
D-

приналдная механина

-0 0-

Розглянуті питання, що пов'язані з розрахунком контактних напружень в радіальних двохрядних підшипниках з роликами, які мають форму бочки. Отриманий при досліджені метод дає більш точні результати по визначенню розмірів плями контакту між кільцями й тілами кочення в підшипниках і розподілу напруги на поверхні контакту

Ключові слова: підшипник; ролики, які мають форму бочки;пляма контакту

Рассмотрены вопросы, связанные срасчетом контактных напряжений в радиальных двухрядных подшипниках с бочкообразными роликами. Полученный при исследовании метод дает более точные результаты по определению размеров пятна контакта между кольцами и телами качения в подшипниках и распределению напряжения на поверхности контакта

Ключевые слова: подшипник, бочкообразные ролики, пятно контакта

The questions connected with calculation of contact pressure in radial двухрядных bearings with barrel-like rollers are considered. The method received at research yields more exact results by definition of the sizes of a stain of contact between rings and bodies качения in bearings and to distribution of pressure to contact surfaces

Keywords: bearing, barrel rolls, the contact patch

Введение. Актуальность проблемы

Одним из важнейших вопросов при решении контактной задачи является вопрос определения площадки контакта и распределения напряжений по площадке контакта. Данное исследование касается решения вышеперечисленных задач при контакте, который происходит в радиальных двухрядных подшипниках качения с бочкообразными роликами.

Состояние вопроса

Начальный контакт между роликом и кольцом в шарикоподшипниках проходит в точке, так как ролик имеет радиус меньший, чем внешнее и внутреннее кольца подшипника. Контактные напряжения определяют по формуле Герца. Многие исследования были посвящены влиянию твердости тел качения и

УДК 62-233.27

ОПРЕДЕЛЕНИЕ КОНТАКТНЫХ НАПРЯЖЕНИЙ В РАДИАЛЬНЫХ ДВУХРЯДНЫХ ПОДШИПНИКАХ С БОЧКООБРАЗНЫМИ РОЛИКАМИ

А.В. Чернишенко Старший преподаватель*

А.А. Мельниченко Доктор технических наук, профессор*

Г.И. Фесенко

Старший преподаватель* *Кафедра металлорежущего оборудования и транспортных систем Украинская инженерно-педагогическая академия ул. Университетская, 16, г. Харьков, 61003

колец на срок службы подшипников. Р.И. Шаерман получил, что при нагрузке радиальных подшипников равной Q наибольшее усилие, передающееся на один шарик, равно $P = \frac{5}{z}Q$, где z – количество тел качения. Подобные исследования вели И.О. Спицын, Р.Д. Бейзельман.

Исследование контактных напряжений при сжатии криволинейных тел

При сжатии двух криволинейных тел с заданными радиусами кривизны в зоне контакта по теории Герца площадь контакта имеет форму эллипса. Давление по площади контакта распределяется по следующему закону [1]

$$p = p_0 \sqrt{\left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right)}$$
(1)

где x и y - координаты точки внутри контура касания,

 p_0 — максимальное давление в центре площадки, совпадающее с максимальным напряжением сжатия σ_{z} на поверхности.

а и b – полуоси эллипса контакта.

Давление в центре площадки можно найти по закону [1]

$$p_0 = \frac{3}{2} \frac{P}{\pi ab}$$
(2)

где Р - сжимающая нагрузка.

Из вышеизложенного напрашивается вывод о том что для определения давления на площадке контакта наиболее важно определить полуоси эллипса а и b.

Для упрощенного описания поверхности вблизи точек контакта (рис. 1) используются упрощенные уравнения второй степени

Рис. 1. Схема перемещений точек М₁ и М₂ при сжатии двух тел ограниченных поверхностями произвольной кривизны

$$z_{1} = a_{1}x^{2} + b_{1}xy + c_{1}y^{2}$$

$$z_{2} = a_{2}x^{2} + b_{2}xy + c_{2}y^{2}$$
(3)

Складывая уравнения (3) и поворачивая их вокруг осей Ох и Оу так, чтобы член содержащий произведение ху выбыл, получаем [2]

$$z_1 + z_2 = Ax^2 + By^2 \tag{4}$$

Если Ox₁ и Oy₁ – следы сечений плоскости xOy плоскостями главных нормальных сечений тела, а R₁₁ и R₁₂ - радиусы кривизны поверхности первого тела в главных нормальных сечениях, а R₂₁ и R₂₂ - радиусы поверхности второго тела (рис. 1) то, принимая соответствующие обозначения для второго тела, определяем величины A и B, имея ввиду что, ψ - угол между Ox₁ и Ox₂.

Для этого уравнения поверхностей записываются в следующем виде [2]

$$2z_{1} = \frac{1}{R_{11}} x_{1}^{2} + \frac{1}{R_{12}} y_{1}^{2}$$

$$2z_{2} = \frac{1}{R_{21}} x_{21}^{2} + \frac{1}{R_{21}} y_{1}^{2}$$
(5)

Складываем уравнения (5) и заменяем x_1 , y_1 , x_2 , y_2 , на x и y по формулам перехода к новой системе координат (x, y, z). Сравниваем коэффициенты x и y во вновь полученном уравнении с уравнением (4), при этом коэффициент при x y в связи с поворотом осей равен 0.

Преобразовав поученное выражение и введя обозначения Герца $\frac{B-A}{B+A}\!=\!\cos\tau$, получаем

$$A = \frac{1}{2} \left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}} \right) \sin^2 \frac{\tau}{2}$$

$$B = \frac{1}{2} \left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}} \right) \cos^2 \frac{\tau}{2}$$
(6)

или

$$2(B+A) = \left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}\right)$$

$$2(B-A) = \left[\left(\frac{1}{R_{11}} - \frac{1}{R_{12}}\right)^2 + \left(\frac{1}{R_{21}} - \frac{1}{R_{22}}\right)^2 + 2\left(\frac{1}{R_{11}} - \frac{1}{R_{12}}\right)\left(\frac{1}{R_{21}} - \frac{1}{R_{22}}\right)\cos\tau\right]^{\frac{1}{2}}$$

Для определения полуосей эллипса рассмотрим уравнение суммы перемещений W₁+W₂ как результат действия нагрузки, распределенной по всей площади контакта по неизвестному закону[2]

$$W_{1} + W_{2} = \left(\frac{1 - \mu_{1}^{2}}{\pi E_{1}} + \frac{1 - \mu_{2}^{2}}{\pi E_{2}}\right)^{*} \int_{(F)} \frac{p dF}{r}$$
(7)

где pdF - нагрузка на элементарную площадку поверхности касания

г – расстояние от центра этой площадки до рассматриваемой точки (радиус)

 $E_1,\,E_1,\,\mu_1,\,\mu_2$ – упругие постоянные каждого из сжимаемых тел.

При сжатии тел в направлении оси z сближение δ точек M_1 и M_2 с одинаковыми координатами x и y, вписывающимися в контур площадки контакта касания (рис. 1) описывается следующим уравнением:

$$\delta = z_1 + z_2 + W_1 + W_2 \tag{8}$$

при этом используя уравнение (4) можно записать

$$W_1 + W_2 = \delta - Ax^2 - By^2$$
⁽⁹⁾

Следовательно, используя уравнения (9) и (7) получаем:

$$\left(\frac{1-\mu_1^2}{\pi E_1} + \frac{1-\mu_2^2}{\pi E_2}\right) \cdot \int_{(F)} \frac{pdF}{r} = \delta - Ax^2 - By^2$$
(10)

Учитывая, что задача рассматривается для контакта двух тел изготовленных из стали с абсолютно одинаковыми физическими свойствами, вводим обозначения: $k = \frac{1-\mu^2}{\pi E}, \int_{(F)} \frac{pdF}{r} = V$ получить для точек внутри площадки касания

$$V = \frac{1}{2k} \left(\delta - Ax^2 - By^2 \right)$$
(11)

Для отыскания сближения δ точек М1 и М2 и вычисления функции V, используем выражение потенциала эллипсоида с плотностью 1 и полуосями a,b, и c, которое для точки внутри эллипсоида имеет вид [2]

$$V = \pi a b c \int_{0}^{\infty} \frac{1 - \frac{x^2}{a^2 + \lambda} - \frac{y^2}{b^2 + \lambda} - \frac{z^2}{c^2 + \lambda}}{\sqrt{(a^2 + \lambda)(b^2 + \lambda)(c^2 + \lambda)}} d\lambda$$
(12)

Рассматривая предельно сжатый эллипсоид, у которого ось с уменьшается с увеличением плотности и контур определяется уравнением эллипса

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
(13)

и имея ввиду, что потенциалы функций софокусных эллипсоидов относятся между собой как их массы, т. е.

$$\frac{4}{3} \pi abc \int_{(F)} p dF = P$$
(14)

получаем новое уравнение для точек внутри сжатого эллипсоида

$$V = \frac{3}{4} P \int_{0}^{\infty} \frac{1 - \frac{x^2}{a^2 + \lambda} - \frac{y^2}{b^2 + \lambda}}{\sqrt{(a^2 + \lambda)(b^2 + \lambda)}} d\lambda$$

Учитывая выражение (11) получаем

$$\frac{3}{4} P_{0}^{"} \frac{1 - \frac{x^{2}}{a^{2} + \lambda} - \frac{y^{2}}{b^{2} + \lambda}}{\sqrt{(a^{2} + \lambda)(b^{2} + \lambda)}} d\lambda = \frac{1}{2k} (\delta - Ax^{2} - By^{2})$$
(15)

Из этого уравнения можно получить систему уравнений следующего вида

$$\begin{split} \delta &= \frac{3 P k}{2} \int_{0}^{\infty} \frac{d\lambda}{\sqrt{\left(a^{2} + \lambda\right)\left(b^{2} + \lambda\right)}}; \\ A &= \frac{3 P k}{2} \int_{0}^{\infty} \frac{d\lambda}{\left(a^{2} + \lambda\right)\sqrt{\left(a^{2} + \lambda\right)\left(b^{2} + \lambda\right)}}; \\ B &= \frac{3 P k}{2} \int_{0}^{\infty} \frac{d\lambda}{\left(b^{2} + \lambda\right)\sqrt{\left(a^{2} + \lambda\right)\left(b^{2} + \lambda\right)}}. \end{split}$$
(16)

Для преобразования (16) введем коэффициент $K = \frac{b}{a} < 1$. Справедливо, что K как отношение полуосей эллипса не зависит от давления в пятне контакта, а зависит от свойств материала и от радиусов кривизны поверхностей в точке контакта. Следовательно, при решении системы уравнений (16) К можно принять постоянным.

Тогда λ можно выразить через следующие зависимости.

Для подстановки во второе выражение (16) $\lambda = b^2 z^2 = a^2 K^2 z^2$, а в третье $\lambda = b^2 z^2$ [2].Тогда выражение А и В из системы (16) после преобразований примет следующий вид

$$A = \frac{3Pk}{2a^{3}} \int_{0}^{\infty} \frac{dz}{\sqrt{K\left(1 + \frac{z^{2}}{K^{2}}\right)^{3}(1 + z^{2})}}$$

$$B = \frac{3Pk}{2b^{3}} \int_{0}^{\infty} \frac{dz}{\sqrt{K\left(1 + K^{2}z^{2}\right)^{3}(1 + z^{2})}}$$
(17)

Исходя из (17)и (6) получаем решение для нахождения полуосей а и b в следующем виде. [2]

$$a^{3} = \frac{3Pk}{4\left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}\right)\sin^{2}\frac{\tau}{2}}\int_{0}^{\infty} \frac{dz}{\sqrt{K\left(1 + \frac{z^{2}}{K^{2}}\right)^{3}(1 + z^{2})}}$$
(18)
$$b^{3} = \frac{3Pk}{4\pi\left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}\right)\cos^{2}\frac{\tau}{2}}\int_{0}^{\infty} \frac{dz}{\sqrt{K\left(1 + K^{2}z^{2}\right)^{3}(1 + z^{2})}}$$

Произведя ряд преобразований, введя обозначения

$$J2 = \int_{0}^{\infty} \frac{dz}{\sqrt{K(1+K^{2}z^{2})^{3}(1+z^{2})}} \times J1 = \int_{0}^{\infty} \frac{dz}{\sqrt{K(1+\frac{z^{2}}{K^{2}})^{3}(1+z^{2})}}$$

используя таблицы эллиптических интегралов, находим окончательное выражение [2]

$$a = J1 \bullet \sqrt[3]{\frac{4}{3} \frac{Pk}{\left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}\right) \sin^{2}\frac{\tau}{2}}}$$

$$b = J2 \bullet \sqrt[3]{\frac{4}{3} \frac{Pk}{\left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}\right) \cos^{2}\frac{\tau}{2}}}$$
(19)

при этом $\left(\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}\right)$, J1 и J2 зависят от геометрии поверхности и содержат в себе как результаты интегрирования. Результаты интегрирования сведены в табл. 1 [2].

Вводим значение квадрата половинного угла: $\sin^2 \frac{\tau}{2} = \frac{1 - \cos \tau}{2}, \cos^2 \frac{\tau}{2} = \frac{1 + \cos \tau}{2}$, введя обозначения; Согласно [2] $\cos \tau = \frac{-\frac{1}{R_{11}} + \frac{1}{R_{12}} - \frac{1}{R_{21}} + \frac{1}{R_{22}}}{\frac{1}{R_{11}} + \frac{1}{R_{12}} + \frac{1}{R_{21}} + \frac{1}{R_{22}}}$

тогда из (19) получаем следующие

Вводим значения геометрических параметров тел качения и колец подшипника:

• $R_{11} = R_{r1}$ и $R_{12} = R_{r2}$ - радиусы бочкообразного $p_0 = \frac{3}{2} \frac{1}{J1}$ ролика в подшипнике качения;

• $-R_s = R_{21} = R_{22}$ - радиус сферы во внешнем кольце подшипника.

• $R_{v1} = R_{21}$, $-R_{v2} = R_{22}$ - радиусы кривизны внутренней дорожки качения.

Следовательно, применительно к контакту ролика и внешнего кольца подшипника (20) можем записать в следующем виде

$$a = J1 \bullet \sqrt[3]{\frac{4}{3}} \frac{\frac{Pk}{2R_{r1}} + \frac{1}{2R_{r2}} - \frac{2}{R_s}}{\sqrt[3]{\frac{4}{3}} \frac{Pk}{\frac{1}{2R_{r1}} + \frac{3}{2R_{r2}} - \frac{2}{R_s}}}.$$
 (21)
b = J2 • $\sqrt[3]{\frac{4}{3}} \frac{\frac{Pk}{2R_{r1}} + \frac{3}{2R_{r2}} - \frac{2}{R_s}}{\sqrt[3]{\frac{1}{2R_{r1}} + \frac{3}{2R_{r2}} - \frac{2}{R_s}}}.$

Для определения геометрических параметров при контакте внутреннего кольца подшипника с роликом (20) запишется следующим образом,

$$a = J1 \bullet \sqrt[3]{\frac{4}{3}} \frac{\frac{Pk}{\left(\frac{3}{2R_{r1}} + \frac{1}{2R_{r2}} + \frac{3}{2R_{v1}} - \frac{1}{2R_{v2}}\right)}}{b = J2 \bullet \sqrt[3]{\frac{4}{3}} \frac{\frac{Pk}{\left(\frac{1}{2R_{r1}} + \frac{3}{2R_{r2}} + \frac{1}{2R_{v1}} - \frac{3}{2R_{v2}}\right)}}$$
(22)

Для вычисления δ используем первое выражение из (16), которое после подстановки значений эллиптической ординаты λ и некоторых преобразований имеет вид

$$\delta = \frac{3Pk}{4a} \int_{0}^{\infty} \frac{dz}{\left[\left(1 + z^2 \right) \left(1 + K^2 z^2 \right) \right]}$$
(21)

Или, введя обозначение

$$J = \int_{0}^{\infty} \frac{dz}{\left[\left(1+z^{2}\right)\left(1+K^{2}z^{2}\right)\right]},$$

можно записать перемещение в следующем виде:

$$\delta = \frac{3Pk}{4a} J \tag{22}$$

Подставив в выражение (2) выражение (21) мы получаем формулу для расчета давления р₀ в центре площадки контакта ролика и наружного кольца

$$p_{0} = \frac{3}{2} \frac{P}{J1 \cdot J2 \sqrt[3]{\frac{4}{3} \frac{Pk^{2}}{\left(\frac{3}{2R_{r1}} + \frac{1}{2R_{r2}} - \frac{2}{R_{s}}\right)\left(\frac{1}{2R_{r1}} + \frac{3}{2R_{r2}} - \frac{2}{R_{s}}\right)};(23)$$

при контакте внутреннего кольца с роликом, подставив в выражение (2) выражение (22) мы получаем

$$\frac{P}{\sqrt{\frac{4}{3}\left(\frac{3}{2R_{r1}}+\frac{1}{2R_{r2}}+\frac{3}{2R_{v1}}-\frac{1}{2R_{v2}}\right)\left(\frac{1}{2R_{r1}}+\frac{3}{2R_{r2}}+\frac{1}{2R_{v1}}-\frac{3}{2R_{v2}}\right)}}$$
(24)

Дальнейшие упрощения (23) приведут к потере точности расчета, хотя и значительно облегчат вычисление.

График распределения давления в центре площадки представлен на рис. 2.

Таблица 1

Результаты интегрирования эллиптического интеграла

$\cos \tau$	J1	J2	J	$\cos \tau$	J1	J2	J
0.0	0.785	0.785	1.571	0.7	0.531	2.885	4.55
0.1	0.758	0.927	1.794	0.8	0.468	3.874	5.842
0.2	0.729	1.094	2.049	0.85	0.428	4.692	6.889
0.3	0.698	1.293	2.346	0.9	0.378	6.032	8.573
0.4	0.663	1.541	2.706	0.95	0.307	8.825	12.01
0.5	0.625	1.854	3.15	0.97	0.265	11.42	11.451
0.6	0.582	2.278	3.734	0.99	0.19	19.46	24.69
				0.997	0.14	30,68	37.79
				1.00		~	_

Рис. 2. График распределения давления при контакте бочкообразного ролика с внешним сферическим кольцом

Рис. 3. График распределения давления при контакте бочкообразного ролика с внутренним кольцом

Выводы и перспективы дальнейших исследований

Получены графики распределения давления по всей поверхности контакта при сжатии бочкообразного ролика с внешним кольцом подшипника (рис. 2) и внутренним кольцом подшипника. Из графиков видно, что при контакте бочкообразного ролика и внутреннего кольца давление выше. Это связано с общими геометрическими параметрами эллипсов контакта, на которые приходится одинаковая нагрузка. Для расчета нагрузки использованы геометрические параметры подшипника № 73930 нагрузка сжатия Р= 700 Н.

Литература

- 1. Ковальский Б.С. Расчеты деталей на местное сжатие [Текст] / Б.С. Ко-вальский. Х.: «ХВКИУ», 1967. 220с.
- Пинегин С.В. Контактная прочность и сопротивление качению [Текст] / С.В. Пинегин. М.: «Машиностроение», 1969. – 244с.
- Безельман Р.Д. «Подшипники качения» Справочник. [Текст] / Б.В. Цып-кин, Л.Я.Перель. М.: «Машиностроение», 1967. – 575с.