В статті проведено порівняння експериментальних даних напружень, які виникають в обичайці барабана при навиванні на нього каната, і напружень, які отримані на розрахунковій моделі, побудованій в програмі SOLID WORKS

Ключові слова: барабан, канат, напруження, обичайка, датчик, програма, деформація, стиск

В статье проведено сравнение экспериментальных данных напряжений, возникающих в обечайке барабана при навивке на него каната, и напряжений, полученных на расчетной модели, построенной в программе SOLID WORKS

Ключевые слова: барабан, канат, напряжения, обечайка, датчик, программа, деформация, сжатие

The experimental data of the tensions, appearing on the drum's covering while the rope had being waved on it, and the tensions achieved from a countable model built in a program SOLID WORKS, were compared in this article

Key words: drum, rope, tensions, coverage, radiator, program, deformation, compression

УДК 622.073

СРАВНЕНИЕ ПОКАЗАНИЙ, ПОЛУЧЕННЫХ В ХОДЕ ЭКСПЕРИМЕНТА И МОДЕЛИРОВАНИЯ

Н.Н. Фидровская

Кандидат кандидат технических наук, доцент Кафедра металлорежущего оборудования и технических систем*

И.С. Варченко

Аспирант*

Контактный тел.: 066-451-69-74

*Украинская инженерно-педагогическая академия ул. Университетская, 16, г. Харьков, Украина, 61003

1. Введение

Проведение эксперимента, как правило, служит для подтверждения полученных расчетных зависимостей, корректировки влияния отдельных факторов, процента наличия возможных ошибок. Наличие современных

расчетных программ и сверхточной электронной техники дает возможность проведения точных исследований и разработки уточненных методов расчета.

2. Сравнительный анализ

Нами была проведена серия экспериментов с канатным барабаном, в обечайке которого определялись напряжения, которые возникают под действием канатной нагрузки. Схема

эксперимента и результаты первой серии опытов были описаны нами в статье [1].

Здесь мы приводим данные второй серии опытов и проводим сравнение с расчетными напряжениями, полученными на расчетной модели, построенной в программе SOLID WORKS.

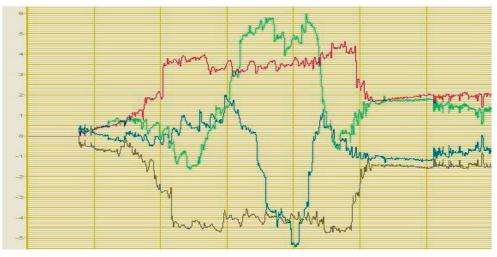


Рис. 1. Напряжения в цилиндрической оболочке барабана, полученные экспериментальным путем с использованием АЦП ZetLab 210

Сигнал 1, 3, 5, 7 (фиксация напряжений на цилиндрической поверхности канатного барабана в месте крепления тензорезисторов № 1,2,3,4,7,8,9,10)

Таблица 1
Напряженность цилиндрической оболочки канатного барабана

Точка графика	Сигнал 1 (мВ)	Сигнал 3 (мВ)	Сигнал 5 (мВ)	Сигнал 7 (мВ)		
точка отчета	0,5	0,5	0,5	-0,5		
приближение к точке*	2	1,7	-1,5	-2		
нагрузка на точке	4	4,5	6	5,5		
стабилизация подъема	4,6	4,8	5	5,2		
начало спуска	2,5	3	5,5	4		
отход от точки	1,8	1,5	-0,7	-1,8		
нормализация после спуска	2	1,5	1,5	1		
* точка — тело датчика						

Для сигналов 1, 3 (датчики 1, 2, 3, 4) (продольно-поперечное направление)

$$\mathbf{e}_{0} = \left(\frac{(1+v)\mathbf{E}_{0}}{4}\right)\mathbf{k}_{\pi} \cdot \mathbf{\varepsilon}_{0} \tag{1}$$

из данной формулы выразим деформацию $\epsilon_{\scriptscriptstyle 0}$

для начальной точки

$$\varepsilon_0 = \frac{4e_0}{(1+\upsilon)E_0 \cdot k_\pi} = \frac{4 \cdot 0.5 \cdot 10^{-3}}{(1+0.3)1.5 \cdot 2} = 0.00051 \text{mm} \quad (2)$$

где:

е₀ — напряжение в цилиндрической оболочки барабана, полученное экспериментальным путем в [мВ],

 υ – коэффициент Пуассона, в данном случае принимается υ = 0,3,

 $E_{\scriptscriptstyle 0}\,$ – напряжение моста $E_{\scriptscriptstyle 0}$ =1,5 B,

 ${\bf k}_{_{\rm J}}$ — коэффициент тензо-чувствительности ${\bf k}_{_{\rm J}}$ =2. Найдем абсолютную деформацию:

$$\varepsilon_{a} = \frac{dl}{l} = \frac{\varepsilon_{0}}{l_{\pi}} = \frac{0,00051}{15} = 0,000034 \text{mm}$$
 (3)

здесь $l_{_{\rm J}}$ – длина тела датчика $l_{_{\rm J}}$ =15 мм тогда напряжение в точке (тело датчика)

$$\sigma = E \cdot \varepsilon_0 = 2,05 \cdot 10^5 \cdot 0,000034 = 7 \text{H} / \text{mm}^2$$
 (4)

где E — модуль юнга (упругости) E = $2.05 \cdot 10^5$ H/мм².

Используя программу расчетов Mathcad, определим остальные деформации и напряжения в сигналах 1,3 (продольно-поперечное напряжение) - табл. 2.

Для сигналов 5, 7 (датчики 7, 8, 9, 10) (продольное направление)

Местные деформации цилиндрической оболочки барабана (точка отсчета)

Таблица 3 Деформации и напряжения сигналах 5, 7

Точка	Сигнал 5			Сигнал 7		
графика	Деформ. мест. (мм)	деформ. абсол. (мм)	напряж. (Н/мм²)	деформ. мест. (мм)	деформ. абсол. (мм)	напряж. (Н/мм²)
точка отчета	0,00033	0,000022	4,5	-0,00033	-0,00002	-4,5
приближение к точке	-0,001	-0,000066	-13,5	-0,0013	-0,00008	-18,2
нагрузка на точке	0,004	0,00026	54,6	0,0036	0,00024	50,1
стабилизация подъема	0,0033	0,00022	45,5	0,0034	0,00023	47,3
начало спуска	0,0036	0,00024	50	0,0026	0,00017	36,4
отход от точки	-0,00046	-0,000031	-6,37	-0,0012	-0,00008	-16,4
нормали- зация спуска	0,001	0,00006	13,6	0,00066	0,00004	9,1

Таблица 2

Деформации и напряжения сигналах 1,3

Hede by resident a resident service se						
Точка графика	Сигнал 1			Сигнал 3		
	Деформ. мест. (мм)	деформ. абсол. (мм)	напряж. (H/мм²)	деформ. мест. (мм)	деформ. абсол. (мм)	Напряж. (Н/мм²)
точка отчета	0,00051	0,00003	7	0,00051	0,00003	7
приближение к точке*	0,002	0,00013	27,3	0,0017	0,00011	23,2
нагрузка на точке	0,004	0,00026	54,6	0,0046	0,0003	62,8
стабилизация подъема	0,0047	0,00031	64,2	0,0049	0,00032	67
начало спуска	0,0025	0,00016	34,1	0,003	0,0002	41
отход от точки	0,0018	0,00012	24,6	0,0015	0,0001	20,5
нормализация спуска	0,002	0,00013	27,3	0,0015	0,0001	20,5
* точка – тело датчика						

 $\varepsilon_0 = \frac{25}{E_0 \cdot k_s} = \frac{2 \cdot 0.5 \cdot 10^{-3}}{1.5 \cdot 2} = 0.00033 \text{MM}$

абсолютная деформация

$$\varepsilon_{a} = \frac{dl}{l} = \frac{\varepsilon_{0}}{l_{\pi}} = \frac{0,00033}{15} = 0,000022$$
mm

напряжение в месте датчика

$$\delta = E \cdot \varepsilon = 2,05 \cdot 10^5 \cdot 0,000022 = 4,5 \text{H} / \text{mm}^2$$

Используя программу расчетов Mathcad определим остальные деформации и напряжения (график 1).

Показания в Solid works

Построенная модель в Solid works имеет вид рис. 2, где общие размеры канатного барабана идентичны размерам используемого барабана в экспериментальной установке.

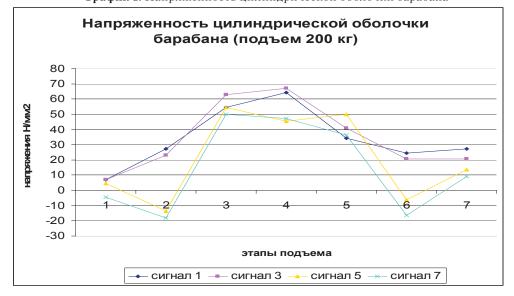


График 1. Напряженность цилиндрической оболочки барабана

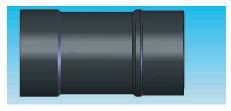


Рис. 2. Общий вид модели в Solid works

При нагружении модели распределенной силой в 1962 Н (200 кг), возникают следующие напряжения, показанные на рис. 3. Данные напряжения численно совпадают с напряжениями, полученными экспериментальным путем.

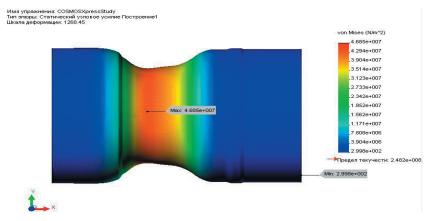


Рис. 3. деформация цилиндрической оболочки барабана в Solid works

3. Вывод

Максимальное напряжение в цилиндрической оболочке канатного барабана, виртуальной модели в Solid Works составляет 46,8 $\rm\,H/mm^2$. В свою очередь максимальное напряжение в экспериментальной установке составляет 67 $\rm\,H/mm^2$, если учесть тот факт что начальная точка отчета составляет 7 $\rm\,H/mm^2$, а не 0, тогда максимальное напряжение будет составлять 60 $\rm\,H/mm^2$. Расхождение 21%.

Литература

 Исследование напряжений в стене канатного барабана экспериментальным методом / Фидровская Н. Н., Варченко И. С. // Восточно – Европейский журнал передовых технологий.-2010.-№5.- с. 60 - 63.