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1. Introduction

This paper reports the implementation of the symmetry 
method in studying the free oscillations of the continuous 
ring or circular plates of variable thickness. Circular plates 
are widely used in many technical applications in engi-
neering and construction [1, 2]. Plate-type elements of the 
membrane type have been used for medical purposes [3]. The 
plates are employed in high-speed rotational engineering 
systems as one of the main structural elements [4]. Typically, 
these elements are subject to destructive stresses caused by 
resonant oscillations during operation. Free oscillation anal-
ysis is necessary to enhance the technical resource of a struc-
ture as a whole by adjusting the resonance, which is possible 
if the natural frequencies are known. At the same time, there 
is an issue of finding a closed solution to the problems on the 
free oscillations of plates, addressed by a large body of re- 
search [5–7]. The above problems remain unresolved in 
many cases, despite their practical and theoretical signif-
icance. The relevance of the current work stems from the 
practice-dictated requests to provide for the desired opera-

tional resource of plate elements or nodes, which is impossi-
ble without a clear understanding of their cyclical stressed 
and strained state. This requirement could be primarily met 
on the basis of a theoretical analysis of oscillations.

2. Literature review and problem statement

The results of precise studies into the plates of variable 
thickness are very limited primarily due to the known math-
ematical difficulties arising from the analytical investigation 
of their oscillations.

Paper [8] shows that it is possible, under a free oscilla-
tion mode, based on the approximate Relay-Ritz method 
and Chebyshev’s polynomial functions, to solve the problem 
on natural values. According to the proposed approach, the 
displacement coefficients are determined as a simplification 
tool for solving the problem. The paper reports the results 
of studying the oscillations of a plate with a linear-variable 
thickness on the elastic base. The specified methods, howev-
er, do not make it possible to derive an analytical solution to 
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На основi методiв симетрiї i факторизацiї отримано загальне 
аналiтичне рiшення диференцiального рiвняння четвертого поряд-
ку для задачi про вiльнi вiсесиметричнi коливання кругової пла-
стинки зi змiнною товщиною. Законом змiни товщини є увiгнута 
парабола h=H0(1–μρ)2, де μ – постiйний коефiцiєнт, який визначає 
ступiнь угнутостi пластинки. Рiшення представлено у функцiях 
Беселя нульового та першого порядку вiд дiйсного i уявного аргумен-
ту. Розглянута кругова кiльцева пластинка з жорстким закрiплен-
ням внутрiшнього контуру i вiльним зовнiшнiм краєм при трьох зна-
ченнях коефiцiєнта μ. Визначено першi три власнi значення задачi 
(частотнi числа) i власнi функцiї (форми коливань). Показано, що 
власнi частоти перших трьох форм коливань зi зростанням угну-
тостi (збiльшенням μ) знижуються в рiзнiй мiрi, яка визначається 
номером частотного числа λi (i=1, 2, 3). При μ=1,21417 i μ=1,39127 
частоти в порiвняннi з випадком μ=0,5985 знижуються вiдповiдно 
на (1; 1,3) %, (17,6; 24) %, (22,85; 30, 35) % для λ1, λ2, λ3. Видно, що 
наявне iстотне падiння частоти на вищих формах коливань (λ2, λ3 )  
i незначне при основнiй формi (λ1). Встановлено значення i коорди-
нати екстремальних прогинiв (пучностей коливань) i орiєнтовнi 
координати вузлових перерiзiв. Наведенi числовi параметри поряд з 
частотними показниками є засобом для iдентифiкацiї коливальних 
властивостей пластинки при її вивченнi на практицi. Побудовано 
графiчнi залежностi для радiальних σr i тангенцiальних σθ циклiч-
них напружень при основнiй формi для кожного з трьох варiантiв 
угнутостi параболiчної пластинки. Встановлено, що збiльшення 
вiдношення крайових товщин, тобто увiгнутостi, призводить до 
пiдвищення σr в перерiзах за межами закрiплення. Цi напруження, 
що дiють вiддалено вiд вiльного краю, наприклад, в закрiпленнi або в 
районi дiї максимальних σθ в рiзнiй мiрi перевершують σθ. Через це цi 
напруження представляють собою основну небезпеку з точки зору 
циклiчної мiцностi пластинки при досягненнi σr руйнiвних значень. 
Вiдзначено можливiсть за рахунок пiдвищення увiгнутостi пара-
болiчної пластинки забезпечити оптимальне спiввiдношення мiж 
значеннями σr в закрiпленнi i σr, якi дiють за межами вiд закрiплен-
ня. Це спiввiдношення, яке дорiвнює приблизно 1, забезпечується у 
випадку μ=1,39127, що розглянуто в роботi
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the problem on the oscillations of a plate with the parabolic 
law of thickness change. It could be argued that the reason 
for this is the mathematical difficulties that arise when try-
ing to use the ratios given in the work for this purpose.

Another approach to solving a problem on natural values 
is considered in paper [9]. In this case, an independent con-
jugal coordinate method is recommended to analyze the free 
oscillations of a plate. However, in fact, it is unclear how the 
specified approach could be extended to the problem involv-
ing a plate with a solid profile, different from linear.

The free oscillations of a plate of constant thickness 
are studied in [10, 11]. These works employed a differential 
method of transforming equations to derive the solutions to 
the problem of natural values. The authors do not consider 
the algorithm for finding the natural frequencies of a plate 
for the highest shapes of oscillations. In addition, work [10] 
graphically presents only the diagrams of deflections while 
the diagrams of cyclical stresses are lacking, which may 
raise doubts about the suitability of the proposed approach 
for practice. A circular plate was examined in paper [11] em-
ploying the Runge-Kutta method. The resulting ratios and 
the approach itself are difficult to apply to solve the problem 
on free oscillations of a variable-thickness plate.

Although article [12] provides a solution to the problem 
about a plate under a mode of axisymmetric free oscillations 
(the frequency numbers were defined), it does not give the 
frequency equation in an analytical form. To study the 
plates, the authors suggest using additional variable co-
efficients, which they believe are designed to improve the 
classical Kirchhoff plate theory. As a result, this leads to a 
significant complication of the problem.

The issue of fixing a plate under conditions of repeatedly- 
variable operational loads deserves special attention. This is 
explained by the fact that the classical statement of the problem 
on natural values requires mandatory accounting of boundary 
conditions. Investigating such a situation is addressed, for ex-
ample, in work [13], where a finite element method was used to 
analyze free oscillations of a rigidly-clamped plate.

The issues relating to the construction of analytical solu-
tions to the fourth-order oscillation equation with variable 
coefficients remain unresolved. Part of the solution to this 
problem is given in article [14], where a similar equation was 
studied on the basis of approximate approaches – the classical 
method by Galerkin and the energy one. The statement of the 
problem set out in the cited article does not make it possible 
to use the results to consider plates with a parabolic profile.

Prospective practical application of variable-thickness 
plates is addressed in works [15, 16] that show the impor-
tance of solving a problem on natural values when using 
plates under the conditions of cyclical air loads in aircraft. 
There remained, however, the issues related to the search 
for the natural frequencies of a plate under conditions of real 
loads; no regions of the location of nodes and antinodes of 
oscillations were specified. The absence of such information 
could lead to uncontrollable deformations of the plate.

All this suggests that it is appropriate to conduct a 
study on solving the problem on the oscillations of a plate 
of variable thickness with varying degrees of concaveness. 
The above literary sources employ a mathematical apparatus 
based only on the approximate numerical methods and ap-
proaches. The accuracy and reliability of the results, in this 
case, could be highly questionable. Analytical approaches, 
as opposed to approximate or numerical, make it possible to 
expand the existing estimated base of accurate solutions for 

the plates subject to oscillations, thereby supplementing it 
with new results obtained in the final form.

3. The aim and objectives of the study

The aim of this study is to examine the oscillations and 
to analyze the stressed-strained state of a circular ring plate 
whose thickness changes in line with the law of concave 
parabola h=H0(1–μρ)2 with varying degrees of concave-
ness, determined by the values of constant µ. In practice, 
this would make it possible to map out the optimal design 
of plate-type structural elements of variable thickness ac-
cording to the criteria of mass-size, resonance frequencies, 
movements (shapes of oscillations) and cyclical stresses by 
choosing appropriate values for µ.

To accomplish the aim, the following tasks have been set:
– to build a general analytical solution to the fourth-or-

der differential equation for the problem about a cyclical 
symmetrical bend of the circular plate of a parabolic profile 
with varying degrees of concaveness; 

– to derive, based on a general solution, the formulae for 
calculating cyclical stresses in a plate; 

– to determine, for a circular plate with a rigidly trimmed 
internal contour and a free one on the outside, by using the 
resulting solution, the first three natural values for the prob-
lem for each of the three cases of concaveness and to build, 
based on them, the natural functions (shapes of the plate’s 
natural oscillations); 

– to construct, as an example, the diagrams of radial and 
tangential stresses at the basic shape of oscillations.

4. The original differential equation and its general 
solution for a plate with a thickness of h=H0(1–μρ)2 

For a plate that abides the law of changing the thickness 
h=H0(1–μρ)2, the equation of the shapes of natural oscilla-
tions takes the form [17]

( )4 44 0,LLW W− λ + µ = 	 (1)

where

( ) ( )
2

2 2
2

d d
1 2 ;

d d
L P= − µρ + − µ

ρ ρ

( )
( )

4

2

1
;

1
P

′ ρ − µρ =
ρ − µρ

( )W W= ρ  – displacements (deflections) of a plate; 
µ  – arbitrary constant; 

/r Rρ =  – relative radius; 
r – variable radius; 
R – constant radius;

( )22
2

0

12 1
2 ;

R
f

H gE

− ν γ
λ = π  			   (2)

f is the frequency of natural oscillations; H0 is the thick-
ness in the center of a plate; ν, γ, E are the Poisson coefficient, 
the specific weight, the elasticity module of the plate materi-
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al, respectively; g is the acceleration of gravity. Hereafter, the 
v coefficient is accepted equal to 1/3, which is true for most 
structural metallic materials. 

The order IV equation in notation (1) makes it possible, 
based on a factorization method, to replace it with two order 
II equations

( )
( )
( )

4

2

2

2 4 4

1
1

1

2 4 0,

W W

W W

′  ρ − µρ  − µρ + −′′ ′
 ρ − µρ 

− µ ± λ + µ =  	 (3)

and then the solution to equation (1) could be defined as 
the sum of the general solutions to these two equations 
W=W1+W2, where W1 is the solution to equation (3) at the 
plus sign before the root, and W2 – at the minus sign. 

Using a variable replacement

( )1 / ,xe−ρ = − µ

the differential equation (3) could be rewritten as

22 0,x
xx x

D
W W k W

D
+ + = 	  (4)

where

;xxW W= ′′  ( )1/23 4
0 ;x xD D e e− −= −  

;xW W= ′  
4

2 2 4 .k
 λ

= − ± + µ 
			   (5)

The equation (4) is similar in structure to the equation of 
the shapes of longitudinal oscillations of a rod with a variable 
cross-section, with a diameter of D(x), so the solution to it 
could be derived by using the symmetry method. Since Dx/D 
is generally independent of the D0 coefficient from ratios (5),  
this coefficient could be thought to be arbitrary, not affecting 
the outcome of the general solution. Note that the natural 
boundaries of the variable ρ=0÷1 for equations (3) are 
matched with the boundaries of the variable x≥0 for equa-
tions (4) at any ρ≥0 that do not exceed the marked limits  
of ρ. To derive a final solution to the problem, it is required 
that the function W=W1+W2 should meet the boundary con-
ditions at x1 and x2.

The equation (4) at D set by law (5) is not solvable in 
elementary or known special functions. However, its solu-
tion is easy to find by approximating D(x) with some func- 
tion D1(x), in which the solution could be defined in a closed 
form. As a result, the issue of the accuracy of solving the prob-
lem is transferred to the successful choice of the law D1(x) in the 
sense of its satisfactory approximation to D(x) over the required 
interval (x1÷x2). The symmetry method allows this choice to be 
implemented because, according to this method, the expression 
for D1(x) may contain a series of uncertain coefficients, the se-
lection of which enables the required approximation.

The author of article [17] derived an approximation 
function D1(x) for a given problem, based on the symmetry 
method, in the following form

1 20.21 .
0.2483

x
D

x
=

+
		   (6)

It follows from the analysis of graphic dependences giv-
en in the work that solving a problem based on (6) yields 
acceptable results for technical applications. Given this, 
we shall for further analysis use the calculations that were 
earlier obtained by the author in article [17] to compute nat-
ural frequencies and to build the shapes of oscillations of a 
thin plate. In this case, to construct the first three shapes of 
oscillations, we shall employ the function of deflections, ex-
pressed through the variable x according to the dependence 
x=–ln(1–μρ), recorded in a slightly modified form:
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Here, at known coefficients A/B1, B/B1, A1/B1, the B1 
multiplier is freely selected and is used in this case to nor-
malize Wi, so that Wi(ρ=ρ2)=Wi(x=x2)=1.

5. Formulae for calculating cyclical stresses in a plate

To analyze the stressed-strained state of a plate, we shall 
use the expressions, known from a theory of plates, to deter-
mine the maximally thick radial σr and tangential (circular) 
σθ normal stresses [18].

2

6
;r rr r

D
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h r
ν σ = − +  
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6 1
,rr r

D
W W
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where Wr, Wrr are the derivatives from radius r; 

D=Eh3/12(1–ν2) 

is the cylindrical rigidity.
Following the transition to the relative variable ρ=r/R 

and onwards, to the variable x=–ln(1–μρ), and after the 
introduction of ν=1/3 to (8), we obtain
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The minus sign is omitted at σ0 due to the cyclicality of 
the stresses σr and σθ. Given that W=W1+W2; 2 2

1 ;k = α  2 2
2 ,k = −β   

we find
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2 2
2 1

2 2
2 1

;

,
xx x
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+ = + β − α′ 

 		  (10)
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2
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Substitution of the obtained expressions W1ʹ , W2ʹ from 
article [17], ratios (10) in formulae (9) leads to the desired 
dependences for cyclical stresses:
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The Bessel’s functions [ J(αx), Y(αx), I(βx), K(βx)] are 
denoted [ J, Y, I, K] for convenience.

6. Determining the natural frequencies, shapes of 
oscillations, and cyclical stresses

For the intended use of circular plates of variable thick-
ness in technical devices, in accordance with the objectives 
of the current study, three options of thickness h=H0(1–μρ)2 
were selected. The ratios of the limiting thicknesses h(ρ1)/
h(ρ2) at ρ=ρ1=0.1 and ρ=ρ2=0.5 are assigned as 1.8; 5; 8. 
The graphic illustrations (Fig. 1) show the plates with these 
parameters under numbers 1; 2; 3, which corresponds to the 
coefficient values μi=0.5985; 1.21417; 1.39127 (i=1, 2, 3), 
respectively. Based on ratios (7) and boundary conditions 
for a circular plate with rigid fastening at ρ=ρ1=0.1 and free 
at ρ=ρ2=0.5, the following results were obtained.

We determined the frequency numbers λi as the solutions 
to the corresponding frequency equation (Table 1).

h



h





h

1

2

3

0

0

0

 
Fig. 1. Graphic representation of the profiles of circular plates depending on  

the values μi: 1 – μ1=0.5985; 2 – μ2=1.21417; 3 – μ3=1.39127

Table 1 

The oscillations parameters of the plate of different concaveness

( ) ( )1 2/h hρ ρ
Frequency numbers λi Coordinates of the antinodes of oscillations ρmi Deflections at ρmi 

λ1 λ2 λ3 ρm1 ρm2 ρm3 Wi(ρmi)

1.8 4.29083 9.7437 16.073027 0.5
0.2904 

0.5

0.22125 
0.38559 

0.5
1

0.75863 
1

0.856244 
0.655916 

1

5 4.2500 8.02452 12.39974 0.5
0.3219 

0.5

0.24617 
0.4038 

0.5
1

0.4551 
1

0.410675 
0.5043 

1

8 4.23412 7.4097 11.19461 0.5
0.33736 

0.5

0.25899 
0.41261 

0.5
1

0.4054 
1

0.334157 
0.479561 

1
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For all calculation based on variable x, taking into con-
sideration the dependence 

x=–ln(1–μρ), 

the following boundary values of variable x were established, 
which correspond to the values μi (i=1, 2, 3)

x1=0,0617; 0,12944; 0,149808;

x2=0,3556; 0,93416; 1,18952.

Based on (7), according to the obtained λi, we construct-
ed the shapes (deflections) of natural oscillations (Fig. 2–4). 
With the help of (7), (11) and λi, the diagrams of the radial 
and tangential cyclical stresses were built for the main shape 
of oscillations (Fig. 5, 6). Table 1 gives the coordinates of the 
antinodes of oscillations ρmi and the corresponding values of 
maximum deflections Wi(ρmi).

Fig. 2. Graphic representation of deflections at  
the first shape of natural oscillations of  

plates of different concaveness:  
1 – μ1; 2 – μ2; 3 – μ3

Fig. 3. Graphic representation of deflections on  
 the second shape of natural oscillations of  

plates of different concaveness:  
1 – μ1; 2 – μ2; 3 – μ3

The estimated data, given in Table 1, as well as the 
graphic dependences, shown in Fig. 2–6, provide quite clear 
information about the oscillations of the plate considered.

Fig. 4. Graphic representation of deflections at  
the third shape of natural oscillations of plates of  

different concaveness: 1 – μ1; 2 – μ2; 3 – μ3

Fig. 5. Graphic representation of radial stresses σr at  
the first shape of oscillations for three values of μi :  

1 – μ1; 2 – μ2; 3 – μ3

Fig. 6. Graphic representation of tangential stresses σθ at  
the first shape of oscillations for three values μi :  

1 – μ1; 2 – μ2; 3 – μ3

7. Discussing the results of solving the set problem

By using the function of deflections Wi, constructed on 
the basis of the symmetry method, and by applying the built 
algorithm, one could derive analytical expressions to calcu-
late the radial σr and circular σθ stresses. That provides for 
an opportunity to study the distribution of stresses and to 
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generally analyze the stressed-strained state of a plate. The 
resulting graphic dependences for the shapes of oscillation of 
the plate make it possible to determine the location of nodes 
and antinodes, to estimate the magnitude of deflections.

According to the results of our calculations, it is possible 
to confirm the obvious that the degree of concaveness affects 
the weight of a plate. One could see that, based on the pro-
files (Fig. 1), the increase in the ratio h(ρ1)/h(ρ2) makes it 
possible to reduce the mass of the plate element when design-
ing. Based on the data from Table 1, the natural frequencies 
of the first three shapes of oscillations decrease to varying 
degrees with a rise in concaveness, determined by the num-
ber of the frequency number λi (i=1, 2, 3). Thus, it follows 
from the data in Table 1 that at h(0.1)/h(0.5)=1.8; 5; 8 
(µ=0.5985; 1.21417; 1.39127) the frequencies decrease, com-
pared to µ1, respectively, for cases µ2 and µ3, by (1.0; 1.3) % 
for λ1, by (17.6;24) % for λ2, by (22.85;30.35) % for λ3. These 
indicators are a benchmark for studying the oscillations of a 
given type of plates. One could see a significant drop in fre-
quency on the higher shapes (λ2, λ3) and a slight drop at the 
basic shape(λ1). To date, only one attempt to analytically de-
termine a single frequency coefficient λ1 is known, but based 
on a laborious and less accurate series method, and only for 
the plate of a linear-variable thickness [19].

Data from Table 1 could be applied to establish that the 
values of the normalized extreme deflections for cases µ2, µ3 
(h(0.1)/h(0.5)=5; 8) are much lower compared to the plate 
at µ1 (h(0.1)/h(0.5)=1.8). This fact is important for judging 
the effect of concaveness on the cylindrical rigidity of a plate 
under a mode of the axisymmetric cyclical bend. In this case, 
plate number 3 (µ=µ3) has obviously the least rigidity. 

Table 1 could be used to determine the coordinates of the 
extreme values of deflections (the antinodes of oscillations) 
and Fig. 3, 4 – to find the indicative coordinates of the 
nodes. These parameters are a means, along with frequency 
indicators, to identify the oscillatory properties of a plate 
when it is studied in practice.

The following should be noted as regards the pattern 
of distribution of stresses σr (Fig. 5) and σθ (Fig. 6) for the 
three variants of the circular plate. The stresses σr that op-
erate far from the free edge, such as at the end constraint or 
in the region of maximal σθ, are greater to varying degrees 
than σθ. Therefore, these stresses are the main threat in 
terms of cyclical strength (resistance to fatigue) of the plate 
when σr reaches destructive values in the process of oscil-
lations. The experiments set to determine cyclical strength 
by initiating intense axisymmetric resonance oscillations 
in such plates confirmed the validity of the stated assump-
tion [20] because during such experiments the fatigue 
crack was always located perpendicular to the direction of 
the action of maximal σr. As the ratio of limiting boundary 
thicknesses increases, the maximum value of the radial 
stress σr is closer to the value of σr at the end constraint. 
For example, for h(0.1)/h(0.5)=5, the stress σr has an ex-
tremum only at the end constraint (ρ=0.1); so such a plate 
cannot be used for fatigue tests. At h(0.1)/h(0.5)=8, there 
is an extremum σr≈0.93 at ρ≈0.3. In this case, the ratio  
σr(0.1)/ σr(0.3)=1.075 is little different from 1. It is obvious 
that with a further increase in concaveness (increase in µ) 
one could obtain the types of plates required for these pur-
poses, with a ratio of σr(0.1)/ σr(0.3)<1. 

Our study of the problem about the natural oscillations 
of a plate with the assigned profile has demonstrated the 
flexibility of the symmetry method. The main feature of the 

current study is the technique whereby the equation of the 
shape of natural oscillations could be greatly simplified. The 
consequence of simplification is the possibility of obtaining 
an analytically closed solution to the formulated problem.

The algorithm for solving the problem in the case of 
the original parameters of the plate, which are different 
from those adopted in the estimation example, remains 
unchanged. It may be necessary, however, to modify the 
approximation function. However, according to the symme-
try method, whose flexibility and multivariance has been 
confirmed in the current work, this circumstance does not 
present fundamental difficulties.

A feature of the obtained theoretical results is the real 
practical use of the symmetry method and the algorithm of 
its application to solve the problem about the oscillations of 
a plate with different-variant thickness h=H0(1–μρ)2. The 
practical significance of our results is the possibility to di-
rectly use the estimated data obtained in the current work, 
in particular for the rational design of resonance sound and 
ultrasound systems based on plates as acoustically active 
elements.

8. Conclusions

1. A combination of the symmetry method and the fac-
torization technique has helped to build a general analytical 
solution to the order IV differential equation for the problem 
about the cyclical axisymmetric bend of a circular plate, 
whose thickness changes in line with the law of concave 
parabola h=H0(1–μρ)2 at varying degrees of its concaveness.

2. Based on the general solution, we have derived formu-
lae to calculate the cyclical stresses in a plate. The feature of 
the formulae is their compactness achieved by transforming 
the known expressions containing derivatives from the dis-
placement function of second-order for natural variable ρ to 
the form containing only the first derivatives for the auxil-
iary variable x(ρ). The transformed formulae are convenient 
for directly using the deflection function W=W(x) in them, 
obtained as a general solution.

3. We have determined the first three natural values 
for the problem (frequency numbers) and natural functions 
(oscillation shapes) for a circular plate with a rigid fastening 
of the inner contour (ρ1=0.1) (1/0.1) and free on the exter-
nal contour (ρ2=0.5). It has been shown that the natural 
frequencies of the first three shapes of oscillations decrease 
to varying degrees with the increase in concaveness, deter-
mined by the number of the frequency number λi (i=1, 2, 3). 
At µ=1.214171 and µ=1.39127, the frequencies decrease, 
compared to the case of µ=0.598, by (1; 1.3) %, (17.6; 24) %, 
(22.85; 30.35) %, respectively. One could see a significant 
drop in frequency on the higher shapes of oscillations (λ2, λ3) 
and a slight drop at the basic shape (λ1). We have established 
the magnitudes and coordinates of extreme deflections (the 
antinodes of oscillations) and the indicative coordinates of 
the nodes. These numerical parameters, along with the fre-
quency indicators, are a means of identifying the oscillatory 
properties of a plate when it is studied in practice.

4. We have constructed the diagrams (graphic depen-
dences) of radial σr and tangential σθ cyclical stresses at the 
basic shape for each of the three variants of the parabolic 
plate concaveness. It has been established that the increase 
in the ratio of the edge thickness h(0.1)/h(0.5), that is 
concaveness, leads to an increase in σr in the cross-sections 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/7 ( 104 ) 2020

18

outside the end constraint. At h(0.1)/h(0.5)=1.8;5, the 
stresses σr have an extremum σr=0.93 at ρ=0.3. The ratio  
σr(0.1)/σr(0.3)=1.075 in this case is little different from 1. 
It has been concluded that a further increase in concave-

ness would lead to the values σr(0.1)/σr(0.3)<1, which 
makes it possible, in particular, to use such plates to experi-
mentally determine the limits of materials endurance under 
a complex stressed state.
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