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1. Introduction

This paper reports the implementation of the symmetry
method in studying the free oscillations of the continuous
ring or circular plates of variable thickness. Circular plates
are widely used in many technical applications in engi-
neering and construction [1, 2]. Plate-type elements of the
membrane type have been used for medical purposes [3]. The
plates are employed in high-speed rotational engineering
systems as one of the main structural elements [4]. Typically,
these elements are subject to destructive stresses caused by
resonant oscillations during operation. Free oscillation anal-
ysis is necessary to enhance the technical resource of a struc-
ture as a whole by adjusting the resonance, which is possible
if the natural frequencies are known. At the same time, there
is an issue of finding a closed solution to the problems on the
free oscillations of plates, addressed by a large body of re-
search [5-7]. The above problems remain unresolved in
many cases, despite their practical and theoretical signif-
icance. The relevance of the current work stems from the
practice-dictated requests to provide for the desired opera-

tional resource of plate elements or nodes, which is impossi-
ble without a clear understanding of their cyclical stressed
and strained state. This requirement could be primarily met
on the basis of a theoretical analysis of oscillations.

2. Literature review and problem statement

The results of precise studies into the plates of variable
thickness are very limited primarily due to the known math-
ematical difficulties arising from the analytical investigation
of their oscillations.

Paper [8] shows that it is possible, under a free oscilla-
tion mode, based on the approximate Relay-Ritz method
and Chebyshev’s polynomial functions, to solve the problem
on natural values. According to the proposed approach, the
displacement coefficients are determined as a simplification
tool for solving the problem. The paper reports the results
of studying the oscillations of a plate with a linear-variable
thickness on the elastic base. The specified methods, howev-
er, do not make it possible to derive an analytical solution to



the problem on the oscillations of a plate with the parabolic
law of thickness change. It could be argued that the reason
for this is the mathematical difficulties that arise when try-
ing to use the ratios given in the work for this purpose.

Another approach to solving a problem on natural values
is considered in paper [9]. In this case, an independent con-
jugal coordinate method is recommended to analyze the free
oscillations of a plate. However, in fact, it is unclear how the
specified approach could be extended to the problem involv-
ing a plate with a solid profile, different from linear.

The free oscillations of a plate of constant thickness
are studied in [10, 11]. These works employed a differential
method of transforming equations to derive the solutions to
the problem of natural values. The authors do not consider
the algorithm for finding the natural frequencies of a plate
for the highest shapes of oscillations. In addition, work [10]
graphically presents only the diagrams of deflections while
the diagrams of cyclical stresses are lacking, which may
raise doubts about the suitability of the proposed approach
for practice. A circular plate was examined in paper [11] em-
ploying the Runge-Kutta method. The resulting ratios and
the approach itself are difficult to apply to solve the problem
on free oscillations of a variable-thickness plate.

Although article [12] provides a solution to the problem
about a plate under a mode of axisymmetric free oscillations
(the frequency numbers were defined), it does not give the
frequency equation in an analytical form. To study the
plates, the authors suggest using additional variable co-
efficients, which they believe are designed to improve the
classical Kirchhoff plate theory. As a result, this leads to a
significant complication of the problem.

The issue of fixing a plate under conditions of repeatedly-
variable operational loads deserves special attention. This is
explained by the fact that the classical statement of the problem
on natural values requires mandatory accounting of boundary
conditions. Investigating such a situation is addressed, for ex-
ample, in work [13], where a finite element method was used to
analyze free oscillations of a rigidly-clamped plate.

The issues relating to the construction of analytical solu-
tions to the fourth-order oscillation equation with variable
coefficients remain unresolved. Part of the solution to this
problem is given in article [14], where a similar equation was
studied on the basis of approximate approaches — the classical
method by Galerkin and the energy one. The statement of the
problem set out in the cited article does not make it possible
to use the results to consider plates with a parabolic profile.

Prospective practical application of variable-thickness
plates is addressed in works [15, 16] that show the impor-
tance of solving a problem on natural values when using
plates under the conditions of cyclical air loads in aircraft.
There remained, however, the issues related to the search
for the natural frequencies of a plate under conditions of real
loads; no regions of the location of nodes and antinodes of
oscillations were specified. The absence of such information
could lead to uncontrollable deformations of the plate.

All this suggests that it is appropriate to conduct a
study on solving the problem on the oscillations of a plate
of variable thickness with varying degrees of concaveness.
The above literary sources employ a mathematical apparatus
based only on the approximate numerical methods and ap-
proaches. The accuracy and reliability of the results, in this
case, could be highly questionable. Analytical approaches,
as opposed to approximate or numerical, make it possible to
expand the existing estimated base of accurate solutions for

the plates subject to oscillations, thereby supplementing it
with new results obtained in the final form.

3. The aim and objectives of the study

The aim of this study is to examine the oscillations and
to analyze the stressed-strained state of a circular ring plate
whose thickness changes in line with the law of concave
parabola h=Hy(1-pp)> with varying degrees of concave-
ness, determined by the values of constant p. In practice,
this would make it possible to map out the optimal design
of plate-type structural elements of variable thickness ac-
cording to the criteria of mass-size, resonance frequencies,
movements (shapes of oscillations) and cyclical stresses by
choosing appropriate values for p.

To accomplish the aim, the following tasks have been set:

— to build a general analytical solution to the fourth-or-
der differential equation for the problem about a cyclical
symmetrical bend of the circular plate of a parabolic profile
with varying degrees of concaveness;

— to derive, based on a general solution, the formulae for
calculating cyclical stresses in a plate;

— to determine, for a circular plate with a rigidly trimmed
internal contour and a free one on the outside, by using the
resulting solution, the first three natural values for the prob-
lem for each of the three cases of concaveness and to build,
based on them, the natural functions (shapes of the plate’s
natural oscillations);

— to construct, as an example, the diagrams of radial and
tangential stresses at the basic shape of oscillations.

4. The original differential equation and its general
solution for a plate with a thickness of A=Hy(1—pp)?

For a plate that abides the law of changing the thickness
h=Hy(1-pp)?, the equation of the shapes of natural oscilla-
tions takes the form [17]

LLW —(A'+4p*)W =0, 1)
where
d? d
L=(1-pp)*—+(P)—-2u?%
(1-up) dpz+( )dp u

p_Lpl=pe)'] ,;

~ p(t-np)?

W =W (p) — displacements (deflections) of a plate;
W — arbitrary constant;

p=r/R —relative radius;

r — variable radius;

R — constant radius;
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[ is the frequency of natural oscillations; Hy is the thick-
ness in the center of a plate; v, y, E are the Poisson coefficient,
the specific weight, the elasticity module of the plate materi-



al, respectively; g is the acceleration of gravity. Hereafter, the
o coefficient is accepted equal to 1/3, which is true for most
structural metallic materials.

The order IV equation in notation (1) makes it possible,
based on a factorization method, to replace it with two order
[T equations

o ([e-me) ]
(L-up) W”+ 9(1—MP)2 W’

W A+ 4Ap W =0, (3)

and then the solution to equation (1) could be defined as
the sum of the general solutions to these two equations
W=W;+W,, where Wj is the solution to equation (3) at the
plus sign before the root, and Wy — at the minus sign.

Using a variable replacement

P:(1_971)/Mv
the differential equation (3) could be rewritten as
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where

1/2

W, =W" D=D(e™* —e™)";

4
W, =W’ k=-2% (7‘) +4. 5)
n

The equation (4) is similar in structure to the equation of
the shapes of longitudinal oscillations of a rod with a variable
cross-section, with a diameter of D(x), so the solution to it
could be derived by using the symmetry method. Since D,/D
is generally independent of the Dy coefficient from ratios (5),
this coefficient could be thought to be arbitrary, not affecting
the outcome of the general solution. Note that the natural
boundaries of the variable p=0+1 for equations (3) are
matched with the boundaries of the variable x>0 for equa-
tions (4) at any p>0 that do not exceed the marked limits
of p. To derive a final solution to the problem, it is required
that the function W=W;+W, should meet the boundary con-
ditions at x1 and x».

The equation (4) at D set by law (5) is not solvable in
elementary or known special functions. However, its solu-
tion is easy to find by approximating D(x) with some func-
tion Dy(x), in which the solution could be defined in a closed
form. As a result, the issue of the accuracy of solving the prob-
lem is transferred to the successful choice of the law Dy(x) in the
sense of its satisfactory approximation to D(x) over the required
interval (x1+x5). The symmetry method allows this choice to be
implemented because, according to this method, the expression
for Dy(x) may contain a series of uncertain coefficients, the se-
lection of which enables the required approximation.

The author of article [17] derived an approximation
function Dy(x) for a given problem, based on the symmetry
method, in the following form

Jx

D =021——— 6
! x2+0.2483 ©)

It follows from the analysis of graphic dependences giv-
en in the work that solving a problem based on (6) yields
acceptable results for technical applications. Given this,
we shall for further analysis use the calculations that were
earlier obtained by the author in article [17] to compute nat-
ural frequencies and to build the shapes of oscillations of a
thin plate. In this case, to construct the first three shapes of
oscillations, we shall employ the function of deflections, ex-
pressed through the variable x according to the dependence
x=-In(1-pp), recorded in a slightly modified form:

W, =W,;+W, =
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Here, at known coefficients A/By, B/By, A1/By, the By

multiplier is freely selected and is used in this case to nor-
malize Wj, so that Wi(p=p2)=W;(x=x9)=1.

5. Formulae for calculating cyclical stresses in a plate

To analyze the stressed-strained state of a plate, we shall
use the expressions, known from a theory of plates, to deter-
mine the maximally thick radial o, and tangential (circular)
o normal stresses [18].

. =_6£(W +XW); cez—G—P(vW +1W), (®)
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where W,, W,,. are the derivatives from radius 7;
D=Eh3/12(1-v?)

is the cylindrical rigidity.
Following the transition to the relative variable p=7/R

and onwards, to the variable x=—In(1-pp), and after the
introduction of v=1/3 to (8), we obtain
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The minus sign is omitted at oy due to the cyclicality of
the stresses o, and op. Given that W=W;+Wy; &} = o.*; ks = -7,
we find

(10)

W, +pW, =M(x)W +B*W, —a’W,;
WYJC +qu = N(X)W’-':-BZWQ _az‘/{/l’

where
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Substitution of the obtained expressions Wy, Wy from
article [17], ratios (10) in formulae (9) leads to the desired
dependences for cyclical stresses:
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The Bessel’s functions [J(ox), Y(ax), I(Bx), K(Bx)] are
denoted [/, Y, I, K] for convenience.

6. Determining the natural frequencies, shapes of
oscillations, and cyclical stresses

For the intended use of circular plates of variable thick-
ness in technical devices, in accordance with the objectives
of the current study, three options of thickness h=Hy(1—pp)?
were selected. The ratios of the limiting thicknesses A(p1)/
h(pz) at p=p1=0.1 and p=py=0.5 are assigned as 1.8; 5; 8.

The graphic illustrations (Fig. 1) show the plates with these
parameters under numbers 1; 2; 3, which corresponds to the
coefficient values p;=0.5985; 1.21417; 1.39127 (i=1, 2, 3),
respectively. Based on ratios (7) and boundary conditions
for a circular plate with rigid fastening at p=p;=0.1 and free
at p=py=0.5, the following results were obtained.

We determined the frequency numbers A; as the solutions
to the corresponding frequency equation (Table 1).

o, :60B1(x2+C0)-(p—q+n+s);
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Fig. 1. Graphic representation of the profiles of circular plates depending on
the values p; 1 — u1=0.5985; 2 — p=1.21417; 3 — u3=1.39127

Table 1
The oscillations parameters of the plate of different concaveness
Frequency numbers A; Coordinates of the antinodes of oscillations p; Deflections at p,,;
h(p1) / h(p2)
M Ay A3 Pt P2 Pm3 Wipmi)
0.22125 0.856244
1.8 4.29083 9.7437 16.073027 0.5 0'39504 0.38559 1 0'751863 0.655916
’ 0.5 1
0.24617 0.410675
5 42500 | 802452 | 1239974 05 0.3219 0.4038 1 045511 76 5043
0.5 1
0.5 1
0.25899 0.334157
8 4.23412 7.4097 11.19461 0.5 0'3(?;36 0.41261 1 0'4?54 0.479561
’ 0.5 1




For all calculation based on variable x, taking into con-
sideration the dependence

x:,ln(1,p_p),

the following boundary values of variable x were established,
which correspond to the values y; (i=1, 2, 3)

x1=0,0617; 0,12944; 0,149808;
x2=0,3556; 0,93416; 1,18952.

Based on (7), according to the obtained A;, we construct-
ed the shapes (deflections) of natural oscillations (Fig. 2—4).
With the help of (7), (11) and A;, the diagrams of the radial
and tangential cyclical stresses were built for the main shape
of oscillations (Fig. 5, 6). Table 1 gives the coordinates of the
antinodes of oscillations p,,; and the corresponding values of
maximum deflections W;(pu).
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The estimated data, given in Table 1, as well as the
graphic dependences, shown in Fig. 2—6, provide quite clear
information about the oscillations of the plate considered.

w
1

0.82 —
0.64 / \\ — ,i /-
0.46 d =3 g

0.28 ':::::\ : /

0.11A2 TS
2

-0.084-+-6.14-0]
-0.26 N J
-0.44 N 5
-0.62

-0.8
Fig. 4. Graphic representation of deflections at
the third shape of natural oscillations of plates of
different concaveness: 1 — jq; 2 — g 3 — 3

\
AR
.
AN
AN
T
]
[US)

2
B
ET<F
N

5P

=Y

4
/_
s

\S el

Oy

1

0.892 e B B B

0.784 \ """ 3
0.676 R i
0568

0.46 N T
0.352 2

I
0.244 ~

0.136 e
0.028 D S N
0 00014 0,15 0.2 0.06 0[5 054058042 06 05 »

Fig. 5. Graphic representation of radial stresses ¢, at
the first shape of oscillations for three values of y;:
T=un2—py 33

Gg

1
0.933
0.867
0.8
0.733
0.667 3
0.6 R
0.533 t—— et —L L L " .
0.467 t—eme=g= T mmmee s
0.4 15 >
0.333/ P
0.267
0.2 P~ -
0.133 ! S,
0.067

0.1 0.140.180.220.26 0.3 0.34 0.380.420.46 0.5 p

Fig. 6. Graphic representation of tangential stresses oy at
the first shape of oscillations for three values p;:
T=un2—py33— 3

7. Discussing the results of solving the set problem

By using the function of deflections W;, constructed on
the basis of the symmetry method, and by applying the built
algorithm, one could derive analytical expressions to calcu-
late the radial o, and circular oy stresses. That provides for
an opportunity to study the distribution of stresses and to



generally analyze the stressed-strained state of a plate. The
resulting graphic dependences for the shapes of oscillation of
the plate make it possible to determine the location of nodes
and antinodes, to estimate the magnitude of deflections.

According to the results of our calculations, it is possible
to confirm the obvious that the degree of concaveness affects
the weight of a plate. One could see that, based on the pro-
files (Fig. 1), the increase in the ratio h(p;)/h(ps) makes it
possible to reduce the mass of the plate element when design-
ing. Based on the data from Table 1, the natural frequencies
of the first three shapes of oscillations decrease to varying
degrees with a rise in concaveness, determined by the num-
ber of the frequency number A; (i=1, 2, 3). Thus, it follows
from the data in Table 1 that at £(0.1)/A(0.5)=1.8; 5; 8
(u=0.5985; 1.21417; 1.39127) the frequencies decrease, com-
pared to py, respectively, for cases py and ps, by (1.0; 1.3) %
for Ay, by (17.6;24) % for Ly, by (22.85;30.35) % for A3. These
indicators are a benchmark for studying the oscillations of a
given type of plates. One could see a significant drop in fre-
quency on the higher shapes (Lo, A3) and a slight drop at the
basic shape(1). To date, only one attempt to analytically de-
termine a single frequency coefficient A4 is known, but based
on a laborious and less accurate series method, and only for
the plate of a linear-variable thickness [19].

Data from Table 1 could be applied to establish that the
values of the normalized extreme deflections for cases pa, us
(h(0.1)/h(0.5)=5; 8) are much lower compared to the plate
at py (2(0.1)/h(0.5)=1.8). This fact is important for judging
the effect of concaveness on the cylindrical rigidity of a plate
under a mode of the axisymmetric cyclical bend. In this case,
plate number 3 (u=p3) has obviously the least rigidity.

Table 1 could be used to determine the coordinates of the
extreme values of deflections (the antinodes of oscillations)
and Fig.3,4 — to find the indicative coordinates of the
nodes. These parameters are a means, along with frequency
indicators, to identify the oscillatory properties of a plate
when it is studied in practice.

The following should be noted as regards the pattern
of distribution of stresses o, (Fig. 5) and o4 (Fig. 6) for the
three variants of the circular plate. The stresses o, that op-
erate far from the free edge, such as at the end constraint or
in the region of maximal oy, are greater to varying degrees
than oy. Therefore, these stresses are the main threat in
terms of cyclical strength (resistance to fatigue) of the plate
when o, reaches destructive values in the process of oscil-
lations. The experiments set to determine cyclical strength
by initiating intense axisymmetric resonance oscillations
in such plates confirmed the validity of the stated assump-
tion [20] because during such experiments the fatigue
crack was always located perpendicular to the direction of
the action of maximal o,. As the ratio of limiting boundary
thicknesses increases, the maximum value of the radial
stress o, is closer to the value of o, at the end constraint.
For example, for 2(0.1)/h(0.5)=5, the stress 6, has an ex-
tremum only at the end constraint (p=0.1); so such a plate
cannot be used for fatigue tests. At 2(0.1)/k(0.5)=8, there
is an extremum 6,<0.93 at p=0.3. In this case, the ratio
6,(0.1)/ 5,(0.3)=1.075 is little different from 1. It is obvious
that with a further increase in concaveness (increase in )
one could obtain the types of plates required for these pur-
poses, with a ratio of 6,(0.1)/ 5,(0.3)<1.

Our study of the problem about the natural oscillations
of a plate with the assigned profile has demonstrated the
flexibility of the symmetry method. The main feature of the

current study is the technique whereby the equation of the
shape of natural oscillations could be greatly simplified. The
consequence of simplification is the possibility of obtaining
an analytically closed solution to the formulated problem.

The algorithm for solving the problem in the case of
the original parameters of the plate, which are different
from those adopted in the estimation example, remains
unchanged. It may be necessary, however, to modify the
approximation function. However, according to the symme-
try method, whose flexibility and multivariance has been
confirmed in the current work, this circumstance does not
present fundamental difficulties.

A feature of the obtained theoretical results is the real
practical use of the symmetry method and the algorithm of
its application to solve the problem about the oscillations of
a plate with different-variant thickness A=Hy(1—pp)?. The
practical significance of our results is the possibility to di-
rectly use the estimated data obtained in the current work,
in particular for the rational design of resonance sound and
ultrasound systems based on plates as acoustically active
elements.

8. Conclusions

1. A combination of the symmetry method and the fac-
torization technique has helped to build a general analytical
solution to the order IV differential equation for the problem
about the cyclical axisymmetric bend of a circular plate,
whose thickness changes in line with the law of concave
parabola h=Hy(1—pp)? at varying degrees of its concaveness.

2. Based on the general solution, we have derived formu-
lae to calculate the cyclical stresses in a plate. The feature of
the formulae is their compactness achieved by transforming
the known expressions containing derivatives from the dis-
placement function of second-order for natural variable p to
the form containing only the first derivatives for the auxil-
iary variable x(p). The transformed formulae are convenient
for directly using the deflection function W=W(x) in them,
obtained as a general solution.

3. We have determined the first three natural values
for the problem (frequency numbers) and natural functions
(oscillation shapes) for a circular plate with a rigid fastening
of the inner contour (p;=0.1) (1/0.1) and free on the exter-
nal contour (py=0.5). It has been shown that the natural
frequencies of the first three shapes of oscillations decrease
to varying degrees with the increase in concaveness, deter-
mined by the number of the frequency number A; (i=1, 2, 3).
At p=1.214171 and p=1.39127, the frequencies decrease,
compared to the case of p=0.598, by (1; 1.3) %, (17.6; 24) %,
(22.85; 30.35) %, respectively. One could see a significant
drop in frequency on the higher shapes of oscillations (A, A3)
and a slight drop at the basic shape (1;). We have established
the magnitudes and coordinates of extreme deflections (the
antinodes of oscillations) and the indicative coordinates of
the nodes. These numerical parameters, along with the fre-
quency indicators, are a means of identifying the oscillatory
properties of a plate when it is studied in practice.

4. We have constructed the diagrams (graphic depen-
dences) of radial o, and tangential o4 cyclical stresses at the
basic shape for each of the three variants of the parabolic
plate concaveness. It has been established that the increase
in the ratio of the edge thickness %4(0.1)/kh(0.5), that is
concaveness, leads to an increase in o, in the cross-sections



outside the end constraint. At £(0.1)/h(0.5)=1.8;5, the ness would lead to the values c,(0.1)/5,(0.3)<1, which
stresses o, have an extremum 6,=0.93 at p=0.3. The ratio  makes it possible, in particular, to use such plates to experi-
6,(0.1)/5,(0.3)=1.075 in this case is little different from 1.  mentally determine the limits of materials endurance under
It has been concluded that a further increase in concave-  a complex stressed state.
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