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3anpononosano anzopumm eupiuienns 3a0a4i onmumisauii uiHu 3a 00NOM02010
360pomnux o0uucaeny. Azopumm 6KIOMaE 06a emanu: piuienns 3a0ai 6e3yMoeHoT
onmumizauii i piumenns 360pomnoi 3a0aui 3 00NOMO2010 360POMHUX OOUUCEHL NPU
Minimizauii 3minu apeymenmie Qynxuii. Ilpu uypomy pimenns 360pomHozo0 3a60aHHs
ModHce GYmu 6UKOHANO 6azamopazoso nNPomsi20M 3a0an020 HuUcaa imepayii 0 nocui-
0061020 HABGUICEHHA 0 6CMANHOBNEHO20 IHAMEHHA 0OMEIHCEHHS, A O GUIHAUEHHS.
30inbWeny apeyMenmie 6UKOPUCIOBYIOMbCS 3HAMEHHS eJleMEHMI6 6eKmopa epadici-
ma/anmuepadicnma Qynruii oomexncenns. /{na epaxyeanns enauey apeymenmic na
3MinY Uinboeoi Qynruii euxopucmosyiomovcs ii opyei wacmui noxioui. Pozensnymo
n'amv eapianmis 3a60anns onmumizauii winu, SKi npedcmasasioms cooor 3ae0an-
H31 HETIHINHO020 NPOZPAMYEAHHI 3 OOHUM 00MedCeHHAM. Y 3a60aHHAX BPAXOBYEMLCS
3anesxcHicms nonumy 6i0 winu i nepeddAUAEMbCsl, WO 60HA MAE NiHiUHUU 6ueand. Sk
Y08y PYHKUII0 PO3TAHYMO SUPYHKY NIONPUEMCMEA, BI0XUNEHHS nonumy 6i0 06cs-
00epIIcYBani nPpu ubOMY Piuents Y3200iCYIOMbCS 3 PE3YTbMAMOM 6UKOPUCIAHHA KA~
cunnux memodis (muosxcnuxie Jlaspansca, wmpadis), maxoxc 6UKOHaAHO NOPIGHAHHS
pe3ynomamis 3 piwiennusam 3a0ay 3a 00noMo2010 mamemamuunozo naxemy MathCad.
Ilepesazoro memody € Ginow npocma KOMR'IOMEPHA Peanizayis, MOXCIUCICIL Ompu-
Mamu piuienns 3a menue Muco imepawiii 6 nopieHanmi 3 6idomumu memooamu. Memoo
Modice GYymu maxoxic 6UKOPUCMAHUI OIS GUPTUEHHS THIMUX 3a60aHb NPEOCMABLeH020
6U0Y 3 HACMYNHUMU BUMO2AMU 00 ULIL08OT PYHKUT ma 0OMedcers:

1) uacmui noxioni uinvbo6oi Gynxuii nepwozo nopsaoKy — NiHIHI 0OHOMIPHI
Pynxuii;

2) obmedncenns mae 6uo pieHocmi;

3) obmescenns mae NHIUHUL 6u2aA0 A00 O0OMEIHCEHHS MAE KEAOPAMUUHUL
6u2n10, a wacmHi NOXiOHi neputozo NOPAOKY PYHKULi 00MexHceHns — NiHilHI 00HO-
sumipHi pynruii.

Cmamms modice Gymu KopucHoro ona axieuie, wo 30iHiCHIOOMb NPULIHAMMS
piumens 6 00aacHi YIHOB0T NOJIIMUKYU OP2AHI3AUiL, A MAKOIHC PO3POOKY ONMUMIZAUTHHUX
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1. Introduction

The main aim of the organization’s pricing policy is im-
provement of the financial results of its activities: maximiz-
ing revenue and profits, ensuring that sales volumes match
planned values, etc. When pricing, it becomes necessary to
analyze factors such as consumer demand and its dependence
on price, interchangeability and complementarity of goods,
the number of competitors, limited resources for the pro-
duction and delivery of products. Pricing also acts as a tool
of marketing policy, allowing to perform sales promotion,
attracting and retaining customers.

A large number of approaches used to determine prices
is explained by the variety of types of trade and production
processes and factors affecting the formation of prices, the
challenges facing enterprises, as well as the specifics of their
activities.

One of the main factors determining price formation
is customer demand. To predict its value depending on the
price, models are built on the basis of statistical data. More-
over, both the volume of demand and the probability of pur-
chase can be considered as the predicted value. Among the
most famous forecasting models, regression models [1-7], as
well as their combinations with other methods [8], can be
noted. At the same time, forecasting models can take into
account the interchangeability of products [9], competition
in the market [10], and the limited shelf space of the store [2].
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When optimizing prices, depending on the statement
of the problem, it becomes necessary to solve the problem
of linear, nonlinear, integer, linear-fractional programming.
Moreover, the use of classical methods for solving problems
can be difficult due to their complexity and complexity
in computer implementation, as well as the high cost of
computing resources, especially when considering tasks of
large dimension. Therefore, the development of optimization
algorithms that are more efficient and simple in computer
implementation (for example, that do not require performing
multiple iterations, determining additional variables that
increase the dimension of the problem, and forming modified
functions) is an urgent task.

2. Literature analysis and problem statement

The solutions to the problems of price optimization are
devoted to [6, 9, 11-15]. They present optimization models
taking into account the specifics of the object of study. So,

n [11], the problem of maximizing revenue by considering
the set of prices for competing goods is considered, provid-
ed that the sum of prices of the group of goods is equal to
a given value. In article [12], income from the sale of “fast
fashion” class clothes consists of revenue until the last
week of sales and revenue in the last week of sales when
the collection is liquidated at the lowest price. In [6], when



maximizing profit, producer prices are taken into account.
The authors also consider the solution to the problem of
price optimization by modeling the user’s choice of goods
taking into account their interchangeability [9], setting
individual prices in each sales channel (website, mobile ap-
plication, social networks) [13]. In [14], cost accounting for
the purchase and storage of goods is performed, in [15] two
types of customers are investigated: loyal and disloyal, and
the shelf space in the store is considered limited.

From the studies presented in [7-9, 12—15] it follows
that the problem of price optimization is often presented
as a nonlinear programming problem. Let’s consider the
optimization problem with one constraint in the form of
equality. A linear dependence of demand on price is as-
sumed, linear regression parameters for determining the
forecast value of weekly demand are determined on the
basis of available statistical data on the values of prices
and demand for previous periods. The classic method
for estimating regression parameters is the least squares
method.

Let’s define the following notation:

— pj — the desired price of the product in the j-th period
(j=1..n, n — the number of periods);

— p; — the desired price for the product of the i-th type
(i=1..m, m — the number of types of products);

— g; — the current price of the i-th product;

—a; and b; — the linear regression parameters used to
determine the demand v; for an i-type product:

v,=a,+b.-p,.

In this case, negative elasticity of demand is assumed,
i. e. its decrease with rising prices, therefore, the following
restrictions are imposed on the sign of the parameters: ;>0
and 0,<0.

If a product of one type is considered, then the parame-
ters are indicated without indices: @ and b.

— ¢; — the planned output of the product in the j-th pe-
riod;

— Py, Py — the value of the revenue to be received;

—r — the resource costs for the manufacture of a unit of
product;

— R — the value of the available material stock of the
enterprise;

— h; — the volume of a unit of a product of the i-th type;

S — the delivery volume.

It is possible to determine the following options for the
problems of price optimization p (revenue is used as a finan-
cial indicator of the company’s activity):

Option 1: Minimizing the deviation of projected demand
in the j-th period from the planned production volume with a
restriction on the volume of the used resource: the volume of
the used resource for the production of the product is equal
to the available stock [16]:

n

f(p)=2(a+b~p]. —cj)2 — min,

Jj=1

277) 2 (a+b-p;)<R p,;20. 1)

Jj=1

Option 2: Maximizing the total revenue (minimization
of the value obtained by multiplying the revenue by —1)
obtained by summing the proceeds from the sale of the i-th

type of product, if there is a limit on the delivery volume of
all types of products:

M§

f(p)==2(a,+b,p)p,

- — min,

i
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The solution to this problem while maximizing profits is
considered in [19].

Option 3: Minimizing the deviation of the forecasted
demand in the j-th period from the planned production
volume of the product if there is a limit on the value of total
revenue for n periods, the value of which should be equal to

the established:

n

f(p)=2(a+b~p].—c].)2 — min,

=
ZP“ ZP](G'FbP) ) p;20. (3)

Option 4: Minimizing the deviation of the projected de-
mand for the i-th type product from the planned production
volume of a product of this type if there is a limit on the value
of total revenue for all types of products, the value of which
should be equal to the established:

m

f(p):z(ai+bi'pi_ci)z — min,
p

h(p)=Y pvi=X pi(a+b-p)2B, p20. 4)
i1 pan

Option 5. Minimizing the deviation of the desired
price from the current (find the value closest to the de-
sired) if there is a limit on the total revenue for all types
of products, the value of which should be equal to the
given value:

m

/(p)=Y.(p.~q,) - min,

i=1

m m

h(l’)=2pf0i =2p

i=1 i=1

i(ai+bi'pi)2P2’ p;20. )

The solution of the presented problems can be performed
using classical nonlinear programming methods: fines and
Lagrange multipliers, which are based on reducing the con-
ditional optimization problem to the unconditional optimi-
zation problem.

In the penalty method, a function is formed that includes
the objective function and the penalty function of the restric-
tion and the penalty parameter. In the case of a restriction in
the form of inequality, a logarithmic penalty, a penalty of the
inverse function type, a penalty of the type of a cutoff square
are used. Let’s consider the use of a logarithmic penalty. The
process of solving the problem involves iterative reduction of
the penalty parameter W and unconditional optimization of
the penalty function. The algorithm stops when the change
in the values of the arguments and the function is less than
the specified accuracy. So, for the third option, the penalty
function V will have the form:



Let’s take the following values of the initial data n=3,
a=148.2, b=—1.15, ¢1=10, ¢»=5, c3=11, P=3,400 rubles. Ta-
ble 1 shows the results obtained using the penalty method
(the initial values of the arguments are 300).

Table 1
Results obtained using the penalty method
Penalty Function arguments Target
parameter function

w P1 p2 p3 1)
100 116.4 120.46 115.59 58.84
10 118.70 122.93 117.85 8.988

1 119.36 123.65 118.51 2.71

0.1 119.5 123.79 118.64 1.9
0.01 119.51 123.81 118.65 1.813
0.001 119.51 123.81 118.65 1.804

In the Lagrange multiplier method, a function L is
formed that includes an unknown parameter — the La-
grange multiplier: the sum of the objective function and
the constraint multiplied by the Lagrange multiplier A are
determined [16—18]. So, for a variant of problem (1) (=30,
R=600, the Lagrange function will have the form:

n

L(p.0)=3(avbp,=c) +

=

+7{§n:r(a+b~pj)—R].

=

To solve the problem, it is necessary to calculate the par-
tial derivatives of the function with respect to the variables
p, equate them to zero and solve the system of equations:

(2.645p, —34.5L—317.86 =0;
2.645p, —34.50—329.36=0;
2.645p, —34.5L—315.56=0;

(148.2-1.15-p,)-30+(148.2—-1.15- p,)-30+ o
+(148.2-1.15 p,)-30~ 600 o

The considered methods are complex and time-con-
suming in computer implementation and require high com-
putational resources when considering large-dimensional
problems. Thus, the penalty method requires the multiple
solution of the unconditional optimization problem with var-
ious values of the penalty parameter; the Lagrange multiplier
method involves the formation of an expression to determine
the Lagrange multiplier. In addition, with unconditional
optimization, a modified function is considered, including
the objective function and the restriction, for which the use
of local search methods can be difficult.

An option to overcome such difficulties is use of sto-
chastic methods based on direct random search [20], appli-
cation of evolutionary mechanisms [21], etc. In this case,
the formation of an optimized modified function does not

occur. Such methods make it possible to obtain a certain
solution in a user-specified time, which makes it possible to
use them in problems of large dimension, when the use of
classical methods can lead to an unacceptably large solution
time. However, the resulting solution will be suboptimal and
change in different launches of software implementation. In
addition, the implementation of the algorithms themselves
can be difficult due to the many rules for adjusting the solu-
tions obtained at each iteration.

The option of obtaining a simpler numerical solution
to the quadratic programming problem is considered in
[22] and is based on the formation of the system in accor-
dance with the Kuhn-Tucker conditions. Thus, the quadratic
problem is represented as a linear programming problem.
However, the approach is suitable only for the case when the
restriction has a linear form, and its application is associated
with the formation of simplex tables and the use of the sim-
plex method.

The identified shortcomings of existing methods indicate
the feasibility of conducting a study on the development of
an effective algorithm for solving the presented optimization
problems, devoid of the listed disadvantages associated with
the formation of a modified function, requirements for the
type of restriction. For its development, the use of the inverse
computing apparatus is considered.

By solving problems with the help of inverse calculations
[23] let’s mean finding the increments of the arguments of
the function based on the following information: the initial
values of the arguments and the function, the new value of
the function, the coefficients of the relative importance of the
arguments, the direction of change of the arguments. If it is
necessary to determine the new value of the function so that
the sum of the squares of the increments of the arguments
is minimal, then in this case there is no need to use expert
information. The solution to this problem is considered in
[24], where expressions for the additive, multiplicative, and
multiple dependencies between arguments are determined,
including those obtained using geometric constructions.

3. The aim and objectives of the study

The aim of the study is development of a method for
solving optimization problems of pricing, which differs from
the existing ones using a two-stage approach, including
unconditional optimization of the objective function and
adjustment of the obtained values of the arguments using
inverse calculations.

To achieve the aim, the following objectives are set:

— to build mathematical models to solve the problem of
price optimization;

— to develop a method for solving the problem of price
optimization based on inverse calculations;

— to perform a comparison of the solutions obtained as a
result of the implementation of the algorithm with the solu-
tions of problems in the MathCad mathematical package.

4. An algorithm for solving the problem of
price optimization based on inverse calculations

The optimization problems considered (1)—(5) relate to
quadratic programming problems and differ in the form of
the objective function and constraint.



By type of objective function, problems can be divided
into two groups:

1 Changing the function argument by B value (relative
to the minimum point) will lead to the same change in the
objective function as when changing another argument by
value. This means the fulfillment of the following ratio:

F(pi 4By, = £ (P12 +Bre 1)) =
= /(P> Py +B), (6)

where (pf,p;,...,p;) — the minimum point; B — a certain
number.

In this case, the second partial derivatives of the function
will be constant and equal to each other.

This kind of function is found in options 1, 3, 5.

2. The condition for the objective function (6) is not
satisfied. Partial derivatives of functions are linear one-di-
mensional functions (the second partial derivatives are
constant).

This kind of function is found in options 2, 4.

Fig. 1, a, b show level lines for the first and second cases,
respectively.

By type of constraint, problems are also divided into two
groups:

1. The restriction has the form of linear equality.

This type of restriction is found in options 1, 2.

2. The restriction is non-linear. Partial derivatives of the
restriction function are one-dimensional linear functions
(the second partial derivatives are constant).

This type of restriction is found in options 3, 4, 5.
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Fig. 1. Outline graph:
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a— function f(p)=(a+b-p,~10)" +(a+b-p,-5)";
b — function f(p)z(a1+b1~p1—10)2+(a2+b2-p2—5)2

Let’s consider the application of this approach to solve
the presented problems. The solution of the problem will
include two main stages: the solution of the unconditional
optimization problem and the subsequent correction of the
obtained solution p” by Ap value taking into account the
limitations. The Ap value is determined by the difference
Ap=p-p", where p is the value of the argument, which is the
solution to the quadratic programming problem. In this case,
it is necessary to take into account the influence of individu-
al arguments on the change in the objective function.

Let’s consider the option when the objective function
satisfies condition (6). In the case of a nonlinear constraint,
the expression of the argument can’t be performed, and,
consequently, the use of the method described in [24] can’t
be performed; therefore, the use of the gradient method for
solving the problem of adjusting the values of arguments p”
is proposed.

The gradient is a partial derivative vector that shows the
direction of the greatest increase in the function. Accord-
ingly, the anti-gradient shows the direction of the greatest
decrease in the function. The essence of the proposed meth-
od is that the ratio of the values of the increments of the
arguments corresponds to the ratio of the elements of the
gradient vector, i.e., the change of the arguments occurs
in the direction of the greatest increase/decrease of the
restriction function. Since when moving in the direction
of the gradient/anti-gradient, the largest increase/decrease
of the function is observed, this indicates that it is possible
to achieve its predetermined value with smaller changes in
the arguments. In turn, a smaller change in the arguments
will lead to a smaller deviation of the value of the objective
function from the value obtained by solving the problem of
unconditional optimization. So, for example, for function (6)
in the case of two arguments and their positive increments,
the following relation holds:

S+ 29, py+ ap) < £ (pr + 80, py + Al
at
App) + Ap,“) < Apfz) + Apf).

Fig. 2 shows an example of solving a problem for a func-
tion with two arguments. The starting point A is obtained
by solving the unconstrained optimization problem, B is the
point obtained by moving the function %(x) in the direction
of the anti-gradient to the intersection with the curve of a

_ 2
given level {Jq =, ’3025%} Elements of the anti-gradient

vector of the function /(x) at point A are equal to (—4; —2)T.
The use of the anti-gradient vector is due to the fact that
the value of the constraint at point A is 4, which exceeds the
specified value — 3, therefore, the value of the function must
be reduced.

However, the direction of the gradient can change when
moving to a given value of the constraint function, therefore,
the use of the values of the vector elements calculated at the
starting point can lead to a solution that differs significantly
from the optimal one. In this case, the movement to the set
limit value can be performed step by step.
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Fig. 2. Gradient method for solving the problem
F(x)=(x,=1)" +(x, =2)", h(x)=22?+0.5x7 =3

Thus, the solution of the problem when using the gradi-
ent vector includes the following steps:

Step 1. Solving the problem of unconditional optimiza-
tion of the objective function f(p). The resulting solution
includes a set of prices p". Substitution of the obtained p"



values into the constraint and verification of the condition:
if the inequality is fulfilled, then the algorithm completes,
otherwise the transition to the next step.

Step 2. Substitution of the obtained p* values into the
constraint U =A(p"). Checking the direction of changing the
arguments: if U">U, then the value of the constraint function
must be reduced (elements of the anti-gradient vector are
used) and t=—1, otherwise, increase (elements of the gradient
vector are used) and ¢=1.

Step 3. Determination of the step of changing the con-
straint v based on a given number of iterations p:

Vv =Integer| ————|,
p

current iteration number o=1.
Step 4. Change of the value of the resulting indicator by
the value of the specified step:

U'=U +v.
Step 5. Determination of the necessary increments of

the arguments Ap; to achieve the specified value of the con-
straint U by solving the system of equations:

t.ah(p*)
%— e Ji=1.mizn;
Ap, .ah(p*)
ap,
h(p*+Ap)=U*.

As a result of solving the system, let’s obtain the values
of the increments of the arguments Ap;. In the case of a linear
constraint, the resulting relation is equivalent to the system
presented in [24], where the increments of the arguments are
determined based on the criterion of minimizing their sum
of squares:

A k

S By i L
Ap; K,
h(p*+Ap)=U.

where k; — the coefficients of p; in the linear constraint
equation.
Step 6. Changing the values of the function arguments:

P =D, +Ap,.

Step 7. Checking the completion of the algorithm: if a=p,
then the operation of the algorithm ends, otherwise oi=01+1,
go to step 4.

Finally, let’s consider the case when condition (6) for
the objective function is not satisfied. This means that
changing arguments has a different effect on changing the
objective function. The case when the partial derivatives of
the objective function are linear one-dimensional functions
is considered. To take into account the influence of the
arguments on the change in the objective function relative
to the minimum point, let’s use the values of the second
partial derivatives:

Apy Py O g
Ap, 32f(p) t.ah(p»)vl JiiEm

p; dp,
»h(p*+Ap)=U.

The solution to the problem can also be carried out itera-
tively in accordance with the above algorithm.

For the presented problems (1)—(5), the obtained sys-
tems for determining the increments of the arguments will
accordingly look as follows.

The determination of the increments of the arguments for
solving problem (1) is performed using the system of equations:

Apy_ber
Ap, b-r

7

=1, j=1l.nn=#j;

h(p* +Ap)= 27(a+b-(p; +Ap].)):R.
j=1
Having completed the solution of the system, let’s obtain

the following expression for calculating the growth of func-
tion arguments:

Ei=1.n
n

The system of equations for solving problem (2) has the
form:

W'+ 8p)= Y ha+ b (9] +8p))=S.
i=1

Solving the system, let’s obtain expressions for calculat-
ing the arguments:

N _Z(hj (a/ +b].p;)) _
_ J= —=-Ap,, i=1.m, i#n.

Ap, = - , Ap; =
" Z kb, h,
h

J=1 n

The calculation of the increments of the arguments for
solving problem (3) is as follows:

%_ (a+2bp;)

Ap, (a+2bp;)’j=1"n’j¢n;

W +8p)= 3 (0, + 89, )(a+b-(p,+4p,)) = B.

j=t

In this and subsequent versions, the restriction is non-lin-
ear, therefore, the determination of the increment of the basic
argument can be performed using standard methods for
solving the quadratic equation. So, for the current version,
the equation will look like:



2
< a+2bp.*
Apﬁ b E [i)

a+2bp,

i=1

a+2bp, 5. a+2bp;
+Ap"(az( 2bpn]+2b;[pza+2bpin+
+a¥ p +03(p) - R =
i=1 i=1

The system of equations for solving problem (4) has the
form:

o
p”biz =(an+2bnpn) i tmien
(o any) T

(p +Ap) i(p:+Api)(ai+bl.~(p:+Api))=P1.

i=1

Finally, the determination of the increments of the func-
tion arguments for solving problem (5) is carried out by
solving the system of equations:

,_(a+2a) | myi
Ap; (ai'"'2biqz')7 o 7

(p +Ap):§m“(p:+Api)(ai+bi-(p:+Api))=PZ.

i=1

It can be concluded that in the case of a linear constraint,
analytical formulas for calculating increments can be ob-
tained. In the nonlinear form of the constraint (problems
(3)—(5)), to determine the increments of the arguments, it
becomes necessary to solve the quadratic equation. In this
case, classical methods for finding roots (Newton’s methods,
dichotomies, the use of discriminant, etc.) can be used.

5. Results of solving optimization problems

To solve the inverse problem, the data presented in Ta-
ble 2 are used.

Table 2
Problem input data
. Product number i/Period number j
Indicator
1 2 3
Linear regression parameter a 148.2 1521 130.5
Linear regression parameter b | —1.15 -1.21 -1.1
Resource costs per unit of
30 - -
outputr, g
Planncd volume of produc- 10 5 1"
tion, ¢, kg
Z/olu%me of a product unit, 0.2 04 05
, I’
The current price of prod- 80 75 83
ucts, g, rub.

Limit values: R=600 g, S=60 m?, P;=3,400 rub., Py=
=12,700 rub.

Table 3 shows the solution to optimization problems (1)—
(5) (the number of iterations p is 1). The last column presents
the difference of the obtained solution with the solution of
the problem using a mathematical package:

e=/(x)=/" (%),

where f(x) — the value of the objective function obtained by
solving the problem using inverse calculations; f"(x) — the
value of the objective function obtained by solving the prob-
lem using the built-in MathCad “Minimize” function.

Table 3
Solution to the optimization problems
. The value of the ob- Product price Differ-
Option | . .

jective function, f(x) | p, Do P3 ence €
1 12 121.91(126.26(121.04| -7-107"

2 -12800 7138 | 76.74 | 76.68 | —-5-10°

3 1,803 119.51(123.81|118.65| —-1.107°

4 4,434 119.1 |120.49|107.64| 6-10°

5 30,245 77.18 | 72.68 | 78.89 2107

From the Table 3 it is possible to see that the solution to
the third problem is also consistent with the solutions ob-
tained using the penalty method (Table 1) and the Lagrange
multipliers. The solution for the fifth option using the inverse
calculation method has the least accuracy. Fig. 3 shows a
graph of the change in the objective function of this problem
depending on the number of iterations p. It is possible to see
that with an increase in the number of iterations, the value
of the objective function decreases.

30.2455

30.245
_30.2445

%
=

30.244
30.2435
30.243

1 2 3 45 6 7 8 910
the number of iterations

Fig. 3. The dependence of the objective function on
the number of iterations

As an example, consider option (3). Substituting the
initial numerical values, let’s obtain the following problem:

f(p)=(148.2-1.15- p,—10)' +(148.2-1.15- p, -5} +
+(148.2-1.15- p, ~11)* - min,

p,(148.2-1.15- p,)+ p, (148.2~1.15- p, )+
+p,(148.2-1.15- p,)=3,400.
The solution to the problem of unconditional optimization:

p, =120.17rubles, p,=124.52tubles, p,=119.3 rubles.

Substituting the values in the constraint, let’s obain:



h(p)=(148.2-1.15-120.17)+(148.2-1.15-124.52) +
+(148.2-1.15-119.3)=3,137.

Since the values need to be increased, gradient values
are used. Thus, the system of equations has the form (with a
step p equal to 1):

(Ap, —1282
Ap, -1382
Ap, 1282
Ap, 1262’

(120.174+ Ap,)(148.2-1.15-(120.174+ Ap, )) +
+(124.52+ Ap,)x(148.2-1.15-(124.52+ Ap, ) )+
+(119.3+Ap, )(148.2-1.15-(119.3+ Ap, )) = 3,400.

The solution to the system of equations will be the values
of the increments of the arguments: Ap1=—0.66, Apy=—0.71,
Ap3=—0.65. Then the following values of the arguments will
be the solution of the problem: p,=p; +Ap,: p1=119.51,
Ps=123.81, p3=118.65.

6. Discussion of the results of the development of an
algorithm for solving the problem of price optimization

An algorithm based on the inverse calculations of the
solution to the problem of price optimization is proposed,
five options of quadratic programming problems with one
constraint are considered, which differ in the form of the
objective function and constraints. The results of the appli-
cation of the algorithm are consistent with the solutions ob-
tained using the mathematical package (Table 3). Moreover,
the greatest degree of correspondence is achieved with linear
restriction and equality of all second-order partial deriva-
tives of the objective function (in this case, the inverse prob-
lem is solved in one iteration). With nonlinear constraint,
the smallest degree of correspondence is achieved (option 5),
in this case an iterative multi-step procedure was applied,
which ensured that a lower value of the objective function is
obtained compared to a single-step one.

The following advantages of the proposed algorithm
can be noted. Unlike the penalty method, the presented
algorithm does not require multiple solutions to the uncondi-
tional optimization problem (the unconditional optimization
task objective problem is solved once, after which the inverse
problem is solved). In addition, the penalty method uses
a modified function that combines the objective function
and restriction, and finding its minimum is a more difficult

task compared to determining the minimum of the objective
function. The advantage of the proposed algorithm com-
pared to the method of Lagrange multipliers is that there
is no need to compose a relation to determine the Lagrange
multiplier.

The disadvantage of the algorithm is its limited appli-
cation, in particular, the number of constraints is equal to
unity, and the objective function and constraint must satisfy
the following requirements. Partial derivatives of the first
order of the objective function are linear one-dimensional
functions, the restriction has a linear form or partial deriv-
atives of the first order of the restriction function are linear
one-dimensional functions.

The directions of further research are related to the
modification of the developed algorithm for solving optimi-
zation problems in the presence of several limitations and its
application in other subject areas (for example, in inventory
management).

7. Conclusions

1. An algorithm is proposed for solving the problem
of price optimization, which is a quadratic programming
problem with one restriction. Application of the algorithm
allows one to obtain results that are consistent with the
results of using classical nonlinear optimization methods.
Confirmation of this is given in the results of the numerical
solution of five problems of price optimization. A feature of
the proposed approach is the absence of the need to form
a modified function and repeatedly solve the problem of
unconditional optimization, which simplifies the procedure
for its computer implementation and accelerates the time
of solving the problem. This is possible due to the use of the
inverse computation apparatus in the proposed algorithm,
which allows one to go from the values of the arguments
obtained as a result of unconditional optimization of the
objective function to the values of the arguments satisfying
the constraint of the problem.

2. The presented algorithm and optimization models
can be implemented in decision support systems, provid-
ing the organization’s specialists with the opportunity to
form a set of prices that maximizes revenue or ensures its
predetermined value. An option may also be considered to
ensure maximum compliance of demand with the planned
value of the volume of production. The above algorithm can
be applied to create optimization systems for other objects,
provided that the objective function and the restrictions
to the requirements are satisfied. The two-stage approach
used, including a one-time solution to the problem of un-
conditional optimization, will ensure the speed of such
software systems.
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