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Аналітично досліджені усталені режими руху сис-
теми, складеної зі збалансованого ротора на ізотроп-
них пружно-в’язких опорах, і вантажу (кулі, ролика, 
маятника), встановленого усередині ротора з мож-
ливістю відносного руху. При цьому маятник вільно 
насаджений на вал ротора, а куля чи ролик котять-
ся без ковзання по кільцевій доріжці з центром на 
подовжній осі ротора.

Описана фізико-математична модель системи. 
Записані диференціальні рівняння руху системи щодо 
системи координат, що обертається з постійною 
швидкістю обертання у безрозмірному вигляді.

Знайдено всі усталені режими руху системи, в яких 
вантаж обертається з постійною кутовою швидкіс
тю. В системі координат, що синхронно обертається 
з вантажем, ці рухи стаціонарні.

Проведені теоретичні дослідження показують, що 
на усталених режимах руху:

–  за відсутністю сил опору в системі вантаж син-
хронно обертається з ротором;

–  за наявністю сил опору в системі вантаж від-
стає від ротора.

Режими застрягання вантажу є однопарамет
ричними сім’ями усталених рухів. Кожен режим за- 
стрягання характеризується відповідною частотою 
застрягання.

В залежності від параметрів системи можуть 
існувати одна чи три можливі швидкості застря-
гання вантажу. Якщо на будь-якій швидкості обер-
тання ротора існує тільки одна кутова швидкість 
застрягання вантажу, то відповідний режим руху 
(однопараметрична сім’я) глобально асимптотично 
стійкий. Якщо кількість швидкостей застрягання змі-
нюється в залежності від кутової швидкості обертан-
ня ротора, то асимптотично стійкими є:

–  єдиний існуючий режим застрягання (глобально 
асимптотично стійкий, коли інших немає);

–  режими застрягання з найменшою і найбільшою 
швидкостями.

Режим застрягання вантажу з найменшою куто-
вою швидкістю (близька до резонансної) можна вико-
ристовувати для збудження резонансних коливань  
в вібраційних машинах. Найбільша частота застря-
гання вантажу близька до швидкості обертання рото-
ра. Цей режим можна використовувати для збуджен-
ня нерезонансних коливань в вібраційних машинах
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1. Introduction

In [1], it is proposed to use passive auto-balancers – 
pendulum-, ball-, roller-type – as vibration exciters. It is 
assumed that the new technique is applicable for one- and 
multi-mass vibration machines at different kinetics of vi-
bratory platform motion. In this regard, a relevant problem 
is the substantiation of feasibility of the new technique for 

vibration excitation and the development of a theory of new 
vibration machines. 

The use of a known device for the new purpose becomes 
possible due to the fact that a rotary machine with the speci-
fied auto-balancers can execute various steady motion modes 
that correspond to:

– auto-balancing or a synchronous rotation of loads to-
gether with a rotor [2]; 
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– loads’ jamming at the resonance rotational speed of the 
rotor (caused by the Sommerfeld effect) [3–12];

– parametric and other oscillations of loads [4, 13].
Therefore, the proper choice of system parameters can 

provide for the excitation of resonance oscillations. 
To create purely resonant vibration machines, it is neces-

sary that the rotor should be balanced and the loads should 
be stuck at the resonance rotor speed. The simplest resonance 
vibration exciter is a single load (a pendulum, a ball, a rol
ler), mounted on the balanced rotor with a possibility for 
the center of mass of a load to move in a circle centered on 
the longitudinal axis of the rotor. It is an actual task, within 
the framework of a flat model of such a vibration exciter, to  
analytically find all the steady motion modes and explore 
their stability. This is important both for constructing an 
analytical theory of new resonance vibration machines and 
for the development of effective methods for studying the 
dynamics of the specified machines for cases of several loads, 
one- and multi-mass vibration machines, etc.

2. Literature review and problem statement

The most complete information on the origin, disappea
rance, conditions of existence and resistance of different mo-
tion modes of a dynamic system is provided by a bifurcation 
theory. In rotary machines, a bifurcation parameter that is 
typically adopted is the rotor’s rotation speed. 

As of today, the most analytical results were obtained in 
the framework of a flat model of the rotor balanced on isotro-
pic elastic-viscous supports, which carries an auto-balancer 
with the same loads. Thus, all the stationary modes, under 
which loads rotate synchronously to the rotor [2], or lag 
behind the rotor [3], have been defined; the stability of these 
regimes has been partially investigated.

It should be noted that the most difficult in terms of 
analytical studies is to investigate the stability of steady 
motions, in particular, the families of steady motions. Dif-
ficulties are due to a large number of degrees of freedom of 
the system, a significant nonlinearity of the problem, known 
problems related to the approximate methods of a small pa-
rameter, computational methods and experiments, etc. 

Consider the disadvantages and advantages of some 
methods for studying jam modes.

Paper [4] gives an analytical statement of the problem on 
building a nonlinear bifurcation theory for the considered 
system. However, the bifurcation analysis is carried out by 
numerical methods, for the case of two loads. As a result, at 
the system’s specific parameters, it was revealed that, along 
with the stationary motions, the system has limit cycles and 
chaotic motions. The advantage of numerical methods for  
a bifurcation analysis is the possibility to detect all possible 
motion modes of the system and assess their stability. In this 
case, the load jam frequencies are determined accurately. The 
disadvantage is a particular character of the results obtained 
(for specific numerical values for system parameters), signi
ficant difficulties in applying the method with an increase in 
the number of loads, etc.

Study [5] experimentally established the modes of pen-
dulum jams in the system rotor – a pendulum auto-balancer. 
Under these modes, pendulums are bound, they cannot 
accelerate and get stuck at one of the resonance speeds of 
rotor rotation. Work [6] investigated experimentally a phe-
nomenon of jamming the pendulum freely mounted onto the 

shaft of an electric motor. It was found that the pendulum is 
stuck at one of the natural frequencies of system oscillations. 
The advantage of field experiments is that these experiments 
make it possible to identify persistent steady motions (im-
plemented in practice). Disadvantages are that if the system 
has several simultaneously stable steady motions, the motion 
that the system would eventually execute significantly de-
pends on the starting conditions. Therefore, based on the 
results from experiments, it is difficult to assess the stability 
regions of different motion modes of the system. In addition, 
the results obtained are of particular character (for a specific 
machine). Field experiments are labor-intensive and require 
large resources, they do not make it possible to find at great 
accuracy the frequencies of load jams, nor the relative posi-
tions of loads with respect to the rotor, etc.

The load jam modes were examined by modelling the 
system’s dynamics at a PC:

– for a rotor on isotropic supports, which executes spa-
tial motion and is balanced by one or two two-pendulum 
auto-balancers [7]; 

– for a rotor on anisotropic supports, which executes  
a flat motion and is statically balanced by a two-ball auto- 
balancer [8]; 

– for a rotor mounted on isotropic supports at a platform 
that moves steadily in a straight line, while balancing the 
rotor with a two-ball auto-balancer [9].

Simulating the machine’s dynamics at a PC is the least 
laborious method of research, which makes it possible to 
identify steady motion modes, to more accurately find the 
speeds of load jams. However, the results obtained are of 
particular character. It is difficult to determine the stability 
limits of various simultaneously stable modes of system mo-
tion by simulation, because the motion that would eventually 
be executed depends on the initial conditions. 

The most general results are provided by analytical 
research methods. The loads jam modes were analytically 
examined by approximate methods for:

– a rotor on isotropic supports, which executes a spa-
tial motion and is statically balanced by a two-ball auto- 
balancer, using the theory of synchronization of mechanical 
systems [10];

– a rotor on isotropic supports, which executes a flat 
motion and is balanced by a two-ball auto-balancer, using the 
modified incremental harmonic balance method [11]; 

– a rotor on isotropic supports that executes a flat motion 
and is balanced by a two-ball auto-balancer, using a Limit- 
Cycle Analysis [12].

It was established in [10–12] that loads are stuck at one 
of the resonance speeds of rotor rotation; the authors found 
the approximate boundaries for the jam modes’ stability 
regions. The advantages of analytical approximate methods 
include the generality of results obtained, a possibility to 
derive analytical results. The disadvantages of approximate 
methods include the asymptomatic character of solutions, 
the complexity of using methods for the case of many loads. 
In addition, the methods do not produce a precise statement 
of the problem on determining the frequencies and modes 
of load jams. Therefore, they were employed to analytically 
explore only those jamming modes under which loads are 
combined (whose existence was known).

In [3], the load jam modes were analytically examined in 
a precise statement of the problem for a balanced rotor on iso-
tropic supports, which executes a flat motion and is balanced 
by an auto-balancer with many identical loads. The authors 
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applied the elements of a bifurcation analysis by finding all 
possible jamming modes, determining the conditions of their 
existence, origin, and disappearance.

The research revealed that:
– there are other jamming modes within the system, un-

der which the loads are not combined; 
– each jam mode is characterized by a certain confi

guration of loads relative to the rotor, which changes with 
altering a rotor speed; 

– each load configuration is matched with a single or 
three possible frequencies of load jams; 

– for the case of three possible frequencies of load jams, 
two are close to the resonance speed, and one – to the rota-
tional speed of the rotor.

Thus, only the precise statement of the problem, as well 
as its exact solution, make it possible to identify and theo
retically investigate all possible jamming modes, to find 
the bifurcation values for a rotor speed in the transition of 
which the jamming modes acquire or lose stability, emerge, 
or disappear.

It should be noted that in the system examined in [3] 
the authors had discovered and investigated, in the precise 
statement, the steady motions at which loads synchronously 
rotate with the rotor [2]. Because of the existence of a large 
number of steady motions, it is difficult to investigate their 
stability and build a complete bifurcation diagram. On the 
other hand, for the case of a single load, one obtains a full-
fledged vibration exciter of the simplest design. At the same 
time, the problem on exploring the stability of motions is 
greatly simplified. Thus, there is an opportunity both for 
solving the problem and the development of approaches and 
procedures, which are applicable for the case of many loads.

3. The aim and objectives of the study

The aim of this study is to find and estimate the stability of 
all steady motion modes of the system composed of a rotor on 
the isotropic elastic and viscous supports and a load (a pendu-
lum, a ball, or a roller), installed in the rotor with a possibility 
of relative motion. That would make it possible to identify the 
ways to use such loads in vibration machines in order to excite 
resonance oscillations, as well as produce research methods 
and approaches, applicable for the case of many loads.

To accomplish the aim, the following tasks have been set:
– to find all steady motion modes of the specified system, 

conditions for their origin, existence, and disappearance; 
– to study analytically the stability of steady motion modes; 
– to complement the results from an analytical study 

with a computational experiment.

4. Methods for finding all possible stationary modes  
of system motion

To construct a mechanical-mathematical model of the 
system rotor – load, we use the results from work [3], the 
elements of classical mechanics [14], the perturbation theo-
ry [15] and the bifurcation of motions [16]. 

Differential equations of the system motion are recorded 
with respect to the coordinate system, rotating at a constant 
angular velocity. In such a coordinate system:

– the motion of a mechanical system is described by a sys-
tem of regular nonlinear autonomous differential equations; 

– all the steady modes are stationary motions, provided 
that the rotation speed of the movable coordinate system 
coincides with the angular speed of load rotation.

A search for all possible stationary modes of system 
motion is reduced to solving a nonlinear system of algebraic 
equations. In this case, all possible speeds of load rotation 
(angular velocities of a moving coordinate system’s rotation) 
are to be found at the same time, as well as the position of  
a load with respect to the rotating coordinate system, and the 
corresponding deviation of the rotor. 

To solve the system of nonlinear algebraic equations, we 
shall apply a method of decomposition of the roots of equa-
tions by the degrees of a small parameter [16]. In this case, 
different ratios of a smallness between the system parameters 
shall be considered.

A bifurcation parameter to be accepted is the angular 
velocity of rotor rotation. The load jam modes are to be found 
depending on the angular velocity of rotor rotation. The oc-
currence and disappearance of different jamming modes shall 
be studied in terms of a bifurcation theory of motions [16]. 

Stationary motion stability shall be studied based on the 
first Lyapunov method [16]. 

The results obtained from a theoretical study will be sup-
plemented with and verified by a computational experiment.

5. Load jamming modes in an auto-balancer –  
a flat model of the rotor on isotropic supports 

5. 1. Mechanical-mathematical model of the system 
5. 1. 1. Description of a mechanical-mathematical model 

of the system
A flat system model was adopted to investigate the sys-

tem’s dynamics [3]. Within its framework, a rotor is a sym-
metrical flat disk of mass M, mounted onto a completely rigid 
shaft, perpendicular to its plane (Fig. 1). The rotor is arranged 
vertically, it moves flat parallel in the horizontal plane and 
rotates at a constant angular velocity w. For the case of a ball  
(a roller) (Fig. 1, b), the ball (the roller) rolls without slip 
along a circular path. The ball’s mass (the roller) is m, its ra
dius is R, the distance from the axis of the shaft to the center 
of the ball (roller) is l. For the case of a pendulum (Fig. 1, c),  
the rotor shaft hosts a pendulum whose mass is m, physical 
length – l, and the main central axial momentum of inertia – IC.

At a stationary rotor, the shaft coincides with the axis of 
rotation. In the motion process, the shaft is point O, which 
deviates from the axis of rotation, point K, and it is exposed 
to a restoring force, and the force of viscous resistance of  
a medium. Coefficients of stiffness and damping in the shaft 
supports are c, b.  To describe the system motion, we use the 
following systems of axes:

– OXH – the right-hand system of fixed rectangular axes; 
– OXY – the right-hand system of moving rectangular 

axes, rotating around the rotation axis (point K) at constant 
angular velocity W; 

– OXOYO – the right-hand system of moving rectangular 
axes, originating from the center of the disc and parallel to 
the system of axes OXY.

The rotation angle of the system of OXY axes around 
point K equals Wt, where t is time. The rotor rotation angle  
is w t. Position of a load is determined, with respect to the 
system of OXOYO axes, by angle α. When a ball (a rol
ler) moves along a path, it is exposed to the force of vis-
cous resistance β w αl − − ′( )W ,  where β is the coefficient of  
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viscous resistance forces, and l w α− − ′( )W  is the motion 
speed of a ball’s center (a roller) along the path relative to 
the rotor. When a pendulum rotates around the shaft, it 
is exposed to the momentum of force of viscous resistance 
β w αl 2 − − ′( )W , where β  is the coefficient of viscous resis-
tance forces, w α− − ′( )W  is the angular velocity of pendulum 
rotation around the shaft (the rotor) and a bar behind the 
magnitude denotes a time derivative.

       

       

       

a

b

c

Fig. 1. A flat model of the system: 	
a – rotor on isotropic elastic and viscous supports; 	

b – kinematics of the motion of a rotor and a ball or a roller; 
c – kinematics of the pendulum motion

For the examined system:

M M mΣ = + ,  w0 = c M/ .Σ 	 (1)

where MS is the system’s mass, w0 is the resonance rotor 
speed.

5. 1. 2. Differential equations of system motion in the 
dimensionless form, equations of stationary motions

Differential equations of system motion in the dimen-
sionless form are:

L v u v b v u vv = + − + +( ) + −

− − + +( )



 =

  

 

2

0

2

2

ν ν ν

ε α α α ν αcos sin , 	 (2)

where dimensionless time, variables, and parameters are 
introduced:

τ = Wt,  u
x
l

=
κ

,  v
y
l

=
κ

,  n =
w
w0

,  β
β

κ w
=



m 0

,

ν w= W 0,  b b M= ( ) w0 Σ ,  ε κ= ( )m MΣ , 	 (3)

a point above the magnitude indicates the dimensionless time 
derivative for a ball, a roller, or a pendulum, respectively:

κ =
7
5

,  κ =
3
2

,  κ = + ( )1 2I mlC . 	 (4)

Note that for the mathematical pendulum IC = 0,  κ = 1.  
At stationary steady motions, the dimensionless genera

lized coordinates are stable:   α, , .u v = const  By substituting 
it in (2), we obtain:



   L n u v0 2 0( ) = −( ) + −( ) =β ν ν α αsin cos ,

L u b vu
0 2 21( ) = −( ) − −  ν ν εν αcos ,

L v b uv
0 2 21( ) = −( ) + −ν ν εν α  sin 	 (5)

– a system of algebraic equations to derive stationary  
motions.

5. 2. Finding the system’s stationary motions at which 
a load rotates synchronously with the rotor

At a simultaneous rotation of the load with the rotor n = n 
and equations (5) take the form:



   L n u v0 2 0( ) = −( ) =sin cos ,α α

L u n bnv nu
0 2 21( ) = −( ) − −  ε αcos ,

L n v bnu nv
0 2 21( ) = −( ) + −  ε αsin . 	 (6)

We derive from the second and third equations (6):



 

u n
n bn

n b n
=

−( ) +
− +

ε
α α

2
2

2 2 2 2

1

1

cos sin

( )
,  



 

v n
n bn

n b n
=

−( ) −
− +

ε
α α

2
2

2 2 2 2

1

1

sin cos

( )
. 	 (7)

Substitute it in the first equation in (6) and obtain:

εbn
n b n

3

2 2 2 21
0

( )
.

− +
= 	 (8)
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It follows from (8) that in the presence of resistance for
ces, the supports do not execute stationary motions at which 
a load rotates synchronously with the rotor. 

In the absence of resistance forces in supports, b = 0, and 
equation (8) is performed automatically, while equations (7) 
take the form:





u
n
n

= −
−

ε α2

2 1
cos

,  


v
n
n

= −
−

ε α2

2 1
sin

. 	 (9)

Equations (9) determine a one-parameter family of sta-
tionary motions, where angle α  is the parameter. It is evi-
dent that at the pre-resonance speeds of rotor rotation the 
center of the rotor’s mass deviates in the direction of the 
load’s center of mass, and at the resonance speeds – in the 
opposite direction.

5. 3. Finding the modes of load jamming
5. 3. 1. General sequence of problem solving
Introduce angle J  between vector KO

� ���
 (the rotor’s dis-

placement vector) and the X axis. Then:

cos / ,

 J r= u  sin / ,

 J r= v    r = +u v2 2 , 	 (10)

And the equations of steady motions (5) are transformed 
to the form:



 L n0 2 0( ) = −( ) − =β ν ν r jsin ,









  uL vLu v
0 0 2 2 21 0( ) ( )+ = −( ) − =ν r εrν jcos ,










  uL vL bu v
0 0 2 2 0( ) ( )− = + =νr εrν jsin , 	 (11)

where





j J α= − . 	 (12)

is the derived system of three nonlinear algebraic equations 
relative to three unknowns r,  n, j.

Solve the system of equations (12). We represent it in 
the form:

  r
εν

r j2 = −
b

sin ,    r j
ν

εν
rcos ,=

−( )1 2

2
2

 r j
β
ν

νsin .= −( )2 n 	 (13)

We find from the third and fourth equations:

r
εν β

ν
ν

εβ
ν

ν2
2= − −( ) = −( )

b
n

b
n . 	 (14)

It follows from (14) that a load can only lag behind the 
rotor (n<n). Then it follows from the first equation in (13) 
that sin ,j < 0  therefore j π∈ −( ), .0

By using the first and second equations in (13), introduce 
the angle:

γ
j
j

ν
ν

=






=
−







arctan
sin
cos

arctan ,




b
2 1

γ π π∈ −( )/ , / .2 2 	 (15)

Then, find j π∈ −( ), :0

j
γ γ
γ π γ

=
≤

− >




, ;

, .

0

0
	 (16)

Apply an identity:

     r r j r j
β
ν

ν
ν

ε ν
r2 2 2

2

4

2
2 2

2 4
4

1
= ( ) + ( ) = −( ) +

−( )
sin cos .n

Substitute this equation with r2  from (14), we obtain:

εβ
ν

ν
β
ν

ν
ν

ε ν
ε β
ν

ν
b

n n
b

n−( ) = −( ) +
−( )

−( )
2

4

2
2 2

2 4

2 2

2 2

21
.

This equation can be satisfied in the following two cases:
1)  n − =ν 0 – a load rotates synchronously to the rotor;

2) 
ε β

ν
ν

ν
ν

β
ν

b
n

b
n= −( ) +

−( )
−( )3

2 2

5 2

1
 – a load lags behind 

the rotor.
Above, it was found that in the presence of damping in 

the supports, the motion modes under which a load rotates 
synchronously to the rotor do not exist. We then find the 
load jamming modes. 

The second case is provided from the following equation:

P n b

a a a a a

ν cν ν ν ν

ν ν ν ν ν

( ) = − −( ) −( ) +





=

= + + + + +

5 2 2 2 2

0
5

1
4

2
3

3
2

4

1

aa5 0= , 	 (17)

where

c ε β= b ,

a0 1= + c,  a n1 = − ,  a b2
22= − −( ),

a n b3
22= −( ),  a4 1= ,  a n5 = − . 	 (18)

We find from (17) frequencies νi ,  at which a load can be 
jammed. Then, from equation (14), we derive:

r εβ ν ν= −( ) ( )n b . 	 (19)

Then, from (15), (16), we find:

j
γ γ
γ π γ

=
≤

− >




, ;

, ,

0

0
 γ

ν
ν

=
−







arctan .
b
2 1

	 (20)

We derive from (12):





α J j= − . 	 (21)

We find from (10):

 



 

u v= =r J r Jcos , sin . 	 (22)

Quantities (19) to (22) are calculated for the specific 
frequency of a load jam and at a specific (any) value of pa-
rameter J. The derived dimensionless coordinates and the  
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angle can be used as the initial conditions in a computational  
experiment. These initial conditions (a motion starts at 
a certain jam mode) will make it possible to investigate the 
stability of a jam mode in a small (by Lyapunov) – at small 
deviations of the disturbed motion from the jam mode whose 
stability is examined.

5. 3. 2. Investigation of the number and conditions of 
the existence of load jam modes

We consider a dimensionless angular velocity of the ro-
tor n as a bifurcation parameter. Consider changing n from 0  
to +¥. A change in n would alter the roots of equation (17). 
We shall search for valid roots and characteristic angular 
velocities of the rotor rotation (bifurcation points), at which 
various jamming modes emerge or disappear. 

One can see from (17) that ∀ ≤ ( ) <ν ν0 0P , ∀ ≥ >ν νn P( ) .0 ∀ ≥ >ν νn P( ) .0  
Therefore, all valid roots of a polynomial are in the interval 
(0, n), and in this interval there is always a single root.

It follows from a Descartes theorem (a Descartes sign rule)  
that polynomial (17) may possess:

–  ∀ <b 2  – 1 or 3 valid roots;
–  ∀ >b 2 – 1, 3, or 5 valid roots.
Since finding the roots from a polynomial of the fifth 

degree is difficult, then we solve the problem parametrically. 
A parameter to accept is the frequency of a load jam. Then 
a solution to equation (17) in the parametric form takes  
the form:

n
b

b
ν ν

cν ν ν

ν ν
ν( ) =

+ −( ) +

−( ) +
∈ + ¥( )

4 2 2 2 2

2 2 2 2

1

1
0, , . 	 (23)

Fig. 2 shows, in the plane (n, n), the constructed graph 
of function n(n) at different ratio of smallness between para
meters c and b.

 
Fig. 2. Dependence of the number and conditions 	

of the existence of load jamming frequencies on ratios of 	
a smallness between parameters c and b : 	

– ⋅ – ⋅ – c~1, b <<1; – – – b~1 (∀c);  c<<1, b<<1

One can see from Fig. 2 that at c~1, b<<1 or c<<1, b<<1  
in the system, depending on the rotor speed, there are a single  
or three possible load jamming frequencies. At b~1, the sys-
tem has the only possible frequency of a load jam, which is 
close to the rotor speed.

Next, we shall consider the case of small forces of viscous 
resistance in the supports. We shall introduce three charac-
teristic rotor speeds for this case. Their transition changes 
the number or properties of possible frequencies of a load jam. 
In this case, 1 1 2 3< <n n n  and at the rotor speeds:

– lower than n1  0 1< <( )n n ,  there is a single frequency of 
load jam n1, with 0<n1<1;

– that exceed n1,  but are less than n2 n n n1 2< <( ), 
there are three frequencies of load jam n1, 2, 3, such that 
0<n1<1<n2<n3<n;

– that exceed n2,  but are less than n3  n n n2 3< <( ), 
there are three frequencies of load jam n1, 2, 3, such that 
1<n1<n2<<n3<n;

– that exceed n3 n n>( )3 , there is a single frequency of 
load jamn3, such that 1<<n3<n.

Fig. 3 shows the numbering of jam frequencies, and cha
racteristic speeds.

       
a b

       
c

Fig. 3. Standard diagrams of dependences of possible 
angular velocities of a load jam on a rotor speed [3]: 	

a – general view; b – in the vicinity of characteristic angular 
velocity n1; c – in the vicinity of characteristic angular 

velocities n2, n3

The characteristic rotor speeds n1, n3 are the bifurcation 
points. At point n2, jam modes n2 and n3 emerge, and at  
point n3 – jam modes n1 and n2 disappear. According to the 
theory of bifurcation of motions, different jamming modes 
can acquire or lose stability only when passing through the 
points of bifurcation of motions [16].

5. 3. 3. Finding characteristic rotor speeds and critical 
frequencies of load jamming

Characteristic speed n2 shall be found from the condition 
that root n = 1 appears in polynomial (17):

P n b1 1 02( ) = − −( ) =c .

Hence, we find:

n
b b2 2 1 1= + = +
c ε

β
. 	 (24)

In critical cases, frequencies merge and thus become 
multiples. Therefore, polynomial (17) and its derivative  
for ν produce multiple roots:

d

d

P
a a a a a

ν
ν

ν ν ν ν
( )

= + + + + =5 4 3 2 00
4

1
3

2
2

3 4 .

Hence, we find a rotor speed n as a function of the load 
jam frequency ν:
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n
b

b
ν

c ν ν

ν ν
( ) =

+( ) − −( ) +

−( ) + 

5 1 3 2 1

2 2 1

4 2 2

2 2
. 	 (25)

Substitute (25) in (17). Upon transforms, we obtain:

Hence, we derive the following equation to find the criti-
cal (multiple) frequencies of a load jam:

F b

b b b

ν c ν c ν

c ν ν

( ) = +( ) − −( ) +( ) +

+ + − −( )  − −( )
1 2 2 3

6 5 4 2 2

8 2 6

2 2 4 2 2 ++ =1 0. 	 (26)

A procedure for finding critical frequencies of load jam-
ming and corresponding characteristic rotor speeds:

1) find the root of a polynomial (26) in the form of a trun-
cated series by the degrees of a small parameter; 

2) the found expansion is substituted in (25), and the 
resulting expression is expanded by the degrees of a small pa-
rameter; the result is the corresponding characteristic speed 
in the form of a truncated series; 

3) check whether the accuracy was lost when using, in-
stead of the root of polynomial (26), a truncated series.

One can see from (26) see that n ν( )  is an odd function. 
One can see from (25) that if n is the root of equation (26), 
then –n is the root of this equation. Therefore, hereafter only 
positive critical frequencies of load jamming will be searched. 
In this case, a rotor speed will be positive.

Zero approximation. At c = 0, b = 0, we obtain the follow-
ing equation for finding the critical frequencies of load jam-
ming in a zero approximation:

F0

4 4
1 1ν ν ν( ) = −( ) +( ) .

Thus, in a zero approximation:

ν ν1 4
0

5 8
01 1−

( )
−

( )= = −, . 	 (27)

Find characteristic speeds in a zero approximation.  
From (25), at c = 0, b = 0, we derive the following equation  
for finding characteristic speeds in a zero approximation:

n 0
2 2

2

21 5 1

4 1

5 1

4
( ) ( ) =

−( ) −( )
−( ) =

−( )
ν

ν ν

ν ν

ν
ν

,  n1 4
0 1 1−

( ) ( ) = . 	 (28)

Subsequent approximations. To determine the ratios of  
a smallness between the parameters, we find:

F b b1 32 2( ) = +( )c .

In order to account for both b and c at expansions, assume:

b b b X1 12 2, ~ , ~ .c c= ( )Χ 	 (29)

Find critical frequencies of load jam in the form:

ν νi
c

i b( ) ( )≈ +1 2 3 2 3/ / . 	 (30)

Substitute (30) in (26). Substitute the resulting ex-
pression in (29). We collect the coefficients at the lowest  
degree b we obtain:

b i i
8 3 2 3 2 3 3

8 2 0/ / /: .− − ( )



 =( ) ( )ν νΧ

Hence, we derive the following two valid solutions:

ν c

ν

2 3
2 3 3 23

1 2
2 3

2 2

0

,
/

,
/

,

.

( )

( )

= = ( )
=

Χ b

	 (31)

Note that a greater quantity corresponds to the emergence 
of regimes n2 and n3, and a lower one – the disappearance of re-
gimes n1 and n2. This is accounted for in the new lower indexes.

By following such an algorithm, we find a first multiple 
frequency of jamming with an accuracy to the magnitude of  
a second order smallness, including:

ν c1
41≈ −( )n n ;

ν ν ν ν

c

2 3 2 3
2 3 2 3

2 3
4 3 4 3

2 3
2 2

3

2

1

1
2

, ,
/ /

,
/ /

,
c b b b

b b

( ) ( ) ( ) ( )≈ + + + =

= + −
22

3

2 22

6
2 7

24

−( )
−

+( )c
c

c
c

b b
. 	 (32)

Substitute (32) in (25). Substitute the resulting expres-
sion in (29). The obtained is expanded into a series by de-
grees b, we obtain the appropriate characteristic rotor speed:

n b
b

b

b

1
23

2

2
3

2
2

3

1
3
4

4
8 1

8
2

53 14 1

48

1
3
4

4
8

≈ + +
−( )

−

−
− −( )

=

= + +

Χ
Χ

Χ
Χ Χ

Χ

c
c −−( )

+ − −
b

b
b

2

3
2

4

8
2 53

48
7

24 48c
c

c
. 	 (33)

A first characteristic rotor speed is determined with an 
accuracy to the magnitudes of a second order smallness, 
inclusive. One can check that the accuracy of determining  
a characteristic speed is not lost in this case.

Similarly, we find a second multiple frequency of load 
jamming with an accuracy to the magnitudes of a fourth or-
der smallness, including:

ν ν ν

c
c

c c c

1 2
2 2 4 4

2 4
3 2 2 3

1

1
3

8
18 15 6

64

,
( ) ( ) ( )c b b

b
b

b
b b b

≈ + + =

= +
+

+
+ + +

cc3 . 	 (34)

Substitute (34) in (25). Substitute the resulting expres-
sion in (29). The obtained is expanded into a series by de-
grees b, we obtain the appropriate characteristic rotor speed:

n b b3
2

2

4

5 4

3 2

1
3 1

16

999 1332

900 378

93 10
≈ + +

+( )
+

+ +
+ + +
+ +







Χ
Χ

Χ

Χ Χ
Χ Χ

Χ











+( ) =

= + +
+( )

+

+ +

+

256 1 5

1
3

16

999 1332

9

3

2

2 2

2

5 4 2

Χ Χ

c c
c

c c

b

b

b

b

000 378

93 10

256 5

3 4 2 6

8 10

3 2

c c

c

c c

b b

b b

b

+ +

+ +

















+( ) . 	 (35)

P
b b b b

ν
c ν c ν c ν ν

( ) =
+( ) − −( ) +( ) + + − −( )  − −( ) +1 2 2 3 6 5 4 2 28 2 6 2 2 4 2 2 11

2 2 1 2 2ν ν−( ) − b
.
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A third characteristic rotor speed is determined with 
an accuracy to the magnitudes of a fourth order smallness, 
inclusive. One can check that the accuracy of determining  
a characteristic speed is not lost in this case.

5. 3. 4. Finding the load jamming speeds
Table 1 gives formulae intended for the approximate com-

putation of load jamming frequencies at different ratios of a 
smallness between the system parameters. These formulae 
were derived using the results obtained in [3].

Table 1

Dependence of dimensionless load jamming frequencies ni 	
on a rotor speed (n) and ratios of a smallness between 	

the system parameters

No.  
of 

entry

Ratios of smallness 
between parameters

Frequency of load jamming –  
expanding the roots of  

polynomial (39)

1 n<<1

2 n>>1 ν
c

c
3

2

1

2 1 2
≈

+
−

−( )n b

n

3
n >1, |n–1|~1,  
c<<0, h<<0

ν c c
1 2 21

1
2 1

4 3

8 1
/ ,≈

−
+

−( )
−( )



n

n

n
 

ν
c

3

5

2 2
1

≈ − ( )
−( )

n
k n

n

4 n n≈ 1 : 
n h−( )1 3~ , , ~d c d

ν c1
31

1
4

4 1
3

≈ − −





w
,

ν c2 3
31

1
2

4 1 2
3/ ,≈ + +





 w
w

w
n

=
−( ) −4

3

1

4
1

3 c

5
n n≈ 2 :  
n~1/d2, h~d,  
s~1 – parameter

n
b

b≈ + + +c c s2

2

1
9

16 4
,

ν
c

c s1 2
2

3

1
3
8 32

96 81 64/ ,≈ + + −b
b



ν
c

c
3 1

2≈
+

−n
n

In Table 1, d is a dimensionless positive quantity that is 
much less than 1 (0<d<<1). It is introduced to define the 
ratios of a smallness between the system parameters.

5. 4. Investigation of stability of jamming modes
5. 4. 1. Linearization of differential equations of motion 

in the vicinity of stationary motion
Introduce a disturbed motion:

α α ψ= + ,  u u= + ξ,  v v= + η,  ψ , ξ , η 1. 	 (36)

Then

 α ψ= ,   u = ξ,   v = η;   α ψ= ,   u = ξ,   v = η;

ψ , ξ , η , ψ , ξ , �� �η 1.

and with an accuracy to the magnitudes of a first order small-
ness, including:

L u v( ) cos sin

sin

1 2

22

≈ + + +( ) −

− − −( ) +

�� � � � � �

�� � � ��

ψ βψ ν ψ α α

ξ νη ν ξ α η++ −( ) =2 02νξ ν η α� �cos ,

L bu
( )

sin cos sin

1 2

2

2

2

≈ − − + −( )+ −

− + −

�� � �

�� � � � �

ξ νη ν ξ ξ νη ξ

ε ψ α νψ α ν ψ αα( ),

L bv
( )

cos sin cos

1 2

2

2

2

= + − + +( ) + +

+ − −

�� � �

�� � � � �

η νξ ν η η νξ η

ε ψ α νψ α ν ψ αα( ). 	 (37)

By applying (10) and (12), we transform:

    













 

u vcos sin cos cos sin sin

cos

α α r J α J α

r J α r

+ = +( ) =

= −( ) = ccos .j 	 (38)

Find from (13) and (14):

  r j
ν

εν
r

ν
εν

εβ
ν

ν

ν
ν

β
ν

cos

.

=
−( )

=
−( )

−( ) =

=
−( )

−( )

1 1

1

2

2
2

2

2

2

3

b
n

b
n 	 (39)

We obtain from (17):

n b−( ) = −( ) +





ν cν ν ν5 2 2 2 21 . 	 (40)

Then

 r j
ν

ν
β

ν

ν
ν

β
cν ν ν ε

cos =
−( )

−( ) =

=
−( )

−( ) +





=

1

1
1

2

3

2

3
5 2 2 2 2

b
n

b
b

νν ν

ν ν

2 2

2 2 2 2

1

1

−( )
−( ) + b

. 	 (41)

Ultimately, we obtain:

� �� �

�� � �

L
b

( )

sin

1
4 2

2 2 2 2

2

1

1

2

= + +
−( )

−( ) +
−

− − −( ) +

ψ βψ ε
ν ν

ν ν
ψ

ξ νη ν ξ α ��� � �η νξ ν η α+ −( ) =2 02 cos ,

L bu
( )

sin cos sin

1 2

2

2

2

= − − + −( )+ −

− + −

�� � �

�� � � � �

ξ νη ν ξ ξ νη ξ

ε ψ α νψ α ν ψ αα( ),

L bv
( )

cos sin cos

1 2

2

2

2

= + − + +( ) + +

+ − −

�� � �

�� � � � �

η νξ ν η η νξ η

ε ψ α νψ α ν ψ αα( ) 	 (42)

– differential equations of first approximation.

5. 4. 2. Characteristic equation and conditions of stability
The characteristic equation of system (42) in the form of 

a determinant takes the form:

∆ =
a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

, 	 (43)
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where

a z11
2= + +λ βλ ε ,  z

b
=

−( )
−( ) +

ν ν

ν ν

4 2

2 2 2 2

1

1
,

a12
2 2 2 0= − −( ) + =λ ν α νλ αsin cos , 

a13
2 22 0= + −( ) =νλ α λ ν αsin cos , 

a21
2 22= − + −ε λ α νλ α ν α( sin cos sin ),  

a31
2 22= − −ε λ α λν α ν α( cos sin cos ),  

a a b22 33
2 21= = + + −λ λ ν ,

a a b32 23 2= − = +( )ν λ . 	 (44)

From (43), (44), we obtain the following characteristic 
equation in the form of a polynomial:

D b b b b b bλ λ λ λ λ λ λ( ) = + + + + +( )0
5

1
4

2
3

3
2

4 5 , 	 (45)

where

b b b0 11 2= − = −( ) +ε ε β, ,

b z b b2
21 2 2= +( ) −( ) + + +( )ν ε ε β ,

b b z b b3
2 2 22 1 2= +( ) +( ) + +( ) +β ν ε ν β ,

b b b

b z

4
2 2 2 2 2

2 2 2 2

1 2 1

2 1 6

= −( ) + + +( ) +

+ +( ) +  + +( ){ }
ν ν β ν

ε ν ν ν ,

b b b z

b

5
2 2 2 2 2 4

2 2 2 2

1 2 1 3

1 2

= −( ) +





+ +( ) +  =

= −( ) + +

β ν ν ε ν ν

ν ν c 11 3

1

2 4

2 2 2 2

+( ) + { } =

= ( ) −( ) +





ν ν β

β ν ν ν

z

F b , 	 (46)

Note that the presence of a single zero root in polyno
mial  (45) is due to the fact that the stability of a one-parame-
ter family of steady motions is examined, rather than the fact 
that this case is critical [16]. 

According to the Raus-Hurwitz criterion, the conditions 
for asymptomatic stability (the negative of the real parts 
of nonzero roots of characteristic equation (45)) take the 
form [16]:

b ii > =0 0 5, / , /,  ∆ ∆ ∆2 3 40 0 0> > >, , ,

where

∆2
1 3

0 2

0= >
b b

b b
,  ∆3

1 3 5

0 2 4

1 30

0= >
b b b

b b b

b b

,

∆4

1 3 5

0 2 4

1 3 5

0 2 4

0

0

0

0

0= >

b b b

b b b

b b b

b b b

. 	 (47)

Note that the coefficients (46) of the polynomial and the 
conditions of stability (47) do not include angle α,  which 
is the parameter that distinguishes a certain motion from  
a one-parameter family of steady motions. Therefore, (47) 
are the conditions of stability (instability) of the entire 
one-parameter family of motions. Consider the required con-
dition for stability b5 0> . It will be met when and only when 
F ν( ) > 0. Since F 0 1 0( ) = > , F +¥( ) > 0, then:

∀ ( ) > < >ν ν ν ν ν ν1 2 3 1 2 30 0 0, , , ( ) , ( ) .F F F 	 (48)

Therefore, the jamming modes n1, n3 can be locally as-
ymptomatically stable in the region of their natural existence, 
while a jamming mode n2 is unstable. Since, in critical cases, 
b5  takes a zero value, that might be the critical cases of a single  
zero root and the character of a stability loss is the aperiodic 
distance from the non-disturbed motion. Should all other 
conditions for stability be met, a complete bifurcation dia-
gram of steady motions could be obtained, as the conditions 
for stability would not yield other bifurcation points [16].

5. 5. Computational experiment
Computations are performed for the following values of  

coefficients for the dimensionless differential equations  
of motion (2):

b b= = = = =0 1 0 01 0 01 0 1. ; . ; , ; . .β ε c ε β

Table 2 gives the characteristic rotor speeds and the cor-
responding multiple speeds of load jamming, calculated from 
precise and approximate formulae.

Table 2

Characteristic (bifurcation) rotor speeds and critical 
velocities of load jamming

No. Quantity Precise value Approximate value

1 ν2 3,
( )c 1.433660015274 1.45140137439

2 n1 1.967573850609 1.928132631101

3 ν1 1

4 n2 11

5 ν1 2,
( )c 1.003905905625 1.003905564063

6 n3 11.060410678753 11.60936877604

The greatest error of 2 % is produced by formulae (32) 
and (33) when computing the approximate values for quan-
tities ν2 3,

( )c  and n1. 
Our computations demonstrated that if b5>0, all other 

stability conditions (47) are met automatically.
Differential equations of motion (2) were recorded in the 

normal form and integrated at different initial conditions and 
various rotor speeds.

The stability or instability of jamming modes in the vici
nity of characteristic speed n1 is illustrated in Fig. 4.

The stability or instability of jamming modes in the vici
nity of characteristic speed n3 is illustrated in Fig. 5.

Our experiments demonstrated the following:
1) in the range of angular velocities of rotor rotation 

(0, n1), jamming mode n1 is globally asymptomatically stable; 
2) in the range of angular velocities of rotor rotation (n1, n3), 

jamming modes n1, n3 are locally asymptomatically stable, and:
– when a rotor speed approaches n3, the region of attrac-

tion by jamming mode n1 decreases, and n3 – increases; 
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– at the acceleration of an initially immovable load, it 
gets stuck at frequency n1, if 0<n<6.2, and gets stuck at 
frequency n3, if n>6.3;

3) in the range of angular velocities of rotor rotation  
(n3, +¥), jamming mode n3 is globally asymptotically stable; 

4) jamming mode n2 is unstable; 
5) no other steady modes of motion were identified.

Since no other steady motion modes of the system were 
identified, it is possible, for the considered system, to build 
a complete bifurcation diagram, in which the bifurcation 
parameter chosen was a rotor speed. Such a diagram can be 
represented in the form of charts, shown in Fig. 3.

6. Discussion of the results obtained from studying  
a system’s steady motions

Our theoretical study shows that the system a rotor –  
a load demonstrates steady motion modes at which a load’s 
center of mass rotates around the rotor longitudinal axis 
at a constant angular velocity. In the coordinate system 
that rotates synchronously to a load, these motions are  
stationary. 

In the absence of resistance forces, a load during such 
motions rotates synchronously to the rotor.

The emergence of any small forces of viscous resistance 
radically changes the steady motion modes of the system. 
Synchronous rotation regimes disappear and there appear 

the modes (one-parameter families of steady motions) at 
which a load lags behind the rotor.

Consequently, the mechanical system is not rough 
in relation to the resistance forces [16]. That is why  
the theories of such systems (rotors with passive auto- 
balancers) that are built without considering resistance 
forces do not reflect the actual properties of such sys- 

tems and cannot be used for 
practical purposes.

In cases that are important 
in terms of practice, in par-
ticular, when the forces of ex-
ternal and internal resistance 
are small, the mass of a load 
is much smaller than the ro-
tor mass, etc. b, ,c1( )  there 
are three characteristic rotor 
speeds n n n1 2 3, , .  In this case, 
they are all above the resonance 
1 1 2 3< <( )n n n  and, at the ro-

tor speeds:
– smaller than n1 0 1< <( )n n , 

there is a single frequency of 
load jamming n1, with 0<n1<1;

– larger than n1, but smaller 
than n2 n n n1 2< <( ), there are 
three frequencies of load jam-
ming n1,2,3, such that 0<n1<1< 
<n2<n3<n;

– larger than n2, but smal
ler than n3 n n n2 3< <( ), there 
are three frequencies of load 
jamming n1,2,3, such that 1<n1< 
<n2<<n3<n;

– exceeding n3 n n>( )3 , there  
is a single frequency of load 
jamming n3, such that 1<<n3<n.

The characteristic rotor 
speeds n n1 3,  are the points of 
bifurcation of motions. When 
a rotor speed passes these velo
cities, jamming modes can ac-
quire or lose stability. 

By applying the first Lyapunov method, it was estab-
lished that the second load jamming mode is always unstable, 
and the first and third modes can be stable (in the regions of 
natural existence). Our computational experiment for the 
case when � �b,c 1  shows that:

– in the range of angular velocities of rotor rotation 
(0, n1), jamming mode n1 is globally asymptomatically stable; 

– in the range of angular velocities of rotor rotation (n1, n3), 
jamming modes n1, n3 are locally asymptomatically stable, and 
the type of a mode to be set depends on the initial conditions; 

– in the range of angular velocities of rotor speed (n3, +¥), 
jamming mode n3 is globally asymptomatically stable;

– jamming mode n2 is unstable; 
– no other steady motion modes of the system were not 

identified; 
– for the system under consideration, it is possible to 

construct a complete bifurcation diagram, in which the bifur-
cation parameter chosen is a rotor speed, in particular, it can 
be represented in the form of charts, shown in Fig. 3.

Our studies have found a drawback in the technique for 
excitation of resonance oscillations by a load (passive auto- 
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Fig. 4. Stability or instability of jamming modes in the vicinity of characteristic velocity n1 	
(n  = 1.968; n1 = 0.889382; n2 = 1.4221015; n3 = 1.4455905): 	

a – local asymptomatic stability of jamming mode n1 at load acceleration; b – instability 
of jamming mode n2 and a system’s transition to jamming mode n1 (the initial load rotation 
speed is slightly less than n2); c – instability of jamming mode n2 and a system’s transition 

to jamming mode n3 (the initial load rotation speed is slightly greater than n2); d – local 
asymptomatic stability of jamming mode n3 when the rotation speed of a load, initially 

accelerated to a rotor speed, is falling

   
 
 

   

   
 
 

   
                      a                                    b                                    c                                    d

Fig. 5. Stability or instability of jamming modes in the vicinity of characteristic velocity n2 	
(n = 11.06; n1 = 1.003582; n2 = 1.00423; n3 = 10.03625): 	

a – local asymptomatic stability of jamming mode n1 when the initial speed of load rotation 
is slightly less than n1; b – instability of jamming mode n2 and a system’s transition to 

jamming mode n1 (the initial load rotation speed is slightly less than n2); c – instability of 
jamming mode n2 and a system’s transition to jamming mode n3 (the initial load rotation 

speed is slightly greater than n2); d – local asymptomatic stability of jamming mode n3 even 
at load acceleration (due to a small region of attracting by mode n1)
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balancers). The technique cannot be used over the entire 
range of the existence and stability of jamming mode n1, 
due to a reduction in the attraction region by this mode. 
However, the range of resonance velocities from 1 to 6.2, 
identified for a particular case, is large enough for practical  
application.

The solved problem can be considered to be a model. In 
it, we found all possible steady motions of the system and 
explored their stability. It is shown that in practical terms 
not only the stability (by Lyapunov) of a certain motion 
mode is important, but also the region of attraction of this 
mode, if there are several steady modes. The disadvantage 
of this work is that the analytical studies were conducted at 
different depths.

In the future, it is planned to investigate the steady mo-
tion modes of two-mass and three-mass resonance vibration 
machines with a vibration exciter in the form of a pendulum, 
a ball, or a roller.

7. Conclusions 

We have analytically investigated the steady motion 
modes of the system, composed of a balanced rotor on isotro-
pic elastic and viscous supports, and a load (a ball, a roller,  
a pendulum), installed inside the rotor with a possibility for  
a relative motion. In this case, the pendulum is freely moun
ted onto the rotor shaft, while the ball or roller roll without 

slipping along a circular path centered on the longitudinal 
axis of the rotor:

1. We have found all the steady motion modes of the sys-
tem under which a load rotates at a constant angular velocity. 
In the coordinate system that synchronously rotates with the 
load, these motions are stationary and:

– in the absence of resistance forces in the system, the 
load rotates synchronously to the rotor; 

– in the presence of resistance forces in the system, the 
load lags behind the rotor.

The load jamming regimes are the one-parameter families 
of steady motions. Each jamming mode is characterized by 
the corresponding jam frequency. 

Depending on the system parameters and a rotor speed, 
there may exist one or three possible speeds of a load jam.

2. If, at any rotor speed there is only one angular velocity 
of a load jam, then the corresponding motion mode (a one-pa-
rameter family) is globally asymptomatically steady. If the 
number of jamming speeds varies depending on the angular 
velocity of rotor rotation, the asymptomatically stable are:

– the only existing jamming mode (globally stable when 
there are no others); 

– the jamming modes with the lowest and greatest speeds.
3. A load jamming mode with the lowest angular velocity 

(close to resonance) can be used in order to excite resonance 
oscillations in vibration machines. The highest frequency of a 
load jam is close to a rotor speed. This mode can be used in order 
to excite the non-resonance oscillations in vibration machines.
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Оцінено вплив величини ступеня заповнення камери 
завантаженням на ефективність автоколивного процесу 
подрібнення в барабанному млині.

За допомогою наближеного аналітико-експерименталь-
ного методу встановлено динамічний ефект підвищен-
ня автоколивної ударної дії молольного завантаження на 
подрібнюваний матеріал порівняно із традиційним устале-
ним режимом руху. Виявлено суттєве зростання середніх 
сум вертикальних складових автоколивних ударних імпуль-
сів та середніх сум потужностей таких складових зі змен-
шенням заповнення камери. Прояв ефекту зумовлено збіль-
шенням розмаху автоколивань при зменшенні заповнення. 
Виявлено зростання максимальних значень імпульсів при-
близно у 2,4 рази при ступені заповнення κ = 0,45, у 3,1 рази 
при κ = 0,35 та у 5,8 рази при κ = 0,25. Встановлено зростан-
ня максимальних значень потужностей імпульсів у 5,7 рази 
при κ = 0,45, у 9,6 рази при κ = 0,35 та у 45,5 рази при κ = 0,25.

Експериментально встановлено технологічний ефект 
суттєвого спадання питомої енергоємності та зростан-
ня продуктивності інноваційного автоколивного процесу 
подрібнення, порівняно із характеристиками традиційного 
усталеного процесу, зі зменшенням заповнення камери. 

Було розглянуто процес помелу цементного клінкера при 
повному заповненні частинками подрібнюваного матеріа-
лу проміжків між кульовими молольними тілами із віднос-
ним розміром 0,026. Встановлено, що під час самозбудження 
автоколивань енергоємність подрібнення спадає, а продук-
тивність зростає. Виявлено зниження відносної питомої 
енергоємності на 27 % при κ = 0,45, на 42 % при κ = 0,35 та  
на 55 % при κ = 0,25. Встановлено підвищення відносної про-
дуктивності на 7 % при κ = 0,45, на 30 % при κ = 0,35 та на 
46 % при κ = 0,25.

Встановлені в роботі ефекти дозволяють прогнозувати 
раціональні параметри автоколивного процесу подрібнення 
в барабанному млині при варіації ступеня заповнення камери 

Ключові слова: барабанний млин, ступінь заповнення 
камери, автоколивання завантаження, питома енергоєм-
ність подрібнення
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1. Introduction

Due to a series of their operational advantages, the tum-
bling type mills remain to be the main equipment in many 
industries for small- and large-tonnage fine grinding of solid 
materials.

Replacement of the conventional steady-state grinding 
process with a novel self-oscillating process improves exist-

ing equipment of relatively low power efficiency. Use of the 
phenomenon of excitation of self-oscillations makes it possi-
ble to apply conventional solutions to designing the tumbling 
mills with a smooth working chamber surface without addi-
tional activating elevators in a form of protruding elements 
which undergo rapid abrasive wear.

On the other hand, significant variability of the self- 
excited pulsation behavior of the rotating chamber fill de-


