing and OLAP - DOLAP. doi: https://doi.org/10.1145/1097002.1097021

12.	 Gupta, H., Mumick, I. S. (2006). Incremental maintenance of aggregate and outerjoin expressions. Information Systems, 31 (6),

435–464. doi: https://doi.org/10.1016/j.is.2004.11.011

13.	 Larson, P.-Å. (2018). Maintenance of Materialized Views with Outer-Joins. Encyclopedia of Database Systems, 2165–2170.

doi: https://doi.org/10.1007/978-1-4614-8265-9_841

14.	 	Nica, A. (2012). Incremental maintenance of materialized views with outerjoins. Information Systems, 37 (5), 430–442.

doi: https://doi.org/10.1016/j.is.2011.06.001

15.	 Quoc Vinh, N. T. (2016). Synchronous incremental update of materialized views for PostgreSQL. Programming and Computer

Software, 42 (5), 307–315. doi: https://doi.org/10.1134/s0361768816050066

16.	 Gupta, H., Mumick, I. S. (2005). Selection of views to materialize in a data warehouse. IEEE Transactions on Knowledge and Data

Engineering, 17 (1), 24–43. doi: https://doi.org/10.1109/tkde.2005.16

17.	 Kungurtsev, O. B., Vozovikov, Y. N., Vinh, N. T. Q. (2012). Determination Of The Parameters of Periodic On / Off Materialized View in

the Information System. Eastern-European Journal of Enterprise Technologies, 4 (2 (58)), 42–45. Available at: http://journals.uran.ua/

eejet/article/view/4217/3980

18.	 Novokhatska, K., Kungurtsev, O. (2016). Developing methodology of selection of materialized views in relational databases.

Eastern-European Journal of Enterprise Technologies, 3 (2 (81)), 9–14. doi: https://doi.org/10.15587/1729-4061.2016.68737

19.	 Novokhatska, K., Kungurtsev, O. (2016). Application of Clustering Algorithm CLOPE to the Query Grouping Problem in the Field

of Materialized View Maintenance. Journal of Computing and Information Technology, 24 (1), 79–89. doi: https://doi.org/10.20532/

cit.2016.1002694

20.	 Sebaa, A., Tari, A. (2019). Materialized View Maintenance: Issues, Classification, and Open Challenges. International Journal of

Cooperative Information Systems, 28 (01), 1930001. doi: https://doi.org/10.1142/s0218843019300018

21.	 Zhou, J., Larson, P.-A., Elmongui, H. G. (2007). Lazy maintenance of materialized views. Proceedings of the 33rd international

conference on Very large data bases. Vienna, 231–242. Available at: http://www.vldb.org/conf/2007/papers/research/p231-zhou.pdf

22.	 Chak, D. Materialized views that work. Available at: https://www.pgcon.org/2008/schedule/attachments/64_BSDCan2008-

MaterializedViews-paper.pdf

23.	 Almazyad, A., Siddiquim, M. K. (2010). Incremental View Maintenance: An Algorithmic Approach. International Journal of

Electrical & Computer Sciences IJECS-IJENS, 10 (03), 16–21.

24.	 Koch, C., Lupei, D., Tannen, V. (2016). Incremental View Maintenance For Collection Programming. Proceedings of the 35th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems - PODS’16. doi: https://doi.org/10.1145/2902251.2902286

25.	 Duan, H., Hu, H., Qian, W., Ma, H., Wang, X., Zhou, A. (2018). Incremental Materialized View Maintenance on Distributed Log-

Structured Merge-Tree. Lecture Notes in Computer Science, 682–700. doi: https://doi.org/10.1007/978-3-319-91458-9_42

26.	 Jain, H., Gosain, A. (2012). A comprehensive study of view maintenance approaches in data warehousing evolution. ACM SIGSOFT

Software Engineering Notes, 37 (5), 1. doi: https://doi.org/10.1145/2347696.2347705

27.	 Yang, Y., Golab, L., Tamer Ozsu, M. (2017). ViewDF: Declarative incremental view maintenance for streaming data. Information

Systems, 71, 55–67. doi: https://doi.org/10.1016/j.is.2017.07.002

28.	 Dietrich, S. W. (2017). Maintenance of Recursive Views. Encyclopedia of Database Systems, 1–7. doi: https://doi.org/10.1007/978-

1-4899-7993-3_842-2

