
53

Information and controlling system

1. Introduction

The future is not a static continuation of the past. Sce-
narios reflect the fact that several potential future options

are possible at any given point in time. Scenario studies
typically focus on issues that are sensitive to stakeholders
and provide the means by which decision makers can antic-
ipate upcoming changes and prepare for them quickly and

Received date 29.08.2019

Accepted date 01.11.2019

Published date 27.12.2019

Copyright © 2019, O. Milov, S. Yevseiev, A. Vlasov, S. Herasimov,

O. Dmitriiev, М. Kasianenko, H. Pievtsov, Y. Peleshok, Y. Tkach, S. Faraon

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

DEVELOPMENT OF SCENARIO
MODELING OF CONFLICT TOOLS
IN A SECURITY SYSTEM BASED

ON FORMAL GRAMMARS
O . M i l o v

PhD, Associate Professor*
S . Y e v s e i e v

Doctor of Technical Sciences, Senior Researcher*
E-mail: serhii.yevseiev@hneu.net

A . V l a s o v
PhD

Air Force Science Center**
S . H e r a s i m o v

Doctor of Technical Sciences, Senior Researcher
Department of Combat Use of Weapons of Air Defense of the Ground Forces**

O . D m i t r i i e v
PhD, Head of Department

Department of Flight Operations, Aerodynamics and Flight Dynamics
Flight Academy of the National Aviation University

Dobrovolskoho str., 1, Kropyvnytskyi, Ukraine, 25005
М . K a s i a n e n k o

PhD
Department of Radio Technical and Special Troops***

H . P i e v t s o v
Doctor of Technical Sciences, Professor, Honored Master of Sciences and

Engineering of Ukraine**
Y . P e l e s h o k

PhD, Deputy Head of the Research Center
Institute of Special Communication and Information Security

National Technical University of Ukraine "Igor Sikorsky Kiev Polytechnic Institute"
Verkhnokliuchova str., 4, Kyiv, Ukraine, 03056

Y . T k a c h
Doctor of Pedagogical Sciences, Associate Professor

Department of Cybersecurity and Mathematical Simulation
Chernihiv National University of Technology

Shevchenka str., 95, Chernihiv, Ukraine, 14035
S . F a r a o n

Adjunct
Department of Communications and Automated Control Systems***

*Department of Cyber Security and Information Technology
Simon Kuznets Kharkiv National University of Economics

Nauky аve., 9-А, Kharkiv, Ukraine, 61166
**Ivan Kozhedub Kharkiv National Air Force University

Sumska str., 77/79, Kharkiv, Ukraine, 61023
***Ivan Chernyakhovsky National Defense University of Ukraine

Povitroflotskyi ave., 28, Kyiv, Ukraine, 03049

Наведенi результати розробки iн-
струментарiю сценарного моделю-
вання на основi формальних грама-
тик. Проаналiзовано роботи, пов'язанi
з рiзними способами опису сценарiїв
в системах їх розробки. Для природ-
но-мовного опису сценарiїв зазначено,
що такий пiдхiд є досить прозорим i
зрозумiлим для користувачiв. Однак
такий пiдхiд має ряд недолiкiв для фор-
малiзацiї та унiфiкацiї опису сценарiїв.
Зокрема, наявнiсть у мовi ряд неод-
нозначностей робить його неможли-
вим для однозначно-iнтерпретується
опису, i як наслiдок – малопридатним
для виконання формальних перетво-
рень над описом. Графiчне представ-
лення сценарiєм є наочним поданням
сценарiю. Бiльш того, наочне уявлен-
ня сценарiю у виглядi деякої автомат-
ної моделi може бути оцiнений як вкрай
привабливе для подальшого мультиа-
гентного моделювання його виконання.
Недолiком такого опису сценарiїв є, як
i ранiше, труднощi виконання формаль-
них манiпуляцiй i необхiднiсть переходу
до бiльш зручного для манiпуляцiй уяв-
лення. Використання формальних гра-
матик для опису сценарiїв є компромiс-
ним пiдходом, який дозволяє описувати
сценарiї в однозначно iнтерпретуєть-
ся формi. Формально-граматичний опис
також бiльш звично фахiвцям з комп’ю-
терних мов. I крiм того, є програми,
орiєнтованi на роботу з формальними
граматиками. Показаний перехiд вiд
природно мовного опису сценарiїв до його
формального поданням у виглядi стан-
дартного опису в Бекуса-Наура формi.
Змiна форму подання зроблена на при-
кладi опису сценарiю поведiнки учас-
никiв кiберконфлiкта в системi безпеки.
Отриманий опис сценарiю використа-
но в аналiзаторi контекстно-вiльних
граматик. Отриманi результати пока-
зали можливiсть застосування пропо-
нованого пiдходу i використовуваного
iнструментарiю для опису i перевiрки
коректностi опису сценарiїв, що вiдно-
сяться до будь-якої предметної областi

Ключовi слова: сценарне моделюван-
ня, система безпеки, формальна грама-
тика, контекстно-вiльна граматика, Бе-
куса-Наура форма

UDC 681.32:007.5

DOI: 10.15587/1729-4061.2019.184274

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 (102) 2019

54

in a timely manner. Through the study and assessment of
possible future conditions, scenario studies allow us to as-
sess system vulnerabilities and opportunities of adaptation
measures. Scenario planning can lead to more informed
decisions by bridging the gap between scientists and deci-
sion makers, while at the same time highlighting issues of
immediate concern.

Scenario generation is a complex process and inherent-
ly involves significant interactions between the researcher
and stakeholders and/or expert judgment. Leaders and
stakeholders do not always trust forecasting and long-
term planning, similar to scenarios, because, in their
opinion, this method is practical only if the future can be
extrapolated from the past. Therefore, there is a real need
for the development of formalized methods for construct-
ing scenarios that do not allow subjective approaches in
this area.

The larger the scope of the study in scenario building
activities, the greater the number of parties involved in
the process, especially if the scenarios represent a field
of study at the national or regional level. Traditionally,
scenario planning has always taken into account specific
problems. However, it should be noted that only by inte-
grating strategies and scenarios within a single structure,
the full potential of scenarios can be realized. In order to
avoid duplication of work and to facilitate collaborative
scenario planning in these large-scale applications, a for-
mal structure is needed for a systematic and organizational
approach to scenario generation. This approach can be ap-
plied to all scenario research in order to exchange relevant
information related to scenarios and form a community of
script developers.

The formulated statements lead to the conclusion that
it is necessary to develop tools for scenario modeling based
on the use of formal approaches and methods and to demon-
strate their applicability and effectiveness for modeling
security system processes.

2. Literature review and problem statement

Publications devoted to formalizing the description of
scenarios and their subsequent generation can be divided
into three groups. The first group combines publications
describing the use of natural languages (or a limited subset
of them) to describe those developed by the script. The
second group contains publications on various graphi-
cal means of representing and manipulating scripts. The
publications of the third group describe various linguistic
means that are more rigorous in comparison with natural
languages.

The most revealing publication related to the first group
is [1]. The paper notes the need for understanding between
engineers (analysts, programmers, security experts) and
users. Engineers should understand, model and analyze the
scope of the application for which the scenario is being de-
veloped, and clients/users should verify that the engineers’
vision is correct. Scenarios describe situations that occur
in the subject area. It is understood that the latter includes
all sources of information and all people associated with the
implementation of the script. This is a reality limited by the
set of goals set by those who are customers of the scenario de-
velopment. In [2], taking into account aspects of use, it is as-
sumed that scenarios allow to find out the problem, unify the

criteria, achieve a compromise between customers and users,
organize the details involved and train new participants. The
use of scripts as a way of understanding the subject area of
its use was recommended in [3–5], and these suggestions
became very important for expanding the use of scripts in
real practice. However, the analysis of recommendations
presented in [6, 7] shows a certain degree of contradiction
when using scenarios.

The lack of accuracy of when and how to use scripts has
spread to engineers who use these methods in the field. Thus,
most developers view scripting as a craft rather than an
engineering task. Studies regarding the use of scenarios in
industrial projects have confirmed this fact and pointed out
the need for more detailed definitions of building scenarios
to increase their use in real situations.

A variety of interpretations, syntax, and construction
mechanisms for scripts comes to identifying the main con-
tradictions. For example, with respect to the scripting pro-
cess, there is no consensus on whether it should be top-down
or bottom-up scenario development.

In [1], a strategy for creating and using scripts is pro-
posed, based on the assumption that scripts should be based
on natural language as a means of communication between
stakeholders, in particular between clients/users and re-
quirements engineers.

Using natural language to describe the scenario helps
the client/user check it and is consistent with the goal of
improving stakeholder communication. Using Language
Extended Lexicon (LEL) and scripts to identify require-
ments and their use throughout the development process
allows validation with the client/user. The main purpose
of the lexicon is to cover the application dictionary and its
semantics, postponing the understanding of application
functionality. Scenarios are used to understand its function-
ality: each scenario describes a specific situation, focusing
on the behavior of its participants. The script is built on the
basis of a dictionary that reflects the specific and most used
words or phrases in the use area of the script, which must be
present in LEL.

The use of a glossary containing an application dictio-
nary is also proposed. In other words, the proposal is to
create not just a glossary, but a lexicon that includes the
designation of each symbol found in the form of a word or
phrase related to the field of application. The purpose of
this lexicon is not only to ensure good communication and
coordination between customers/users and the development
team, but also to help describe them, which will facilitate the
verification process at the beginning of the scripting process.
The use of lexicon symbols in scripts allows these symbols
to be a natural hyperlink between these two presentation
structures, a fundamental characteristic of the concept of
basic requirements for a script.

The fundamental characteristic of this approach is that a
natural language script is tied to the lexicon of the applica-
tion language. This characteristic is original and solves the
important problem of reducing ambiguity in descriptions in
natural language. Since the script uses LEL characters, they
become hypertext, and the lexicon characters are hyperlinks
between the two representations.

A scenario model is a structure consisting of objects: a
title, a goal, a context, resources, actors, episodes, excep-
tions, and attribute constraint. Actors and resources are
an enumeration. The title, goal, context, and exceptions are
declarative sentences, while episodes are a set of sentences

55

Information and controlling system

expressed in simple language that provide a quick descrip-
tion of behavior.

A fragment of the scenario model is as follows:

Scenario: description of the situation in the domain.
Syntax: Title+Goal+Context+{Resources}+
{Actors}+{Episodes}+{Exceptions}
Title: Scenario identification. In the case of a supporting

scenario, the title matches the sentence of the episode with-
out restrictions.

Syntax: Frase ([Actor|Resource]+Verb+Predicate)
Goal: the goal must be achieved in the application do-

main. The scenario describes the achievement of the goal.
Syntax: [Actor|Resource]+Verb+Predicate

In general, the natural language for describing sce-
narios is used in the context of a frame model for repre-
senting knowledge about a subject area. This combination
determines both the advantages and disadvantages of the
proposed approach. The advantages include the clarity of
the script description language for users. The frame model
allows you to structure scenario description and use ap-
propriate tools for working with frame models. Moreover,
psychologists believe that a person thinks in frames, so this
model is to the best degree consistent with the process of
logical inference of a person. The disadvantages include
the presence of different types of ambiguity in natural lan-
guage, which does not allow the creation of unambiguously
interpreted structures. An attempt to use a limited subset
of natural language can significantly narrow the expressive
means of the latter. In addition, the considered approach to
the design and use of scripts does not contain any indications
of a means of verifying the correctness of the script.

Of greatest interest among the works describing graphi-
cal script development tools is the work [8]. In the work, the
scenario is defined as follows. A script is a tool for determin-
ing the functionality and behavior of a system from a user’s
perspective. Thus, it is used in most modern methods of
object-oriented development to identify and document user
requirements. Scripts also form a kind of abstract test scripts
for the developed system.

When developing a software system, validation and
verification are recognized as vital activities that are es-
pecially valuable when applied in the early stages of the
development process. This is because errors found in the
specification and design phase are much cheaper to fix
than errors found in subsequent steps. Early verification,
therefore, significantly reduces error correction and the
cost of errors.

Under these conditions, the emphasis should be on
testing the correctness of the developed scenarios. In
addition to well-established methods, such as data flow
control and testing or boundary analysis/domain testing,
formal languages for specifications and specialized testing
languages are attracting increasing attention. Neverthe-
less, the gap between theory and practice remains. The
gap between what theoretically can be done and what
is actually done in practice is mainly due to the reasons
presented in Table 1.

The described method can be easily integrated with
software development methods and help developers create
test situations and develop scenarios at the early stages of
the development process, supporting the systematic creation
of test cases (Table 2).

Table1

Reasons for the discrepancy between theory and practice of
scenario modeling

Nо. Reason Description

1
Lack of plan-

ning/time and
funds

In real projects, scenarios are modeled in the
face of enormous time and cost, since often
the project at the end of the development
process is behind the schedule and already
exceeds the budget. Fault detection causes
additional delays. As a result, test prepara-

tion and execution are often performed only
superficially. The costs and time required
for testing are difficult to estimate with

sufficient accuracy. Moreover, testing is often
not well planned and lacks the time and

resources

2

Lack of
(testing)

documenta-
tion:

Tests are not prepared properly, test plans are
not developed and tests are not documented

3 Hard work:

Testing and developing test cases are tedious,
repetitive, error-prone, and time-consuming
activities that cause fatigue and carelessness,
even if reliable testing strategies and meth-

ods are used

4
Lack of

instrumental
support

For this reason, testing should be supported
by tools. But there is only limited support for
tools. Extended support for tools and, in par-
ticular, automatic generation of test suites, is
limited to systems that are formally defined.
Even though automatic test case generation
can be applied in a formally defined system,

the resulting test sets are huge and, as a rule,
only poor coverage is achieved

5

Formal/spe-
cial testing
languages
required

Many testing methods use formal specifica-
tion languages or special testing languages

(therefore, special training and education are
required). Their use is extremely expensive,

difficult to apply and/or they can only be
used for limited problems or very specific

areas

6

Lack of
measures, mea-
surements and

data for the
quantification

of tests and
assessment of
test quality

In most projects, only a small amount of test-
ing data (error statistics, coverage measure-
ments, etc.) is collected during testing or is

available from other projects. Due to the lack
of data on the benefits and cost-effectiveness

of testing, very little can be said, different
approaches cannot be compared, and pro-

cesses can hardly be improved. The quality
of the tests, and therefore to some extent the
product, is often not evaluated. In addition,
missing data further aggravate the problem
of accurate test planning and allocation of

necessary resources

A script is defined as any form of description or presenta-
tion of user-system interaction sequences. The terms scenar-
io, use scenario, and subject are defined as follows.

A scenario is an ordered set of interactions between part-
ners, usually between a system and a set of actors external
to it. May contain a specific sequence of interaction steps
(instance script) or a set of possible interaction steps (type
scenario).

A use case is a sequence of interactions between an actor
(or actors) and a system launched by a specific actor, which
gives the result for the actor (typical scenario).

Actor is the role played by the user or an external system
interacting with the specified system.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 (102) 2019

56

Table 2

Key ideas of the proposed approach

No. Idea Description

1
Use natural language

scripts

Not only to identify and document
requirements, to describe the function-
ality of the system and determine the

behavior of the system, but also to verify
the developed system in the process of

its development

2

Uncover ambigu-
ities, contradictions,
omissions, inaccura-
cy and uncertainty

In descriptions in natural language (like
scripts in SCENT) by formalizing story-

telling scripts in state diagrams [10]

3
Formulate descrip-

tive scenarios and/or
state diagrams

Where necessary, with preconditions
and postconditions, data ranges and

data values, as well as non-functional
requirements, especially performance re-
quirements, to provide all the informa-
tion needed for testing and make state

diagrams suitable for outputting actual,
specific test cases

4
Display test cases

systematically

For system testing, bypassing paths in
state diagrams and documenting test

cases

It is noted that the initial formation of a script in nat-
ural language preserves the problems of natural language
specifications: natural language is not accurate, definite,
and unambiguous. Narrative scenarios can be ambiguous,
inconsistent, and incomplete. Formalization helps to find
and avoid these problems. Formal languages allow formal
reasoning, (strict) verification and validation. But formal
languages also have their drawbacks: they require knowl-
edge of a special language, they are difficult to understand,
and their application may be error-prone.

An intermediate path was chosen in the work, the
transformation of the natural language script into semi-for-
mal state diagrams. This formalization helps to find many
omissions, ambiguities and inconsistencies, however, the
graphical representation of scripts can be well understood
by users if there is some guidance from developers. Thus,
formalization is a very useful troubleshooting procedure and
can be considered as part of static testing.

Creating scripts and state diagrams is an iterative pro-
cess. State diagrams should be checked with the user. All
(important) paths in the graphical representation must be
completed. This verification operation works in parallel with
the use phase: the paths traveled by the client to check the
state diagrams are test cases that need to be tested in the
system. Once again, it should be emphasized that this pro-
cess is not sequential, many activities can, at least partially,
be carried out in parallel; they take advantage of each other
and use the same artifacts.

State diagrams describe the behavior of the system (how
the system behaves in response to events, data, conditions),
and generates important information such as data, perfor-
mance, quality. This additional information is important
for testing: many data-related errors can only be detected
in test cases, which cannot be directly obtained from state
diagrams. Moreover, specific test data, i.e., input values and
expected result, can only be obtained directly from state
diagrams.

The state diagram showing the “Authentication” scenar-
io is shown in Fig. 1.

Fig. 1. State diagram representing the “Authentication”
scenario [8]

To include information important for testing, it is pro-
posed to expand the notation of state diagrams. In particu-
lar, additional testing information may include the following:

– preconditions (and postconditions as necessary);
– input data: input, expected output and ranges;
– non-functional requirements.
Information may be recorded in annotations.
In general, conclusions on the advantages and disadvan-

tages can be formulated as follows.
The advantages include the high visibility of the pro-

posed approach. Using a state diagram allows you to auto-
matically generate a finite state machine that runs on the
specified program. The implementation of the state machine,
in turn, in the form of a software agent, makes the indicated
approach valuable for the implementation of multi-agent
systems.

The lack of means for verifying the correctness of sce-
nario formation should continue to be attributed to the
disadvantages, since the latter are initially formed in natural
language, and the subsequent transition to the formation of
a state diagram verifies the correctness of the transition, but
not of the initial scenario. In addition, the graphical presen-
tation of scripts is more understandable to UML (or SysML)
specialists, rather than the subject area of script usage.

First-order predicate logic can be used as a basic mod-
el of knowledge representation for implementing scenario
synthesis based on causal relationships. In simple cases,
propositional logic can be used to represent knowledge. The
scenario synthesis is reduced to constructing a formal gener-
ating grammar on a certain set of terminal and nonterminal
symbols. The syntax of the propositional logic corresponds
to the context-free generating grammar, which is described
by the four G=(V, Т, Р, S), where V is a finite set of nonter-
minal symbols; T is a finite set of terminal symbols that does
not intersect V; P is a finite set of production rules written
in the form of Backus notations and representing a decoding
of nonterminal grammar symbols with logical expressions
containing symbols from T and V; S is the initial character
of the grammar.

The term grammar, taken from linguistics, means a set
of rules of a language that allow to build and recognize the
“correct” phrases in this language.

A phrase is a finite sequence of words that are indi-
visible elements (terminal symbols). In any language, not

UC 002: Authentication v0.1

Customer inserts
card

System checks
PIN

Customer enters
PIN

System checks the card’s
validity

Card entered

Card valid
Display ‘Enter PIN’ Dialog

PIN entered

PIN valid
 Display mainmenu

57

Information and controlling system

any combinations of words are allowed, therefore phrases
corresponding to certain rules of syntax and semantics are
considered “correct”. A formal grammar is a set of logical
rules (syntax) that establish ways to combine words and
phrases (non-terminal characters) to form more complex
expressions. The rules are applied recursively and allow you
to generate an infinite number of phrases (logical formulas)
that make up some language. Formal grammar products can
be interpreted as a logical formalization of natural language
grammar rules, and phrases as subsets of many logical for-
mulas. This mechanism can be used to generate complex
systems and objects of any nature with a sufficient degree of
knowledge of the studied subject area.

The scenarios are based on the assumption that several
potential future scenarios are possible at any given point in
time. Scenario studies usually focus on issues that are sen-
sitive to stakeholders, and they provide the means by which
decision makers can anticipate upcoming changes and pre-
pare for them quickly and in a timely manner. By examining
and evaluating possible future conditions, scenario studies
allow us to evaluate system vulnerabilities and opportuni-
ties for adaptation measures. For example, decision makers
can use scenarios to guide control policies and implement
strategic planning for the impacts of an alternative future.
Scenario planning can lead to more informed decisions by
bridging the gap between scientists and decision makers,
while highlighting issues of immediate concern [9–12].

Fig. 2. Conceptual diagram of a scenario funnel.
Adapted from [13]

One of the most important characteristics of a scenario is
that it should be logically plausible. Plausible scripts provide
logical descriptions and explanations of possible events, add-
ing credibility to the main part of the work, which the scripts
are designed to complement. In order to further increase the
reliability, the probable scenario should also be internally
coordinated with the driving forces, which are crucial for
the development of the scenario trajectory [14]. To elimi-
nate redundancy, scenarios should be different, focusing on
different driving forces and/or goals of the script, but still
preserving a set of common input variables so that results
from different scenarios can be compared. Useful scenarios
should also be creative and check limits when exploring the
unknown future, while remaining tied to the purpose of their
use and being fully quantified and qualitatively defined [15].
The simplest basic scenario is the “official future” scenario,

the “ordinary business” scenario of the widely accepted fu-
ture state of the world. Most decision makers will not accept
future alternatives unless the official future is called into
question [11].

3. The aim and objectives of the study

The aim of the work is to develop scripting modeling
tools based on formal-language methods, including means
for verifying the correctness of the scenario of the interact-
ing parties of cyber conflict behavior in the security system.

To achieve this goal, it is needed to accomplish the fol-
lowing objectives:

– to give a natural language description of the scenario of
participants’ behavior in a real cyber conflict;

– to analyze existing grammars and choose the most
suitable and appropriate for the behavior scenarios of the
participants in cyber conflict;

– to show how a natural language description of a script
can be converted into a BNF form, which can be considered
as the initial description of a script for a program for analyz-
ing the correctness of description of a prototype script, and
check the formal-grammatical representation of the script.

4. Natural-language description of the behavior scenario
of security system agents

One of the key findings from the economic literature
on information security [16] is that attackers who seek to
undermine system security act strategically. In addition, in-
formation systems are often structured in such a way that the
overall security of a system depends on its weakest link [17].
The most careless programmer in a software company may
present a critical vulnerability. The global distributed archi-
tecture of the Internet leads to the weakest link dominating
in the security system – attackers compromise computers
hosted by Internet service providers (ISP) or located in
countries that do not cooperate with them. Attackers have
repeatedly demonstrated their ability to find the easiest way
to circumvent a security system, even if the system designer
is not aware of this particular vulnerability.

However, systems do not exist in a vacuum; rather, de-
fenders respond to attacks by blocking known holes. And
yet, as soon as one weak link is identified and corrective
action is taken, another weak point is often discovered and
used. Therefore, a strong dynamic component comes into
play: attackers find the weakest link, defenders solve the
problem, attackers find new holes, which then connect, and
so on. It can be seen that this picture appears repeatedly. For
example, cybercriminals create networks of compromised
machines (called botnets) in order to reach legitimate users
by spreading spam, spreading malware, and hosting phishing
websites. Attackers concentrate their efforts on the most
irresponsible Internet providers, switching to others only
after the Internet provider clears its actions or closes. Simi-
larly, technical measures to counter payment card fraud have
evolved over time, forcing fraudsters to adopt new strategies,
as old flaws are eliminated [18].

The basis of the described behavior scenario is the fol-
lowing mathematical model.

In some confrontation environment, a defender protects
an asset of value a from a distributed set of possibly hetero-

Alternative future

Time Horizon of
the future

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 (102) 2019

58

geneous attackers. There are n possible threats that can be
considered as separate attack vectors on one system. Each
threat can be prevented by investing in appropriate protec-
tion (or control). In other words, a one-to-one comparison of
threats and defenses is assumed, and also that protection is
always effective.

Thus, the model, which reflects the dynamic interaction
between attackers and defenders, is focused on the iterative
aspect of attack and defense. The case when safety depends
on the weakest link is exclusively studied; therefore, the it-
erative weakest link is modeled. Key model features include:

1. Protective countermeasures can be represented as in-
terdependent; thus, the often mentioned decreasing margin-
al return on investment in information security [17] becomes
endogenous in our model.

2. The defender’s uncertainty as to which components
are the weakest is fixed.

3. Reconfiguring the game reflects the iterative process
of attacking and defending consecutive weak links.

Studying the model leads to several interesting conclu-
sions. A comparison of the static case (one round of attack
and defense) with dynamic (several rounds) shows that dif-
ferent strategies of defenders may prevail. When a defender
has only one chance to protect the system, growing uncer-
tainty about which link is the weakest forces the defender to
defend more assets, but only to a certain extent. When the
uncertainty is too high, the defender does not know which
asset to protect, and therefore decides not to protect any.
If re-investment is allowed instead, the vague defender will
initially protect fewer assets and wait for the attacker to
“identify” the weakest links that will be fixed in subsequent
rounds. Therefore, it may be rational to invest in security
until the threats are realized. Unlike other theories, this
type of underinvestment is not caused by relationships with
other market participants and the resulting incentive sys-
tems. Of course, security measures may require significant
investments from the very beginning. When unpaid costs are
introduced into the model, it is found that, at moderate levels
of uncertainty, higher unpaid costs may increase investment
in active defense.

Then, conclusions about optimal defensive strategies are
converted into accepted safety indicators, such as annual
loss expectancy (ALE) and return on security investment
(ROSI) [20]. The return on investment decreases as uncer-
tainty about known attacks grows, even as the defender be-
comes more and more responsive to countering the realized
threats.

The model is “launched” in an iterative game with dis-
crete time t. In each round, the defender decides to invest in
the security system to determine his dt protection configu-
ration, and extracts net profit r a⋅ from his asset before the
attacker penetrates the system and, if successful, receives
part z of the asset. Gross profit is used or distributed so that
the value of assets does not accumulate over time.

Let the elements di of the binary vector of the column
{ }0,1

n
d ∈ indicate whether protection against the i-th threat

(di=1) is implemented or not (di=0), and let
n

i i
k d= ∑ be the

number of available countermeasures.

The protection cost ct in round t can be calculated using
the matrix C of the upper triangular matrix of value ,n n× to
reflect possible interdependent defenses,

.t t tc d Cd=

The diagonal elements Ci,i contain the costs of imple-
menting protection from the i-th threat, and the off-diagonal
elements Cij, j>i indicate additional costs if the i-th protec-
tion is implemented together with the j-th protection. If all
off-diagonal elements are equal to zero, then the protections
are independent:

1. An alternative interpretation is that threats are sep-
arate targets in a distributed system that together form
asset a. This interpretation approaches the concept of the
weakest goal, in contrast to weak-link games in [21].

2. Higher-order interdependence, such as additional
costs, is not taken into account if three or more protections
are involved.

Matrix of value for independent defenders

1 0 0

0 1 0
.

0

0 0 1

C

 
 
 =
 
 
 





  



Matrix of value for conflicting (or interdependent) de-
fenders

1
2

1
2

1 0 0

0 1 0 0
.

0 0 1

0 0 0 1

C

 
 
 =
 −
 
 

Why modeling interdependent defenses? First, organi-
zational science suggests that complexity adds super-linear
administrative costs, for example, to pay a manager who di-
rects several employees, each of which is an expert for a cer-
tain amount of control. Conflicting protection also occurs
in incompatible systems, for example, when two anti-virus
scanners are launched on the same computer, the computer
slows down and errors occur to increase coverage. Finally,
human behavior significantly limits the ability to combine
protections: a password policy that requires both special
characters and frequent password changes encourages peo-
ple to attach their password to their monitor.

A good property of the cost matrix is that for positive
off-diagonal elements, a decrease in the marginal utility of
protection has become endogenous for our model. This com-
pares favorably, say, with the Gordon-Loeb framework, in
which this property appears as an assumption [19].

For now, suppose a defender can update his dt configura-
tion at any time. This may be necessary in order to adapt it
to new information about the level of threat or to a change in
risk appetite. For example, a start-up company is exposed to
so many risks that it can tolerate a moderate level of infor-
mation security risk. As an enterprise grows and develops a
brand, its risk aversion will increase, reflecting more damage
caused by potential loss of reputation. Conversely, market
competition (along with herd behavior and short-sighted
incentives for management) may encourage firms to reduce
their risk aversion for higher expected returns.

As stated in [22], a reduction in security investments is
often possible to a certain extent, as personnel can be fired
or equipment sold (although sometimes with high operating
costs). However, for many companies, updating dt can be very
expensive, and the costs are “sunk” in the sense that money
is being spent forever. For example, the vast majority of the
costs of incorporating new security features into banknotes
or payment cards are covered upon the first change. The

59

Information and controlling system

production and distribution of specialized tokens or devices
among a large and dispersed community are expensive and
unlikely to be repeated often. Since unrealized costs signifi-
cantly affect the security investment strategy in an iterative
environment, we include them in our model as follows:

10 if =1 or ,

 else.
t t

t

t d d
s

a

=
= λ ⋅

Therefore, the parameter λ≥0 controls the amount of
hidden costs.

Although the defender may have some intuition regard-
ing the relative complexity of implementing n threats, such
knowledge may well be blurred. To simulate this uncertain-
ty, we order threats 1,..., n, increasing the expected cost of
the attack (the expectation is taken from the defender’s point
of view). This constitutes our understanding of the attack
profile. We define a simple functional form for the expected
cost of attack ix of the i-th threat as follows:

()1 1ix x i x= + − ⋅ ∆ with ∆x>0.

However, the unknown true value xi, is modeled as a
Gaussian random variable with an average value ix and stan-
dard deviation / xσ ∆ (with restrictions on the values 0ix ≥),

()sup 0,i ix = χ with (), / .i iN x xχ σ ∆

Note that χi implementations remain constant over
time. The level of uncertainty can vary by adjusting the
parameter σ. Thus, uncertainty modeling is crucial for the
model, as it reflects the difficulties that defenders face in
anticipating which of the unprotected threats is the weak-
est link used by the attacker.

The defender’s knowledge of the attack profile may
increase over time when the observed attacks show which
threat is the weakest link with respect to this dt configu-
ration.

The attacker’s model is very simple: the attacker identi-
fies and uses the weakest link, i. e. the threat is the least cost-
ly for the attacker. An attacker is not required to compromise
between cost and potential benefit, assuming that the same
utility is obtained for using all threats. If an attacker suc-
ceeds, no matter how he makes a profit ,z a⋅ this is added
to the defender’s value. Unlike the defender, the attacker is
confident in the cost of each implementation xi. An attacker
does not act indiscriminately; rather, it attacks only when
it is profitable, that is, if the member ()max i iz a x⋅ − is not
negative.

5. Analysis and selection of formal grammar for
describing scenarios

First-order predicate logic can be used as a basic model
of knowledge representation for implementing scenario syn-
thesis based on causal relationships. In simple cases, propo-
sitional logic can be used to represent knowledge.

In general, there are two main ways to describe individ-
ual classes of languages:

– using a generative procedure;
– using a recognition procedure.
The first of them is set using a finite set of rules called

grammar and generating exactly those chains that belong

to the language L. The second – using some abstract rec-
ognition device (automaton). When constructing transla-
tors, both of these methods are used: grammar as a means
of describing the programming language syntax, and an
automaton as a model of an algorithm for recognizing lan-
guage sentences, which forms the basis for constructing a
script analyzer and generator. In this case, methodically
(and technologically), a grammar is first constructed, and
then, based on it, as a source, a recognition algorithm is
constructed [23, 24].

We turn to the formal presentation of the concepts dis-
cussed above.

A formal generating grammar is a quadruple G=
=<N, Т, Р, S>, where

T – a finite nonempty set of characters called the termi-
nal (main) dictionary of grammar G; the elements of the set
T are called terminal symbols (terminals);

N – a finite nonempty set of characters, called a nonter-
minal (auxiliary) dictionary of grammar G, ,T N∩ = ∅ – a
joint dictionary of grammar G; the elements of the set N are
called nonterminal symbols (or nonterminals);

S – the initial symbol (axiom) of the grammar G; S N∈
denotes the main nonterminal (goal) of the grammar G;

P – a finite set of grammar rules, that is, chains of the
form ϕ → ψ and also called substitution rules or produc-
tions, while ,ϕ ψ – the chains in the dictionary V T N= ∪
and () ()* *

,T U N N T U Nϕ ∈ ()*
.N U Tψ ∈ Final bipartite re-

lation →is interpreted as “replacing” φ with ψ “or substitut-
ing φ instead of ψ”.

The set of substitution rules P is also called a grammar
scheme. The chain on the left side of the grammar rule must
contain at least one nonterminal character. On the right
side of the rule, in the general case, there can be an arbitrary
chain of terminal and nonterminal symbols, including the
empty chain λ.

The generating grammar, as defined above, is a powerful
descriptive tool, but still very general. The practical use of
grammars is related to solving the recognition problem. The
recognition problem is solvable if there exists an algorithm
that, in a finite number of steps, answers the question of
whether an arbitrary chain over the main grammar dictio-
nary belongs to the language generated by this grammar. If
such an algorithm exists, then the language is called recog-
nizable. If, in addition, the number of steps in the recognition
algorithm depends on the length of the chain and can be esti-
mated before the algorithm runs, the language is called eas-
ily recognizable. Otherwise, it makes no sense to talk about
building a script generator for the unrecognizable language
of its description. Therefore, in practice, such particular
classes of generative grammars are considered that corre-
spond to recognizable, and in most cases easily recognizable
languages. The most important classes of such languages
can be defined within the framework of the classification of
languages, which suggests classifying them according to the
type of rules of the grammar generating them.

Class 0. Grammar inference rules have the form ϕ → ψ
without any restrictions on the strings φ and ψ. Languages of
this class can serve as a model of natural languages.

Class 1. All elements of P are obtained from the form
,ϕ → ψ where 1 2,ϕ = ξ αξ 1 2,ψ = ξ βξ and *

1 2, ,Vξ ξ ∈ ,Nα ∈
*.Vβ ∈ The generating grammar with such rules is called

immediate constituent grammar, or context grammar (ICG).
The languages generated by the grammars of this class are
called context-sensitive. In the ICG grammar, each inference

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 (102) 2019

60

rule indicates the substitution of some nonempty chain β
instead of the nonterminal α provided that the replaced
nonterminal α is surrounded by ξ1 and ξ2, i. e., the strings ξ1
and ξ2 are considered as a context in which α can be replaced
with β.

Class 2. All generating rules of the grammar have the
form: Α→β, where Α is a nonterminal symbol, and β is a
nonempty chain from V, that is *.Vβ ∈ Replacing the non-
terminal Α with the string β occurs without regard to the
context, therefore grammars of this class are called con-
text-free (CF grammars).

Class 3. All generating rules have the form: A bB→ and
,A b→ where , ,A B N∈ ,b T∈ that is, the right part of the

rule is either a single terminal or a single terminal, followed
by a single nonterminal. Class 3 languages are called lan-
guages with a finite number of states or automaton (regular)
languages, and the grammars generating them are called
automaton grammars (A grammars). A grammars are used
mainly at the stage of lexical analysis.

The main classes of languages can be defined by classes
of abstract recognition devices (automata), which also form
the corresponding hierarchy. Table 3 shows the hierarchy of
languages and the corresponding hierarchies of grammars
and automata as recognition devices.

Table 3

Hierarchy of languages, grammars and automata

Type Language Automate

Type 0 Recursively Enumerable Turing machines

Type 1 Context-sensetive
Linear-bounded

non-deterministic Turing
machine

Type 2 Context-free
Non-deterministic pushdown

automaton

Type 3 Regular Finite state automaton

Of the four classes of grammars, context-free grammars
are most important when applied to the analysis and design
of scripts, given their distribution in the field of program-
ming languages. With their help, it becomes possible to
define a large, although not entire, part of the syntactic
structure of the scenario.

6. Presentation of the behavior scenario by means of BNF

It was previously shown how the normal Backus forms are
used to describe the syntax of a language. It turns out that
there is a direct connection between BNF and CF grammars
– they are essentially equivalent, the differences concern only
the notation. So, the relation “::=” from the BNF corresponds
to the relation in the CF grammar – the non-terminal symbols
correspond to the metalinguistic variables from the BNF in
the CF grammar, the terminal symbols of the CF grammar
correspond to the main characters of the programming lan-
guage from the BNF. In CF grammars, to reduce the notation,
rules with identical left parts are also collected into one, using
the|(or)symbol as a separator of alternatives.

The scenario synthesis is reduced to constructing a
formal generating grammar on a certain set of terminal and
nonterminal symbols. The syntax of the propositional logic
corresponds to the context-free generating grammar, which

is described by the four G=(V, Т, Р, S), where V is a finite set
of nonterminal symbols; T is a finite set of terminal symbols
that does not intersect V; P is a finite set of production rules
written in the form of Backus notations and representing
a decoding of nonterminal grammar symbols with logical
expressions containing symbols from T and V; S is the initial
character of the grammar.

The term grammar, taken from linguistics, means a set
of rules of a language that allow to build and recognize the
“correct” phrases in this language.

A phrase is a finite sequence of words that are indivis-
ible elements (terminal symbols). In any language, not any
combinations of words are allowed, therefore phrases that
correspond to certain rules of syntax and semantics are
considered “correct”. A formal grammar is a set of logical
rules (syntax) that establish ways to combine words and
phrases (non-terminal characters) to form more complex
expressions. The rules are applied recursively and allow you
to generate an infinite number of phrases (logical formulas)
that make up some language. Formal grammar products can
be interpreted as a logical formalization of natural language
grammar rules, and phrases as subsets of many logical for-
mulas. This mechanism can be used to generate complex
systems and objects of any nature with a sufficient degree of
knowledge of the studied subject area.

The language spoken about the language is called a
metalanguage. Metalanguages are actually all natural
languages. However, using natural language to describe
some other language (including scripting language) is not
a good solution. This is due, first of all, to the fact that
natural language is inaccurate and redundant, and it is
difficult to adapt to the formal manipulations necessary in
the process of analysis and generation of scripts. Linguists
note at least 5 types of ambiguities in natural language:
from linguistic to pragmatic. Therefore, one should turn
to the existing metalanguages for describing grammars
of various types. Such a metalanguage, which has become
widespread, is a formal metalanguage for determining
immediate constituent grammars, is the Backus-Naur
form (BNF).

There should be no confusion between the symbols of the
metalanguage and the language being described. The BNF
avoids such confusion by using only four metalinguistic sym-
bols (Table 4). The appearance of literal characters without
parentheses indicates that these are terminal characters of
the language. The grammar is written as a series of provi-
sions, each of which consists of the left side, followed by the
metacharacter “::=”, and then a list of right parts. The left
side is the name of the constituent, and the right parts, sepa-
rated by the metacharacter |, are strings containing terminal
characters or constituent names, or both.

Table 4
BNF metasymbols

Metasym-
bol

Equivalent in
natural language

Application

::= is by definition
Separates a definable

concept from its definition

| Or
Separates alternative phrase

definitions

<character
string>

character string
Means that characters

occurring should be treated
as a whole

61

Information and controlling system

Although any immediate constituent grammar can be
written in BNF, the Backus notation is not a complete
metalanguage – some sets of strings (languages) cannot be
specified using immediate constituent grammars. However,
in practice this does not preclude the construction of the
language. The properties that need to be communicated to
the language are often structural (grammatical) in nature,
and since the class of immediate constituent languages (lan-
guages defined by immediate constituent grammars) is large,
we have sufficient freedom to choose one of them.

It should be noted that full grammars for natural languag-
es are unusually complex. Therefore, to set the grammar of the
natural language for the natural language description of sce-
narios is impractical. To formalize scenarios, a different path
can be chosen. In the description of the script in natural lan-
guage, it is necessary to highlight key terms and relationships
between them, and then present the selected set of concepts
and relationships in the BNF form. By the way, the selection of
basic concepts and relations can be carried out in the process
of constructing the ontology of scenario modeling [26].

Consider the use of the context-free grammar formalism
to build a language with which you can describe scenarios
of the behavior of conflicting parties in the security system.

In the given fragment of the grammar, each rule describes
possible options for substituting the logical formulas written
in the right part (after the arrow) as the value of the statement
contained in the left part. Alternative substitution methods
are possible. The comma present in the right parts of the
grammar rules corresponds to the conjunction operation.

Let us start with a description of the main term – the
script. By a scenario we mean a sequence of interrelated
events that can take place under certain conditions. Be-
tween events, there are causal relationships that can be
represented by rules written in the language of logic. The
script is synthesized using a knowledge base containing
a description of the script elements and the relationships
between them. The result of the synthesis is many possible
scenarios, the quality and reliability of which depend on the
source information.

Scenario description in the BPF form is as follows:

<scenario>::=<list_of_events>.

From a BNF point of view, a script is the initial symbol
of grammar and is defined as a recursive sequence of events.
Events can be interpreted as actions that can occur when
certain conditions are met or unconditionally.

<list_of_events>::=<event>|<event><list_of_events>
<event>::=<factor_action>|<subject_action>.

The action of some factor or active subject that deter-
mines the event is written as follows:

<factor_action>::=<factor>|<condition><factor>
<factor>::=price_of_attack|Dismissal_time|
Activate_Uncertainty|Base_Reputation|
Information_Sharing|Time_reputation_loss|
Time_to_build_up_reputation|Time_to_report_atack.

It should be noted that terms that are not enclosed in
angle brackets appeared on the right side of the definitions.
Such terms are terminal, that is, they define themselves and
do not require further elaboration and definition.

The parties to cyber conflict are defined by terminal
symbols in the same way:

<subject>::=attacker|defender|user.

However, if it is necessary to detail the features and na-
ture of the side of cyber conflict, the corresponding term is
transformed into nonterminal (enclosed in angle brackets),
and its definition should be given below.

It is proposed to determine the actions of subjects as
follows:

<subject_action>::=<subject><factor>
<condition><action>|<subject><condition>
<action>|<condition><subject><action>.

Note that on the right side there are two different lines
<subject><condition><action> and <condition><subject>
<action> (that is, the same terms are given in different
sequences). This is not a violation of the rules of descrip-
tion and when checking grammar does not lead to an error
message.

As for the possible actions of the attacker and the defend-
er, they should be determined by a well-developed threat
classifier, which should offer the most effective means of
counteracting each of the threats.

<action>::=threat_1|treat_2|treat 3.

An introduction to the description of the conflict of a
nonterminal symbol condition allows you to limit arbitrary
combinations of actions that do not correspond to the se-
mantics of the script.

<condition>::=<factor><logical sign><value>.

The described grammar used to represent the scripts was
presented as an input file for the context-free grammar an-
alyzer program developed on the Delphi platform. It should
be noted that for a visual representation of both the input
grammar and the output results, the grammar was presented
in an abridged form, shown in Fig. 3.

First result. The resulting grammar analysis of scenario
description is a representation of the scenario grammar in
the usual (as accepted in the BPF) form, presented in Fig. 4.

The analysis program generates a list of terminal and
nonterminal symbols (Fig. 5). This separation is useful
for scenario analysis. Indications are also generated about
which symbol is the target.

The generation of the following table is due to the fact
that a contextually free language cannot be analyzed in one
pass and implies the use of recursive parsing methods, the
intermediate result of which is to put intermediate results
into stack (Fig. 6).

The following lists the triples of characters that are gen-
erated during the verification process, and the table of con-
structed characters can be used in the next steps to generate
script description (Fig. 7).

The program ends with detailed diagnostics for each
terminal and non-terminal symbol. The final message about
the absence of errors in the grammar gives confidence that
the description of the prototype is made up correctly and de-
scriptions of the script-instances can be generated according
to the proposed template.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 (102) 2019

62

Fig. 3. Presentation of input grammar for CF grammar
analysis program

Fig. 7. Diagnostics of the grammar production
selection function (fragment)

7. Discussion of scenario grammar analysis results

Using the program of grammatical analysis of the
BNF description of the scenario of behavior of the op-
posing agents of the security system under conditions
of cyber conflict allowed us to obtain results that are
consistent with the objectives of the program.

First of all, the use of the analysis program is aimed
at helping to debug the BNF grammar so that it can
be used in the parsing algorithm. The second purpose
is to prepare the tables required for subsequent use in
the system of automatic generation of scripts-instanc-
es, based on the formal description of the prototype
scenario.

The analysis of the prototype scenario is carried
out according to the results of diagnosis of the BNF
description at all stages of processing the formal
presentation of the grammar. The restoration of the
familiar form of the BNF grammar description shows
the absence of syntactic and lexical errors in the task of
the analyzed grammar (Fig. 4). The following output

<scenario><list_of_events>
<list_of_events><event>
<event><list_of_events>
<event><factor_action>
<subject_action>
<factor_action><factor>
<condition><factor>
<factor> price_of_attack
Dismissal_time
Activate_Uncertainty
Base_Reputation
Information_Sharing
Time_reputation_loss
Time_to_build_up_reputation
Time_to_report_atack
<subject> attacker
defender
user
<subject_action><subject><factor><condition><action>
<subject><condition><action>
<condition><subject><action>
<action> threat1
threat2
threat3
<condition><factor><logical sign><value>

C1 matrix for stacking decision
 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1 _|_ Y Y Y Y Y Y Y Y Y Y Y
2 user N N N N N N N N N N N
3 threat1 N N N N N N N N N N N
4 threat2 N N N N N N N N N N N
5 threat3 N N N N N N N N N N N
6 <value> N N N N N N N N N N N N N N
7 attacker N N N N N N N N N N N
8 defender N N N N N N N N N N N
9 Dismissal_time N N N N N N N N N N N N N
10 <logical sign> Y
11 price_of_attack N N N N N N N N N N N N N
12 Base_Reputation N N N N N N N N N N N N N
13 Information_Sharing N N N N N N N N N N N N N
14 Activate_Uncertainty N N N N N N N N N N N N N
15 Time_reputation_loss N N N N N N N N N N N N N
16 Time_to_report_atack N N N N N N N N N N N N N
17 Time_to_build_up_

reputation
N N N N N N N N N N N N N

18 <event> N Y Y Y Y Y Y Y Y Y Y Y
19 <factor> N N N N # Y # # # # # # #
20 <action> N N N N N N N N N N N N
21 <subject> Y Y Y Y Y Y Y Y Y Y Y
22 <scenario> N
23 <condition> Y Y Y Y Y Y Y Y Y Y Y Y Y Y
24 <factor_action> N N N N N N N N N N N N
25 <list_of_events> N
26 <subject_action> N N N N N N N N N N N N
 Table entries summary:

155
 49 Y
230 N
 8 #

 The maximum depth of recursion was 7 levels.
378 sentential forms were examined.

C2 production choice function:
user as stack top will cause productions to be checked in this order:
 18 <subject>::=user
 There will be no context check.
threat1 as stack top will cause productions to be checked in this order:
 22 <action>::=threat1
 There will be no context check.
threat2 as stack top will cause productions to be checked in this order:
 23 <action>::=threat2
 There will be no context check.

PRODUCTIONS
 1 <scenario>::=<list_of_events>
 2 <list_of_events>::=<event>
 3 |<event><list_of_events>
 4 <event>::=<factor_action>
 5 |<subject_action>
 6 <factor_action>::=<factor>
 7 |<condition><factor>
 8 <factor>::=price_of_attack
 9 |Dismissal_time
10 |Activate_Uncertainty
11 |Base_Reputation
12 |Information_Sharing
13 |Time_reputation_loss
14 |Time_to_build_up_reputation
15 |Time_to_report_atack
16 <subject>::=attacker
17 |defender
18 |user
19
<subject_action>::=<subject><factor><condition><action>|<subject><condition><a
ction>|<condition><subject><action>
22 <action>::=threat1
23 |threat2
24 |threat3
25 <condition>::=<factor><logical sign><value>

PRODUCTIONS
 1 <scenario>::=<list_of_events>
 2 <list_of_events>::=<event>
 3 |<event><list_of_events>
 4 <event>::=<factor_action>
 5 |<subject_action>
 6 <factor_action>::=<factor>
 7 |<condition><factor>
 8 <factor>::=price_of_attack
 9 |Dismissal_time
10 |Activate_Uncertainty
11 |Base_Reputation
12 |Information_Sharing
13 |Time_reputation_loss
14 |Time_to_build_up_reputation
15 |Time_to_report_atack
16 <subject>::=attacker
17 |defender
18 |user
19
<subject_action>::=<subject><factor><condition><action>|<subject><condition><a
ction>|<condition><subject><action>
22 <action>::=threat1
23 |threat2
24 |threat3
25 <condition>::=<factor><logical sign><value>

 Fig. 4. Listing of scenario description grammar in the BNF form

(fragment)

 TERMINAL SYMBOLS NONTERMINALS

1 _|_ 17 <event>
2 user 18 <factor>
3 threat1 19 <action>
4 threat2 20 <subject>
5 threat3 21 <scenario>
6 <value> 22 <condition>
7 attacker 23 <factor_action>
8 defender 24 <list_of_events>
9 Dismissal_time 25 <subject_action>

10 price_of_attack
11 Base_Reputation
12 Information_Sharing
13 Activate_Uncertainty
14 Time_reputation_loss
15 Time_to_report_attack
16 Time_to_build_up_reputation
 <scenario> is the goal symbol

 Fig. 5. List of terminal and non-terminal symbols

Fig. 6. Table C1 (placing intermediate results into stack)

63

Information and controlling system

of the tables of terminal and nonterminal grammar symbols
(Fig. 5) allows us to verify that the creator of the script
correctly defined those concepts of the script that are finite,
undetectable (terminal), and those whose definition should
be formed. Since in the considered example of the BNF de-
scription of the scenario, only a part of the grammar is pre-
sented, it is necessary to pay attention to the concepts that
fall into the category of terminal. With further expansion of
the grammar, for some of them, definitions should be given,
as a result of which they will fall into the nonterminal table,
and possibly new ones will appear in the table of terminal
symbols. Indication of the target symbol “script” indirectly
confirms the correctness of description formation, since this
concept does not participate anywhere in the definitions of
other concepts (it does not appear on the right side of the
BNF description of the grammar).

The table of the sentimental set constructed below rep-
resents the set of lines (sentimental forms) generated by the
initial symbol. The result shows that 378 sentential forms
were verified, which can be considered as possible instance
scripts, constructed according to the rules presented in the
BNF description of the scenario. As noted, for the selected
type of grammar, it is impossible to analyze it in one pass and
the use of recursive methods is required. This is reflected in
the conclusion of the program that the depth of recursion
during grammar analysis reached 7 levels. This value should
be recognized as such, which makes the manual analysis of
scenario description difficult. And also it should be noted
that none of the methods mentioned in the paper allowed to
perform this type of analysis.

The verification of the script grammar ends with infor-
mation on the formation of two tables − C1 and C2. Table C1
(Fig. 6) indicates for each character (row of the table) the
possibility of non-recursive continuation of grammar anal-
ysis upon receipt of the next character (column). The Y
symbol indicates the need for recursion during arnalysis and
placing the symbol into stack, N indicates the possibility of
continuing non-recursive parsing, and the absence of any
symbol at the intersection of a row and a column indicates
that these two symbols cannot appear in one rule of BNF
grammar description (49 pairs of symbols when used to
describe the grammar, recursive analysis algorithms are
required). Table C2 (Fig. 7) indicates the rule that should be
used to perform the analysis, as appropriate.

In general, the proposed approach has shown its opera-
bility, it allowed to obtain the necessary information about
the description of scripting instances. The description of
the prototype script obtained and verified from the point of
view of correctness of the context-free grammar, as well as
the syntax tables C1 and C2 constructed, can be used in an
automatic script generation system. Since the BNF form of
presentation of context-free grammar does not impose any

restrictions on the subject area, the scope of the presented
approach can be quite wide.

As limitations inherent in the proposed method, the fol-
lowing should be indicated:

1. The used context-free grammar and Backus-Naura
form of its representation in general allow not the only in-
terpretation of the description. Because of this, when gener-
ating scripts-instances, it is possible to form several forms of
script representation. This can be interpreted as the presence
of a certain redundancy in the system for description analy-
sis and scenario generation.

2. The used scenario description form (BNF) is quite
formalized and sets strict restrictions for representing the
described subject area. Because of this, a certain BNF pat-
tern limits the analyst’s capabilities in the field of scenario
modeling. And when it becomes necessary to create a unique
script, it is necessary to redefine the script description tem-
plate itself and re-verify its correctness.

As directions for the development of the study, the fol-
lowing can be formulated:

1. Further improvement of the tools for describing
and analyzing scenarios for the automatic generation of
scripts-instances from the generated syntactic tables of
grammar analysis.

2. To increase the convenience and compactness of be-
havior scenario description, to implement support for the
extended form of metalanguage (BNF), thereby supporting
the desire of analysts in the field of scenario modeling to
describe projected scenarios in their own way, possibly in a
more familiar way.

8. Conclusions

1. A naturally linguistic description of the scenario of
participants’ behavior in a real cyber conflict implementing
the “wait and see” tactics for defenders, and the weakest link
tactics for attackers is given.

2. Existing grammars are analyzed and the most appro-
priate grammar is selected that matches the scenarios of be-
havior of the participants in cyber conflict. Such a grammar
is a context-free grammar, which best describes the scenario
of participants’ behavior in cyber conflict.

3. It is shown how the natural language description of
a scenario can be converted into the BNF form, which can
be considered as the initial description of a scenario for the
program for analyzing the correctness of prototype scenario
description. The BNF representation of the script is given,
corresponding to the natural language description of the
script. The formal grammatical representation of the script
is checked. Conclusions are made about the efficiency of the
proposed approach.

References

1.	 Do Prado Leite, J. C. S., Hadad, G. D. S., Doorn, J. H., Kaplan, G. N. (2000). A Scenario Construction Process. Requirements En-

gineering, 5 (1), 38–61. doi: https://doi.org/10.1007/pl00010342

2.	 Carroll, J. (1995). Introduction: the scenario perspective on system development. Scenario-based design: envisioning work and

technology in system development. Wiley, 1–18.

3.	 Potts, C. (1995). Using schematic scenarios to understand user needs. Proceedings of the Conference on Designing Interactive

Systems Processes, Practices, Methods, & Techniques - DIS’95, 247–256. doi: https://doi.org/10.1145/225434.225462

4.	 Booch, G. (1992). Object oriented design with applications. Object-oriented software engineering: a use case driven approach. Ad-

dison-Wesley, Reading, MA/ACM Press, New York.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/9 (102) 2019

64

5.	 Zorman, L. (1995). Requirements envisaging by utilizing scenarios (Rebus). University of Southern California.

6.	 Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N. et. al. (1998). A proposal for a scenario classification

framework. Requirements Engineering, 3 (1), 23–47. doi: https://doi.org/10.1007/bf02802919

7.	 Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P. (1998). Scenarios in system development: current practice. IEEE Software, 15 (2),

34–45. doi: https://doi.org/10.1109/52.663783

8.	 Ryser, J., Glinz, M. (1999). A Practical Approach to Validating and Testing Software Systems Using Scenarios. Proceeding

3rd International Software Quality Week Europe 1999 QWE’99.

9.	 Devillers, F., Donikian, S. (2003). A Scenario Language to orchestrate Virtual World Evolution. SCA ‘03 Proceedings of the 2003

ACM SIGGRAPH/Eurographics symposium on Computer animation, 265–275.

10.	 Godet, M., Roubelat, F. (1996). Creating the future: The use and misuse of scenarios. Long Range Planning, 29 (2), 164–171.

doi: https://doi.org/10.1016/0024-6301(96)00004-0

11.	 Schwartz, P. (2000). The official future, self-delusion and the value of scenarios. Financial Times, 2.

12.	 Steinitz, C., Arias, H., Bassett, S., Flaxman, M., Goode, T., Maddock III, T. et. al. (2003). Alternative Futures for Changing Land-

scapes: The Upper San Pedro River Basin in Arizona and Sonora. Island Press, New York.

13.	 Timpe, C., Scheepers, M. J. (2003). A look into the future: scenarios for distributed generation in Europe. Energy research Centre

of the Netherlands ECN.

14.	 Maack, J. (2001). Scenario analysis: a tool for task managers. In: Social Development Paper No. 36. Social Analysis: Selected Tools

and Techniques. World Bank, Washington, D.C.

15.	 Hulse, D. W., Branscomb, A., Payne, S. G. (2004). Envisioning alternatives: using citizen guidance to map future land and water use.

Ecological Applications, 14 (2), 325–341. doi: https://doi.org/10.1890/02-5260

16.	 Anderson, R., Moore, T. (2006). The Economics of Information Security. Science, 314 (5799), 610–613. doi: https://doi.org/

10.1126/science.1130992

17.	 Varian, H. (2004). System Reliability and Free Riding. Advances in Information Security, 1–15. doi: https://doi.org/10.1007/

1-4020-8090-5_1

18.	 Bohme, R., Moore, T. (2009). The iterated weakest link. A model of adaptive security investment. Workshop on the Economics of

Information Security (WEIS). Available at: http://weis09.infosecon.net/files/152/paper152.pdf

19.	 Gordon, L. A., Loeb, M. P., Lucyshyn, W. (2003). Information security expenditures and real options: A wait-and-see approach.

Computer Security Journal 14, 1–7.

20.	 Purser, S. A. (2004). Improving the ROI of the security management process. Computers & Security, 23 (7), 542–546. doi: https://

doi.org/10.1016/j.cose.2004.09.004

21.	 Grossklags, J., Christin, N., Chuang, J. (2008). Secure or insure? Proceeding of the 17th International Conference on World Wide

Web - WWW ’08, 209–218. doi: https://doi.org/10.1145/1367497.1367526

22.	 Gordon, L. A., Loeb, M. P. (2002). The economics of information security investment. ACM Transactions on Information and Sys-

tem Security, 5 (4), 438–457. doi: https://doi.org/10.1145/581271.581274

23.	 Zhang, Y., Fan, X., Wang, Y., Xue, Z. (2008). Attack Grammar: A New Approach to Modeling and Analyzing Network Attack Se-

quences. 2008 Annual Computer Security Applications Conference (ACSAC). doi: https://doi.org/10.1109/acsac.2008.34

24.	 Gorodetski, V., Kotenko, I. (2002). Attacks against Computer Network: Formal Grammar-Based Framework and Simulation Tool.

Recent Advances in Intrusion Detection, 219–238. doi: https://doi.org/10.1007/3-540-36084-0_12

25.	 Yevseyev, S. P., Dorokhov, A. V. (2011). Information threats and safety in Ukrainian bank payment systems. Kriminologicheskiy

zhurnal baykal’skogo gosudarstvennogo universiteta ekonomiki i prava, 2 (16), 68–75.

26.	 Milov, A. V., Korol’, O. G. (2019). Razrabotka ontologii povedeniya vzimodeystvuyushchih agentov v sistemah bezopasnosti.

4th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry 2019, 832–842.

