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Ananimuuno 0ocnioceni ycmaneni pejcumu pyxy cuc-
memu, cknadenoi 3i 36anancoeainozo pomopa Ha i3ompon-
HUX NPYHCHO-8’A3KUX onopax, i eanmancy (xKyani, poauxa,
MasmHuxa), 6CmMan081eH020 YcepeouHni pomopa 3 Modic-
aueicmio gionocrozo pyxy. Ilpu uyvomy masmuux 6invHoO
Hacaodycenull Ha 6an pomopa, a KyJas 4u poauK Komsimo-
ca 0e3 Kxo63anna no Kinvuesil 0opincui 3 uemmpom Ha
no0oeicHill oci pomopa.

Onucana isuxo-mamemamuuna mooenv cucmemu.
3anucani Jugepenyianrvni piGHAHHA PYXY cCUCmeMU W000
cucmemu Koopounam, w0 06epmacmvcsa 3 NOCMiliHOI0
weuoxicmio obepmanns y 6e3poIMipHOMY 6U2NA0I.

3Haiideno 6ci ycmaneni pescumu pyxy cucmemu, 6 AKUX
eanmanic 06epmaemvcs 3 NOCMiiiHO0 KYymoeoto weuoxic-
mio. B cucmemi xoopounam, wo cunxponno odepmaemocs
3 sanmasicem, Ui pyxu cmauioHapHi.

IIposedeni meopemuuni 00caidHceHHA NOKA3YIOMD, WO
HaA YCMaieHux peicumax pyxy:

— 3a 6idcymuicmio cuil Onopy 6 CucmeMi 6aHMANC CUH-
XPOHHO 00epmaecmovcsi 3 pPOMopom;

— 3a HAAGHICMIO CUNL ONOPY 6 CUCMEMI 6AHMAC 610-
cmae 6i0 pomopa.

Pescumu 3acmpsieanns eammascy € oononapamem-
puunumu cim’amu ycmanenux pyxie. Koscen pesxcum 3a-
CMPsI2AHHA XAPAKMEPUIYEMbCS 610N06I0HON0 UACMOMOI0
3acmpseanns.

B 3anexcnocmi 6i0 napamempie cucmemu Moxicymo
icnyeamu o0Ha wu MpPu MONCAUBL WEUOKOCMI 3acmpsi-
eanns eammasncy. Sxwo na 0yov-axiii weudxocmi obep-
mannsa pomopa ichye minvbku 00HA KYMO8a weuoKicmo
3acmpsieanns 6anmaicy, mo 6i0noGiIOHUI pPeHcuM pyxy
(oononapamempuuna cim’sa) 2106anbHO ACUMNMOMUUHO
cmitikui. Axwo xinvkicmo weuoxocmen 3acmpsazanis 3mi-
HI0EMBCA 8 3aneHCHOCMI 810 KYmOoBoi weudxocmi obepman-
Hs pomopa, mo acumMnmomuuHo CmilKuMu €:

— €0unull iCHYI0MUIL pedcuM 3acmpszanns (2100a16HO
aAcUMnImMOMuUUHO CMIUKUL, KOJU THUMUX HEMAE) ;

— pejicumu 3acCmpazania 3 HalMenuoro i HaudiILuL010
weuoxocmamu.

Pesicum 3acmpsaeannsn eanmasicy 3 HalMeHwor0 Kymo-
6010 weuokicmio (61u3vka 00 pe3oHancroi) MoNCHA 6UKO-
pucmosyeamu 0ns 36y0nceHHs Pe3OHAHCHUX KOAUBAHL
¢ eiopauitinux mawunax. Haiidinvwa wacmoma 3acmps-
2anns eanmaoicy Oau3via 00 weudKocmi 0bepmanis pomo-
pa. Iei pescum mosicna suxopucmogysamu s 30yoicen-
HSl HePe30HAHCHUX KOUBAHD 6 BIOPAUIUIHUX MAMUNAX

Knouo6i caosa: nacusnuii asmobanancup, edexm
Sommepdenvoa, inepuiiinuil 6i6po30yoHuUK, pe3oHanCHA
siopomawmuna, 6ipyprayia pyxie
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1. Introduction

In [1], it is proposed to use passive auto-balancers —
pendulum-, ball-, roller-type — as vibration exciters. It is
assumed that the new technique is applicable for one- and
multi-mass vibration machines at different kinetics of vi-
bratory platform motion. In this regard, a relevant problem
is the substantiation of feasibility of the new technique for
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vibration excitation and the development of a theory of new
vibration machines.

The use of a known device for the new purpose becomes
possible due to the fact that a rotary machine with the speci-
fied auto-balancers can execute various steady motion modes
that correspond to:

— auto-balancing or a synchronous rotation of loads to-
gether with a rotor [2];



— loads’ jamming at the resonance rotational speed of the
rotor (caused by the Sommerfeld effect) [3—-12];

— parametric and other oscillations of loads [4, 13].

Therefore, the proper choice of system parameters can
provide for the excitation of resonance oscillations.

To create purely resonant vibration machines, it is neces-
sary that the rotor should be balanced and the loads should
be stuck at the resonance rotor speed. The simplest resonance
vibration exciter is a single load (a pendulum, a ball, a rol-
ler), mounted on the balanced rotor with a possibility for
the center of mass of a load to move in a circle centered on
the longitudinal axis of the rotor. It is an actual task, within
the framework of a flat model of such a vibration exciter, to
analytically find all the steady motion modes and explore
their stability. This is important both for constructing an
analytical theory of new resonance vibration machines and
for the development of effective methods for studying the
dynamics of the specified machines for cases of several loads,
one- and multi-mass vibration machines, etc.

2. Literature review and problem statement

The most complete information on the origin, disappea-
rance, conditions of existence and resistance of different mo-
tion modes of a dynamic system is provided by a bifurcation
theory. In rotary machines, a bifurcation parameter that is
typically adopted is the rotor’s rotation speed.

As of today, the most analytical results were obtained in
the framework of a flat model of the rotor balanced on isotro-
pic elastic-viscous supports, which carries an auto-balancer
with the same loads. Thus, all the stationary modes, under
which loads rotate synchronously to the rotor [2], or lag
behind the rotor [3], have been defined; the stability of these
regimes has been partially investigated.

It should be noted that the most difficult in terms of
analytical studies is to investigate the stability of steady
motions, in particular, the families of steady motions. Dif-
ficulties are due to a large number of degrees of freedom of
the system, a significant nonlinearity of the problem, known
problems related to the approximate methods of a small pa-
rameter, computational methods and experiments, etc.

Consider the disadvantages and advantages of some
methods for studying jam modes.

Paper [4] gives an analytical statement of the problem on
building a nonlinear bifurcation theory for the considered
system. However, the bifurcation analysis is carried out by
numerical methods, for the case of two loads. As a result, at
the system’s specific parameters, it was revealed that, along
with the stationary motions, the system has limit cycles and
chaotic motions. The advantage of numerical methods for
a bifurcation analysis is the possibility to detect all possible
motion modes of the system and assess their stability. In this
case, the load jam frequencies are determined accurately. The
disadvantage is a particular character of the results obtained
(for specific numerical values for system parameters), signi-
ficant difficulties in applying the method with an increase in
the number of loads, etc.

Study [5] experimentally established the modes of pen-
dulum jams in the system rotor — a pendulum auto-balancer.
Under these modes, pendulums are bound, they cannot
accelerate and get stuck at one of the resonance speeds of
rotor rotation. Work [6] investigated experimentally a phe-
nomenon of jamming the pendulum freely mounted onto the

shaft of an electric motor. It was found that the pendulum is
stuck at one of the natural frequencies of system oscillations.
The advantage of field experiments is that these experiments
make it possible to identify persistent steady motions (im-
plemented in practice). Disadvantages are that if the system
has several simultaneously stable steady motions, the motion
that the system would eventually execute significantly de-
pends on the starting conditions. Therefore, based on the
results from experiments, it is difficult to assess the stability
regions of different motion modes of the system. In addition,
the results obtained are of particular character (for a specific
machine). Field experiments are labor-intensive and require
large resources, they do not make it possible to find at great
accuracy the frequencies of load jams, nor the relative posi-
tions of loads with respect to the rotor, etc.

The load jam modes were examined by modelling the
system’s dynamics at a PC:

— for a rotor on isotropic supports, which executes spa-
tial motion and is balanced by one or two two-pendulum
auto-balancers [7];

—for a rotor on anisotropic supports, which executes
a flat motion and is statically balanced by a two-ball auto-
balancer [8];

— for a rotor mounted on isotropic supports at a platform
that moves steadily in a straight line, while balancing the
rotor with a two-ball auto-balancer [9].

Simulating the machine’s dynamics at a PC is the least
laborious method of research, which makes it possible to
identify steady motion modes, to more accurately find the
speeds of load jams. However, the results obtained are of
particular character. It is difficult to determine the stability
limits of various simultaneously stable modes of system mo-
tion by simulation, because the motion that would eventually
be executed depends on the initial conditions.

The most general results are provided by analytical
research methods. The loads jam modes were analytically
examined by approximate methods for:

—a rotor on isotropic supports, which executes a spa-
tial motion and is statically balanced by a two-ball auto-
balancer, using the theory of synchronization of mechanical
systems [10];

—a rotor on isotropic supports, which executes a flat
motion and is balanced by a two-ball auto-balancer, using the
modified incremental harmonic balance method [11];

— arotor on isotropic supports that executes a flat motion
and is balanced by a two-ball auto-balancer, using a Limit-
Cycle Analysis [12].

It was established in [10—12] that loads are stuck at one
of the resonance speeds of rotor rotation; the authors found
the approximate boundaries for the jam modes’ stability
regions. The advantages of analytical approximate methods
include the generality of results obtained, a possibility to
derive analytical results. The disadvantages of approximate
methods include the asymptomatic character of solutions,
the complexity of using methods for the case of many loads.
In addition, the methods do not produce a precise statement
of the problem on determining the frequencies and modes
of load jams. Therefore, they were employed to analytically
explore only those jamming modes under which loads are
combined (whose existence was known).

In [3], the load jam modes were analytically examined in
a precise statement of the problem for a balanced rotor on iso-
tropic supports, which executes a flat motion and is balanced
by an auto-balancer with many identical loads. The authors



applied the elements of a bifurcation analysis by finding all
possible jamming modes, determining the conditions of their
existence, origin, and disappearance.

The research revealed that:

— there are other jamming modes within the system, un-
der which the loads are not combined;

—each jam mode is characterized by a certain confi-
guration of loads relative to the rotor, which changes with
altering a rotor speed,;

—each load configuration is matched with a single or
three possible frequencies of load jams;

— for the case of three possible frequencies of load jams,
two are close to the resonance speed, and one — to the rota-
tional speed of the rotor.

Thus, only the precise statement of the problem, as well
as its exact solution, make it possible to identify and theo-
retically investigate all possible jamming modes, to find
the bifurcation values for a rotor speed in the transition of
which the jamming modes acquire or lose stability, emerge,
or disappear.

It should be noted that in the system examined in [3]
the authors had discovered and investigated, in the precise
statement, the steady motions at which loads synchronously
rotate with the rotor [2]. Because of the existence of a large
number of steady motions, it is difficult to investigate their
stability and build a complete bifurcation diagram. On the
other hand, for the case of a single load, one obtains a full-
fledged vibration exciter of the simplest design. At the same
time, the problem on exploring the stability of motions is
greatly simplified. Thus, there is an opportunity both for
solving the problem and the development of approaches and
procedures, which are applicable for the case of many loads.

3. The aim and objectives of the study

The aim of this study is to find and estimate the stability of
all steady motion modes of the system composed of a rotor on
the isotropic elastic and viscous supports and a load (a pendu-
lum, a ball, or a roller), installed in the rotor with a possibility
of relative motion. That would make it possible to identify the
ways to use such loads in vibration machines in order to excite
resonance oscillations, as well as produce research methods
and approaches, applicable for the case of many loads.

To accomplish the aim, the following tasks have been set:

— to find all steady motion modes of the specified system,
conditions for their origin, existence, and disappearance;

— to study analytically the stability of steady motion modes;

—to complement the results from an analytical study
with a computational experiment.

4. Methods for finding all possible stationary modes
of system motion

To construct a mechanical-mathematical model of the
system rotor — load, we use the results from work [3], the
elements of classical mechanics [14], the perturbation theo-
ry [15] and the bifurcation of motions [16].

Differential equations of the system motion are recorded
with respect to the coordinate system, rotating at a constant
angular velocity. In such a coordinate system:

— the motion of a mechanical system is described by a sys-
tem of regular nonlinear autonomous differential equations;

— all the steady modes are stationary motions, provided
that the rotation speed of the movable coordinate system
coincides with the angular speed of load rotation.

A search for all possible stationary modes of system
motion is reduced to solving a nonlinear system of algebraic
equations. In this case, all possible speeds of load rotation
(angular velocities of a moving coordinate system’s rotation)
are to be found at the same time, as well as the position of
aload with respect to the rotating coordinate system, and the
corresponding deviation of the rotor.

To solve the system of nonlinear algebraic equations, we
shall apply a method of decomposition of the roots of equa-
tions by the degrees of a small parameter [16]. In this case,
different ratios of a smallness between the system parameters
shall be considered.

A bifurcation parameter to be accepted is the angular
velocity of rotor rotation. The load jam modes are to be found
depending on the angular velocity of rotor rotation. The oc-
currence and disappearance of different jamming modes shall
be studied in terms of a bifurcation theory of motions [16].

Stationary motion stability shall be studied based on the
first Lyapunov method [16].

The results obtained from a theoretical study will be sup-
plemented with and verified by a computational experiment.

5. Load jamming modes in an auto-balancer —
a flat model of the rotor on isotropic supports

5. 1. Mechanical-mathematical model of the system

5. 1. 1. Description of a mechanical-mathematical model
of the system

A flat system model was adopted to investigate the sys-
tem’s dynamics [3]. Within its framework, a rotor is a sym-
metrical flat disk of mass M, mounted onto a completely rigid
shaft, perpendicular to its plane (Fig. 1). The rotor is arranged
vertically, it moves flat parallel in the horizontal plane and
rotates at a constant angular velocity ®. For the case of a ball
(a roller) (Fig. 1,b), the ball (the roller) rolls without slip
along a circular path. The ball’s mass (the roller) is m, its ra-
dius is R, the distance from the axis of the shaft to the center
of the ball (roller) is /. For the case of a pendulum (Fig. 1, ¢),
the rotor shaft hosts a pendulum whose mass is m, physical
length — /, and the main central axial momentum of inertia — /..

At a stationary rotor, the shaft coincides with the axis of
rotation. In the motion process, the shaft is point O, which
deviates from the axis of rotation, point K, and it is exposed
to a restoring force, and the force of viscous resistance of
a medium. Coefficients of stiffness and damping in the shaft
supports are ¢, b. To describe the system motion, we use the
following systems of axes:

— OZH - the right-hand system of fixed rectangular axes;

— OXY — the right-hand system of moving rectangular
axes, rotating around the rotation axis (point K) at constant
angular velocity Q;

— OXoYp — the right-hand system of moving rectangular
axes, originating from the center of the disc and parallel to
the system of axes OXY.

The rotation angle of the system of OXY axes around
point K equals Qt, where ¢ is time. The rotor rotation angle
is t. Position of a load is determined, with respect to the
system of OXpYo axes, by angle o. When a ball (a rol-
ler) moves along a path, it is exposed to the force of vis-
cous resistance P/(0—-Q—a’), where B is the coefficient of



viscous resistance forces, and [ (m—Q—(x’) is the motion
speed of a ball’s center (a roller) along the path relative to
the rotor. When a pendulum rotates around the shaft, it
is exposed to the momentum of force of viscous resistance
Bl*(w—Q—a’), where B is the coefficient of viscous resis-
tance forces, (0 —Q—0’) is the angular velocity of pendulum
rotation around the shaft (the rotor) and a bar behind the
magnitude denotes a time derivative.

tH=Y=7,

c

Fig. 1. A flat model of the system:
a — rotor on isotropic elastic and viscous supports;
b — kinematics of the motion of a rotor and a ball or a roller;
¢ — kinematics of the pendulum motion

For the examined system:

M,=M+m, o,=:c/M,. (1)

where My is the system’s mass, wy is the resonance rotor
speed.

3. 1. 2. Differential equations of system motion in the
dimensionless form, equations of stationary motions

Differential equations of system motion in the dimen-
sionless form are:

L =0+2vi—Vo+b(o+vu)+o-

~ e[ ~Gicosa+ (@+v) sina] =0, 2)

where dimensionless time, variables, and parameters are
introduced:

T=Q1, u:l, v:l, nzg, B= B
«/ K/ ®, Kma,
v=0Q/o, b=bf(o,M,), e=m/(xM,), (3)

a point above the magnitude indicates the dimensionless time
derivative for a ball, a roller, or a pendulum, respectively:

c=1 K:% K=1+IC/(mlz). (4)

Note that for the mathematical pendulum I, =0, x=1.

At stationary steady motions, the dimensionless genera-
lized coordinates are stable: @&, o= const. By substituting
it in (2), we obtain:

70

B(v—n)+V*(iisiné—dcosd)=0,

L(f) ft(l —VQ)— bvd —ev* cosad,
L) =(1-v*)3+bvii— v’ sin . (5)

— a system of algebraic equations to derive stationary
motions.

5. 2. Finding the system’s stationary motions at which
a load rotates synchronously with the rotor

At a simultaneous rotation of the load with the rotor v=n
and equations (5) take the form:

0 = p2 (ﬁ sin G — 0 cos d) =0,

LS’) = ﬁ(1—n2)—bn5—en2 cos @,

1Y (1—rzz)z~)+bm~t—£n2 sin Q. (6)

We derive from the second and third equations (6):

) (1—n2)cosd+bnsind

-
T R Y b

~ 2(1—712)sin6c—bncosdc
ozen =1’ +bn* @

Substitute it in the first equation in (6) and obtain:

ebn’

T 5 15 5 — O.
(n* =1 +b*n’

(8)



It follows from (8) that in the presence of resistance for-
ces, the supports do not execute stationary motions at which
a load rotates synchronously with the rotor.

In the absence of resistance forces in supports, b=0, and
equation (8) is performed automatically, while equations (7)
take the form:

2 ~ 2~

. em"cosO .  en sind

U=-—-7 , 0=——— . )
n -1 n -1

Equations (9) determine a one-parameter family of sta-
tionary motions, where angle & is the parameter. It is evi-
dent that at the pre-resonance speeds of rotor rotation the
center of the rotor’s mass deviates in the direction of the
load’s center of mass, and at the resonance speeds — in the
opposite direction.

5. 3. Finding the modes of load jamming

5. 3. 1. General sequence of problem solving

Introduce angle O between vector KO (the rotor’s dis-
placement vector) and the X axis. Then:

cosO=ii/p, sind=3a/p, p=vNit*+7*, (10)

And the equations of steady motions (5) are transformed
to the form:

0= B(v—n)-Vv*psing=0,

il + L) =(1-v*)p* —epv’ cos§=0,

al" — 51" = bvp® +epv?sin =0, (1
where
§=b-a (12)

is the derived system of three nonlinear algebraic equations
relative to three unknowns p, v, @.

Solve the system of equations (12). We represent it in
the form:

. 1-v*)
p=—""psin, 6cos¢=( z)ﬁi
b eV

f)sin(p:\%(v—n). 13)
We find from the third and fourth equations:
5=V (v n)=Bnov), (14)

b v vb
It follows from (14) that a load can only lag behind the
rotor (v<n). Then it follows from the first equation in (13)
that sin¢<0, therefore ¢e(-=,0).
By using the first and second equations in (13), introduce
the angle:

( sin @ J ( bv )
Y =arctan| —— [=arctan| — s
cos® v -1

ye(-n/2,m/2).

Then, find ¢ e(-m,0):

~:{“{7Y$0; (16)
y—-m, v>0.
Apply an identity:
. , B , (1=v?)
p* = (psind)’ +(pcos)’ =%(V—n)z +( 52\/‘) pt.

Substitute this equation with p* from (14), we obtain:

U-v) e oy

2
%(n—v)—v—(v—n)+ JENTINCTY

This equation can be satisfied in the following two cases:

1) n—v=0 —aload rotates synchronously to the rotor;
2

1-v

2) E=£%(v—n)+u£2(n—v) — a load lags behind
b v v'oob

the rotor.

Above, it was found that in the presence of damping in
the supports, the motion modes under which a load rotates
synchronously to the rotor do not exist. We then find the
load jamming modes.

The second case is provided from the following equation:

P(v)=yv’ —(n—v)[(l—vz)2 +b2V2] =

=a,V’ +aVv'+a,v’ +a,v +av+a; =0, 17)
where

x=¢b/B,

a,=1+y, a,=-n, a,=—(2-b"),

a,=n(2-1"), a,=1, a;=-n. (18)

We find from (17) frequencies v,, at which a load can be
jammed. Then, from equation (14), we derive:

p=eB(n—v)/(vb). (19)
Then, from (15), (16), we find:
< .
~:{“{,Y_0, yzarctan( fw ) (20)
y-m,y>0, vi—1
We derive from (12):
Ga=03-9. @1
We find from (10):
ii=pcosd, d=psind. (22)

Quantities (19) to (22) are calculated for the specific
frequency of a load jam and at a specific (any) value of pa-
rameter 9. The derived dimensionless coordinates and the



angle can be used as the initial conditions in a computational
experiment. These initial conditions (a motion starts at
a certain jam mode) will make it possible to investigate the
stability of a jam mode in a small (by Lyapunov) — at small
deviations of the disturbed motion from the jam mode whose
stability is examined.

5. 3. 2. Investigation of the number and conditions of
the existence of load jam modes

We consider a dimensionless angular velocity of the ro-
tor n as a bifurcation parameter. Consider changing » from 0
to +eo. A change in n would alter the roots of equation (17).
We shall search for valid roots and characteristic angular
velocities of the rotor rotation (bifurcation points), at which
various jamming modes emerge or disappear.

One can see from (17) that Vv<0 P(v)<0,¥v=nP(v)>0.
Therefore, all valid roots of a polynomial are in the interval
(0, ), and in this interval there is always a single root.

It follows from a Descartes theorem (a Descartes sign rule)
that polynomial (17) may possess:

— Yb<+2 — 1 or 3 valid roots;

— Vb>+[2 — 1, 3, or 5 valid roots.

Since finding the roots from a polynomial of the fifth
degree is difficult, then we solve the problem parametrically.
A parameter to accept is the frequency of a load jam. Then
a solution to equation (17) in the parametric form takes
the form:

4 2V 22
va+(1 v)+bv

(1 —V? )2 +b*?

n(v)= , ve(0,+00). (23)

Fig. 2 shows, in the plane (#, v), the constructed graph
of function n(v) at different ratio of smallness between para-
meters x and b.

v / o

0 1 2 3 4 5 6 7 8 9 10 11 n(v)

Fig. 2. Dependence of the number and conditions
of the existence of load jamming frequencies on ratios of
a smallness between parameters x and b:
— == x~1, b1, ——— b~1 (Vy); <1, b1

One can see from Fig. 2 that at y~1, b<<1 or x<<1, b<<1
in the system, depending on the rotor speed, there are a single
or three possible load jamming frequencies. At b~1, the sys-
tem has the only possible frequency of a load jam, which is
close to the rotor speed.

Next, we shall consider the case of small forces of viscous
resistance in the supports. We shall introduce three charac-
teristic rotor speeds for this case. Their transition changes
the number or properties of possible frequencies of a load jam.
In this case, 1<n, < n, <n, and at the rotor speeds:

— lower than n, (0<n<mn,), there is asingle frequency of
load jam vy, with 0<v<{;

— that exceed n,, but are less than n, (n,<n<n,),
there are three frequencies of load jam vy 33, such that
O<vi<1I<vy<vz<nm;

—that exceed n,, but are less than n, (n,<n<n,),
there are three frequencies of load jam vy 53, such that
1<v<vy<Kv3<n;

— that exceed n, (n>n,), there is a single frequency of
load jamns, such that 1<<v3<n.

Fig. 3 shows the numbering of jam frequencies, and cha-
racteristic speeds.

v M ] v3(n,
E
10 125 :
v3(n) )
A v(n)
o
5 " I v
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() 0y
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0 5 10 n 075 1 125 n
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Fig. 3. Standard diagrams of dependences of possible
angular velocities of a load jam on a rotor speed [3]:
a — general view; b — in the vicinity of characteristic angular
velocity nq; ¢ — in the vicinity of characteristic angular
velocities ny, n3

The characteristic rotor speeds ny, n3 are the bifurcation
points. At point 7n,, jam modes v, and vs emerge, and at
point 73 — jam modes ny and ny disappear. According to the
theory of bifurcation of motions, different jamming modes
can acquire or lose stability only when passing through the
points of bifurcation of motions [16].

5. 3. 3. Finding characteristic rotor speeds and critical
frequencies of load jamming

Characteristic speed 75 shall be found from the condition
that root v=1 appears in polynomial (17):

P(1)=yx-(n-1)b*=0.
Hence, we find:

nz—l+1=£+1.

== 24

In critical cases, frequencies merge and thus become
multiples. Therefore, polynomial (17) and its derivative
for v produce multiple roots:

dP(v)

dv

=5a,v" +4a,v* +3a,v’* +2a,v+a, =0.

Hence, we find a rotor speed 7 as a function of the load
jam frequency v:



5(1+y)v' =3v*(2-0")+1

n(v)= (25)

av[2(v* - 1)+5?]
Substitute (25) in (17). Upon transforms, we obtain:

(L+x)Vv* —(2—[)2)(2+3x)v“+[6+5)(—b2 (4—[)2)]v4

P(v)=

—2(2-0")v* +1

3. _ z/s (X 2( z/s) )_0.

Hence, we derive the following two valid solutions:

V(2/ -0

av[2(1-v?)-5?]

Hence, we derive the following equation to find the criti-
cal (multiple) frequencies of a load jam:

F(v)=(1+x)v*® —(2—[)2)(2+3x)vG +

+[6+5x -7 (4-07) v —2(2-5*)v* +1=0. (26)

A procedure for finding critical frequencies of load jam-
ming and corresponding characteristic rotor speeds:

1) find the root of a polynomial (26) in the form of a trun-
cated series by the degrees of a small parameter;

2) the found expansion is substituted in (25), and the
resulting expression is expanded by the degrees of a small pa-
rameter; the result is the corresponding characteristic speed
in the form of a truncated series;

3) check whether the accuracy was lost when using, in-
stead of the root of polynomial (26), a truncated series.

One can see from (26) see that 7(v) is an odd function.
One can see from (25) that if v is the root of equation (26),
then —v is the root of this equation. Therefore, hereafter only
positive critical frequencies of load jamming will be searched.
In this case, a rotor speed will be positive.

Zero approximation. At x=0, b=0, we obtain the follow-
ing equation for finding the critical frequencies of load jam-
ming in a zero approximation:

() =(v-1)"(v+1)".
Thus, in a zero approximation:
vﬂ =1, v@s =-1. (27)

Find characteristic speeds in a zero approximation.
From (25), at =0, b=0, we derive the following equation
for finding characteristic speeds in a zero approximation:

2 —1)(5v* -1 5v* -1
()= 4V()V(2f1) ). = Lo e

Subsequent approximations. To determine the ratios of
a smallness between the parameters, we find:

F(1)=b"(3x+b").

In order to account for both b and y at expansions, assume:

b1, x=Xb" (x~b*, X ~1). (29)
Find critical frequencies of load jam in the form:
~ 1+ V2, (30)

Substitute (30) in (26). Substitute the resulting ex-
pression in (29). We collect the coefficients at the lowest
degree b we obtain:

(31)

12

Note that a greater quantity corresponds to the emergence
of regimes v, and vs, and a lower one — the disappearance of re-
gimes vq and vo. This is accounted for in the new lower indexes.

By following such an algorithm, we find a first multiple
frequency of jamming with an accuracy to the magnitude of
a second order smallness, including;

v, = n(1—xn4);

v(zf;z1+v

» i/; v (b*-2¢) [2 b*(b*+7x)
B P i/;_ 2y

Substitute (32) in (25). Substitute the resulting expres-
sion in (29). The obtained is expanded into a series by de-
grees b, we obtain the appropriate characteristic rotor speed:

2 -
SIS SRAUSE

» (53X 14X 1)
- 48X

(x )2 53 7., b
1 2Dy L2 (33
i */_+ \/;+48X 21" Tagy Y

A first characteristic rotor speed is determined with an
accuracy to the magnitudes of a second order smallness,
inclusive. One can check that the accuracy of determining
a characteristic speed is not lost in this case.

Similarly, we find a second multiple frequency of load
jamming with an accuracy to the magnitudes of a fourth or-
der smallness, including:

2/3 4/3 2)72 _
O VB v =

(32)

X

VI = 14 VOB v Op =

18y* +15by” +6b* x+b‘°’
64y°

3x+b

=1+’ +b*

(34)

Substitute (34) in (25). Substitute the resulting expres-
sion in (29). The obtained is expanded into a series by de-
grees b, we obtain the appropriate characteristic rotor speed:

999X° +1332X" +
+900X* +378X* +
(3X+1)2 \+93X+10

L= X+1+0° +b =
E 16X 256X*(1+5X)

999y° +1332y'b* +
b*| +900%°b" +378y°b° +
+93xb°® +10b"
256y°(b” +5)

9 2
=—.+1+(3X+b ) +

b2 167 (35)



A third characteristic rotor speed is determined with
an accuracy to the magnitudes of a fourth order smallness,
inclusive. One can check that the accuracy of determining
a characteristic speed is not lost in this case.

5. 3. 4. Finding the load jamming speeds

Table 1 gives formulae intended for the approximate com-
putation of load jamming frequencies at different ratios of a
smallness between the system parameters. These formulae
were derived using the results obtained in [3].

Table 1

Dependence of dimensionless load jamming frequencies v;
on a rotor speed (1) and ratios of a smallness between
the system parameters

No. Ratios of smallness Frequency of load jamming —

f anding th s of
0 between parameters expanding the roots o

entry polynomial (39)
1 n<<i
2
2 >t v, :L_M
1+y n
1 4n-3
V1/2z1¢§ —X1+X( 2),
5 [tk n-1"8(n-1)
x<<0, =<0 AT
Vy=n-— X( L

J 1 w
n=mn: Vy s =1+ =34 [1¢\/5+2f],
4 (n—1)~§/5, Lh- 2/3 2\/7 3

_4(n-1)
"3 VL
x 9 b*
=~Z4+l+—yx+0—,
YRR TY AR
n=n2:2 3 y ba
5 | n~1/82 h~8, v1/2:1+§b T3y 96+ 81y — 640,

6~1 — parameter
no

v, = -
Pvy on

In Table 1, § is a dimensionless positive quantity that is
much less than 1 (0<8<<1). It is introduced to define the
ratios of a smallness between the system parameters.

5. 4. Investigation of stability of jamming modes

5. 4. 1. Linearization of differential equations of motion
in the vicinity of stationary motion

Introduce a disturbed motion:

oa=0+vy, u=u+& ov=0+m,

&

W n<1. (36)

’ )

Then
o=y, a=g o= @=Vy, i=§ =7

§ §

v

‘\V, yhv ) ’ n‘<<1

and with an accuracy to the magnitudes of a first order small-
ness, including:

LY =g+ By + vy (icos+sind) -

- (E—2vﬁ—vzé)sind+(ﬁ+2v&—v2n)cosd=0,
L :E—2vﬂ—v2<§+b(§—vn)+§—

- e(\'[lsind+2V\'|lc056c—v2\|fsind),

L =+ 2vE —v?n+b(N+VE)+n+

+ 8(([]C0$6L—ZVWSin&—VZ\VCOSd). 37

By applying (10) and (12), we transform:
fcosQ+0sinG = 6(c051§c056¢+sin1§sin6¢)=
=§cos(1§—d)=[§cos¢. (38)

Find from (13) and (14):

(39)
We obtain from (17):

(n—v)= )(vs/[(l—vz)2 +b2v2].

Then

(40)

. (41)

= (1_\)2)vaﬁ/[(1—v2)2+b2v2]=e( v(i-v)

viob 1—\/2)2+v2b2
Ultimately, we obtain:

o v“(l—vz)
A T e

_ (%_2vﬁ—v2§)sind+(ﬁ+2v&—v2n)cosd:O,
L :%—2vh—v2§+b(§—vn)+?;—

— &(Wsin G+ 2vij cos G — vy sin @),

L =11+ 2vE —v?n+b(N+VE)+n+

+ e(\'ﬁrcosd—QV\j/sind—vzwcosd) (42)

— differential equations of first approximation.

5. 4. 2. Characteristic equation and conditions of stability
The characteristic equation of system (42) in the form of
a determinant takes the form:

Ay Ay Gyg

A=la, ay (43)

Qa3
Ay A3y Ay



where

| (i)

CZM:}\. +B7\4+82, Z:ﬁ,

(1=v*) +v

am:—(hz—VQ)sind+2v7»cosd:0,

ais:2vksind+(k2—v2)cosd:0,

ay, =—€(A*sin @+ 2vAcos G — v’ sin ),

aq, =e(\” cos & — 2Avsin & — v’ cos @),
— —22 b 2

Ayy =gy = A" +DA+1-V7,

gy ==y, =V(2A+D). (44)

From (43), (44), we obtain the following characteristic
equation in the form of a polynomial:

D(A)=(bA" +bL + b + b + b A+, ), (45)
where

by=1-¢, b=b(2-€)+B,

b, =(1+v*)(2—&)+ze+b(b+2p),

by =2(B+b)(1+v’)+2¢(v* +2)b+Ppb,

by=(1-v?) +bv* +2Bb(1+v*)+

wef[2(14v?)+ 0 |z v? (64 v7)},

by =B (1-v2) + b [ ep[2(1+v*)z+3v' ]

{(1=v) v exf2(t vz 3v ] B -

ZBF(V)/ [(1—v2)2+b2v2], (46)

Note that the presence of a single zero root in polyno-
mial (45) is due to the fact that the stability of a one-parame-
ter family of steady motions is examined, rather than the fact
that this case is critical [16].

According to the Raus-Hurwitz criterion, the conditions
for asymptomatic stability (the negative of the real parts
of nonzero roots of characteristic equation (45)) take the
form [16]:

b,>0,/i=0,5/, A,>0,A,>0,A,>0,
where
b, b, b,
b1 b3 1 3 5
A2=b b >0, A,=|b, b, b|>0,
o 0 b b
b, b, b, 0
b b, b, 0
A= 2 0. 47
“lo b b b “n
0 b, b, b,

Note that the coefficients (46) of the polynomial and the
conditions of stability (47) do not include angle &, which
is the parameter that distinguishes a certain motion from
a one-parameter family of steady motions. Therefore, (47)
are the conditions of stability (instability) of the entire
one-parameter family of motions. Consider the required con-
dition for stability b, > 0. It will be met when and only when
F(v)>0. Since F(0)=1>0, F(+0)>0, then:

YV, V,, vy F(V,)>0, F(v,)<0, F(v,)>0. (48)

Therefore, the jamming modes vy, v3 can be locally as-
ymptomatically stable in the region of their natural existence,
while a jamming mode v, is unstable. Since, in critical cases,
by takes a zero value, that might be the critical cases of a single
zero root and the character of a stability loss is the aperiodic
distance from the non-disturbed motion. Should all other
conditions for stability be met, a complete bifurcation dia-
gram of steady motions could be obtained, as the conditions
for stability would not yield other bifurcation points [16].

5. 5. Computational experiment

Computations are performed for the following values of
coefficients for the dimensionless differential equations
of motion (2):

b=0.1; B=0.01;£=0,01; y = eb/B=0.1.

Table 2 gives the characteristic rotor speeds and the cor-
responding multiple speeds of load jamming, calculated from
precise and approximate formulae.

Table 2

Characteristic (bifurcation) rotor speeds and critical
velocities of load jamming

No. | Quantity Precise value Approximate value
1 Vi) 1.433660015274 1.45140137439
2 ny 1.967573850609 1.928132631101
3 v, 1
4 1y 11
5 Vi) 1.003905905625 1.003905564063
6 n3 11.060410678753 11.60936877604

The greatest error of 2 % is produced by formulae (32)
and (33) when computing the approximate values for quan-
tities v§) and 7.

Our computations demonstrated that if b5>0, all other
stability conditions (47) are met automatically.

Differential equations of motion (2) were recorded in the
normal form and integrated at different initial conditions and
various rotor speeds.

The stability or instability of jamming modes in the vici-
nity of characteristic speed ny is illustrated in Fig. 4.

The stability or instability of jamming modes in the vici-
nity of characteristic speed ns is illustrated in Fig. 5.

Our experiments demonstrated the following:

1) in the range of angular velocities of rotor rotation
(0, ny), jamming mode vy is globally asymptomatically stable;

2) in the range of angular velocities of rotor rotation (ny, n3),
jamming modes vy, v3 are locally asymptomatically stable, and:

— when a rotor speed approaches n3, the region of attrac-
tion by jamming mode v{ decreases, and v — increases;



— at the acceleration of an initially immovable load, it
gets stuck at frequency vy, if 0<n<6.2, and gets stuck at
frequency vs, if n>6.3;

3)in the range of angular velocities of rotor rotation
(n3, +o0), jamming mode v is globally asymptotically stable;

4) jamming mode ny is unstable;

5) no other steady modes of motion were identified.

the modes (one-parameter families of steady motions) at
which a load lags behind the rotor.

Consequently, the mechanical system is not rough
in relation to the resistance forces [16]. That is why
the theories of such systems (rotors with passive auto-
balancers) that are built without considering resistance
forces do not reflect the actual properties of such sys-
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Fig. 4. Stability or instability of jamming modes in the vicinity of characteristic velocity ny
(n=1.968; v4=0.889382; v,=1.4221015; v3=1.4455905):

a — local asymptomatic stability of jamming mode v at load acceleration; b — instability
of jamming mode v, and a system’s transition to jamming mode v (the initial load rotation
speed is slightly less than v;); ¢ — instability of jamming mode v, and a system’s transition

to jamming mode v3 (the initial load rotation speed is slightly greater than v;); d — local

asymptomatic stability of jamming mode v3 when the rotation speed of a load, initially
accelerated to a rotor speed, is falling
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Fig. 5. Stability or instability of jamming modes in the vicinity of characteristic velocity n,
(n=11.06; v4=1.003582; v,=1.00423; v3=10.03625):

a — local asymptomatic stability of jamming mode v when the initial speed of load rotation
is slightly less than v4; b — instability of jamming mode v, and a system’s transition to
jamming mode v (the initial load rotation speed is slightly less than v,); ¢ — instability of
jamming mode v, and a system’s transition to jamming mode v3 (the initial load rotation
speed is slightly greater than v,); d — local asymptomatic stability of jamming mode v3 even
at load acceleration (due to a small region of attracting by mode v1)

tems and cannot be used for
practical purposes.

In cases that are important
in terms of practice, in par-
ticular, when the forces of ex-
ternal and internal resistance
are small, the mass of a load
is much smaller than the ro-
tor mass, etc. (b,x<1), there
are three characteristic rotor
speeds n,, n,, n,. In this case,
they are all above the resonance
(1<n,<n,<n,) and, at the ro-
tor speeds:

— smaller than n, (0<n<mn,),
there is a single frequency of
load jamming v, with 0<v<{;

— larger than n,, but smaller
than n, (n,<n<n,), there are
three frequencies of load jam-
ming Vi3, such that 0<v{<1<
<vo<v3z<m;

— larger than n,, but smal-
ler than n, (n,<n<n,), there
are three frequencies of load
jamming vy 93, such that 1<v,<
<vo<Kv3<n;

— exceeding n, (n>n,), there
is a single frequency of load
jamming vs, such that 1<<vs<n.

The characteristic rotor
speeds n,,n, are the points of
bifurcation of motions. When
a rotor speed passes these velo-

Since no other steady motion modes of the system were
identified, it is possible, for the considered system, to build
a complete bifurcation diagram, in which the bifurcation
parameter chosen was a rotor speed. Such a diagram can be
represented in the form of charts, shown in Fig. 3.

6. Discussion of the results obtained from studying
a system’s steady motions

Our theoretical study shows that the system a rotor —
a load demonstrates steady motion modes at which a load’s
center of mass rotates around the rotor longitudinal axis
at a constant angular velocity. In the coordinate system
that rotates synchronously to a load, these motions are
stationary.

In the absence of resistance forces, a load during such
motions rotates synchronously to the rotor.

The emergence of any small forces of viscous resistance
radically changes the steady motion modes of the system.
Synchronous rotation regimes disappear and there appear

cities, jamming modes can ac-
quire or lose stability.

By applying the first Lyapunov method, it was estab-
lished that the second load jamming mode is always unstable,
and the first and third modes can be stable (in the regions of
natural existence). Our computational experiment for the
case when b,y <1 shows that:

—in the range of angular velocities of rotor rotation
(0, n1), jamming mode v is globally asymptomatically stable;

— in the range of angular velocities of rotor rotation (ny, n3),
jamming modes vy, v3 are locally asymptomatically stable, and
the type of a mode to be set depends on the initial conditions;

— in the range of angular velocities of rotor speed (73, +o0),
jamming mode v is globally asymptomatically stable;

— jamming mode v is unstable;

—no other steady motion modes of the system were not
identified;

— for the system under consideration, it is possible to
construct a complete bifurcation diagram, in which the bifur-
cation parameter chosen is a rotor speed, in particular, it can
be represented in the form of charts, shown in Fig. 3.

Our studies have found a drawback in the technique for
excitation of resonance oscillations by a load (passive auto-



balancers). The technique cannot be used over the entire
range of the existence and stability of jamming mode vy,
due to a reduction in the attraction region by this mode.
However, the range of resonance velocities from 1 to 6.2,
identified for a particular case, is large enough for practical
application.

The solved problem can be considered to be a model. In
it, we found all possible steady motions of the system and
explored their stability. It is shown that in practical terms
not only the stability (by Lyapunov) of a certain motion
mode is important, but also the region of attraction of this
mode, if there are several steady modes. The disadvantage
of this work is that the analytical studies were conducted at
different depths.

In the future, it is planned to investigate the steady mo-
tion modes of two-mass and three-mass resonance vibration
machines with a vibration exciter in the form of a pendulum,
a ball, or a roller.

7. Conclusions

We have analytically investigated the steady motion
modes of the system, composed of a balanced rotor on isotro-
pic elastic and viscous supports, and a load (a ball, a roller,
a pendulum), installed inside the rotor with a possibility for
a relative motion. In this case, the pendulum is freely moun-
ted onto the rotor shaft, while the ball or roller roll without

slipping along a circular path centered on the longitudinal
axis of the rotor:

1. We have found all the steady motion modes of the sys-
tem under which a load rotates at a constant angular velocity.
In the coordinate system that synchronously rotates with the
load, these motions are stationary and:

—in the absence of resistance forces in the system, the
load rotates synchronously to the rotor;

—in the presence of resistance forces in the system, the
load lags behind the rotor.

The load jamming regimes are the one-parameter families
of steady motions. Each jamming mode is characterized by
the corresponding jam frequency.

Depending on the system parameters and a rotor speed,
there may exist one or three possible speeds of a load jam.

2. If, at any rotor speed there is only one angular velocity
of aload jam, then the corresponding motion mode (a one-pa-
rameter family) is globally asymptomatically steady. If the
number of jamming speeds varies depending on the angular
velocity of rotor rotation, the asymptomatically stable are:

— the only existing jamming mode (globally stable when
there are no others);

— the jamming modes with the lowest and greatest speeds.

3. A load jamming mode with the lowest angular velocity
(close to resonance) can be used in order to excite resonance
oscillations in vibration machines. The highest frequency of a
load jam is close to a rotor speed. This mode can be used in order
to excite the non-resonance oscillations in vibration machines.
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Ouyineno 6naué GeaUUUHU CMYNneHsl 3AN0BHEHH Kamepu
3asanmancenHnam Ha epexmueHicmo ABMOKONAUEHO20 NPOUECY
noopiénenns ¢ 6apabannomy mauni.

3a 00noMm02010 HABAUINCEHO020 AHANIMUKO-EKCRePUMEHMATlb-
HO20 MemoOdy 6CMAH0BNEHO OUHAMIMHUL edexm nideuuien-
HA a8mMoxoauenoi yoapnoi 0ii MOJN0IbHOZ0 3A6AHMANCEHHS HA
nodpiénioeanuii mamepian nopienano iz mpaouyiiinum ycmane-
HuM pesicumom pyxy. Buseneno cymmeee 3pocmanns cepeonix
CYM 6EPMUKANBHUX CKIAA00BUX ABMOKONUCHUX YOAPHUX IMNYTb-
cié ma cepeoHix cym nomyxicHocmeli maKux cKkAa0068uUx 3i 3ImMeH-
wennam 3anoenenns xamepu. Illpose epexmy 3ymoeneno 36ino-
WEHHAM PO3MAXY ABMOKOIUBAHL NPU 3MEHUWEHHI 3an06HeHHs.
Buseneno 3pocmanus MaKcumManibHUX 3HaAUeHb IMNYAbCi8 npu-
onusno y 2,4 pasu npu cmyneni sanoenenns x=0,45, y 3,1 pasu
npu kx=0,35 ma y 5,8 pazu npu x=0,25. Bcmanosaeno 3pocman-
HS MAKCUMATILHUX 3HAMEHb NOMYIHCHOCMEl IMRYAbCI6 Y 5,7 pa3u
npu x=0,45, y 9,6 pazu npu x=0,35 ma y 45,5 pasu npu x=0,25.

Excnepumenmanono écmanosjeno mexnosnoziunuil edexm
CYmMme6020 CNA0AHHA NUMOMOT eHeP2OEMHOCMI MA 3POCMAH-
HA NPOOYKMUBHOCMI THHOGAUIUHO20 AGMOKONUEHO20 NPOUECY
noopioHenns, NOPIGHAHO i3 XAPAKMEPUCMUKAMU MPAOUUTUHO20
ycmanenozo npoyecy, 3i 3MEHUEHHAM 3aN0BHEHHSA KaMepu.

Byno posenanymo npoyec nomeny yemenmnozo Kainkepa npu
NOBHOMY 3ANO6HEHHI MACMUHKAMU NOOPiOHI08AH020 Mamepia-
JIY NPOMINCKIB MIdNC KYNbOBUMU MOJOTGHUMY MinaMU i3 6i0HOC-
Hum posmipom 0,026. Bcmanosneno, wo nio wac camozoyoxcenns
aAeMOK0IUBCAHD eHeP2OEMHICMb NOOPiOHeHHA cnadae, a NPooyK-
muenicmo 3pocmae. Buseneno snudicennsa 6ionocnoi numomoi
enepeoemnocmi na 27 % npu x=0,45, na 42 % npu x=0,35 ma
na 55 % npu x=0,25. Bcmanogueno niosuuenns 6i0H0CHOi npo-
dyxmuenocmi na 7 % npu x=0,45, na 30 % npu x=0,35 ma na
46 % npu x=0,25.

Bcmanosneni ¢ po6omi epexmu 003601510mv npozHo3ysamu
Ppauionanrvhi napamempu asmoxoJIUeHO20 NPoyecy NoopioHeHHs
6 bapabannomy Mauni npu eapiauii cmynens 3an06HEHHs Kamepu

Kntouosi caoea: Gapabannuii maun, cmyninv 3ano6HeHHs
Kamepu, aemoxoIUBAHHSA 3ABAHMANCEHHSA, NUMOMA €HEePZOEM-
Hicmb noopionenns
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1. Introduction

Due to a series of their operational advantages, the tum-
bling type mills remain to be the main equipment in many
industries for small- and large-tonnage fine grinding of solid
materials.

Replacement of the conventional steady-state grinding
process with a novel self-oscillating process improves exist-

ing equipment of relatively low power efficiency. Use of the
phenomenon of excitation of self-oscillations makes it possi-
ble to apply conventional solutions to designing the tumbling
mills with a smooth working chamber surface without addi-
tional activating elevators in a form of protruding elements
which undergo rapid abrasive wear.

On the other hand, significant variability of the self-
excited pulsation behavior of the rotating chamber fill de-



