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Hocnioxncenns npucesaueno nodyoosi mamemamuu-
Hoi modeni, popmyntoeaniio Kpaioseux 3adar cmamu-
KU 3ePHUCMO20 Mamepiany CMOCOBHO 00 MEXHON02IU-
HUX NPoUecié CilbCbKk020Cn00apcvkozo supodHuymea.
B axocmi po6ouozo anapamy no6yooeu modeni 3epru-
cmozo mamepiany 6UKOPUCMOBYIOMBC Memoou pis-
HoeavcHoi mepmoodunamixu. Chopmynvosana ochosna
mepmoouHamiuna pieHicmo, w0 00360J9€ OMPUMAMU
peonoziune CnieioHOWEHHS, sKe 6CMAHOGIIOE 36’5~
30K MidC HanpyHceHHaMU i 0epopmayiamu 3epHUCmoz0
Mmamepiany. Y axocmi 3epnucmozo mamepiany ooupa-
He cunke cepedosuue 3 nposisom epexmy Peitnonvoca.
Ileit epexm mae micue 6 pasi manux odedopmauii
i 20860pums NPo HAAGHICMb 3aNEHCHOCTME Ouaamauii 6io
desiamopa menzopa depopmauiii. Ha siominy 6io xna-
CuMHUX Memoois, de Po3eNsL0AEMbCA MOO0eTb CYULNb-
HO020 cepedosuuya 3 HedePoOpMOBAHUMU i 2NAOKUMU
YacmunHKamu 3epHa, mym 6paxoeyemvcs K edexm
Peiinonvoca, max i nasenicmo npysxcuux deopmauiii.
Ompumane peonoziune cniegioHowenns 0ae 3ajnedxnc-
HicMb 021 MeH30pa Hanpysicenv 6i0 menzopa dedop-
Mauii 6i0n06i0H020 cNiGEiIOHOWEHHAM NIHIUHOI meopii
npysxcuocmi.

Y pas3i izomepmiunozo npouecy Oedopmyseanns
cpopmyavosana xpaiiosa 3adava cmamuxu 3epHoOB0-
20 mamepiany 6 noni cun msavcinns. B poéomi naee-
deni nocmanosxa i piienns 060X NPUBAMHUX 3A60aAHD
npo pieHo6azy 3ePHUCMO20 WAPY HA 20PU3OHMATLHIU
NIOWUHI: npU BI0CYMHOCMI NOBEPXHEGUX CUN i npu Oii
JomuuHuX nogepxHesuUx CUl HA GLAbHOT NOBEPXHI.

Kpaiiosi 3ada4i pienoeazu zepnucmozo mamepia-
Y HOCAMb HeJUHIUHUY XapaKkmep, a ompumane piueH-
HSL Npeodcmaesuse CKAAOHUU MamemamuuHuil anapam
3 3QNYUEHHAM YUCETLHUX MEMO0i8.

Ompumani mooei cmamuxu cyuiibiHozo cepedosu-
wa nepedye po3eandy OUHAMIMHUX 3A60aHb, 30Kpema,
B8UBUEHHS CMIUKOCMI PIGHOBAU

Knrouosi cnosa: 3eprucmi mamepianu, pi6Ho8ax}cHA
mepmoounamika, epexm Petinonvoca, zopuzonmans-
HUU 3epHosull wap, Kpamosa 3a0aua, epaHuti ymosu

u] =,
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1. Introduction

Granular materials (loose, grainy media are synonymous
with the concept of granular) are widespread in nature and
are used in various technological processes, for example, in
agriculture. Grainy media have certain properties that dis-
tinguish them from «classic» materials — solid, liquid, and
gaseous. This is due to that grainy media are composed of
quite a large number of macroscopic particles (sand, grain,
ore) whose dimensions significantly exceed the size of atoms
(molecules). The interaction among particles occurs only
when they collide or directly come into contact. This leads
to that the environment does not perceive stretching ef-
forts. In addition, the clashes are inelastic in character.
A grainy material can manifest itself as a solid deformable
body (a state of mechanical equilibrium), a viscoplastic or
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elastic body at minor deformations of the medium, or as
a gas during its intense movement (a fast motion theory).
The latter relates to the concept of pseudo-fluidization,
which is caused either by the movement of a gas (a liquid)
through pores between particles or by imposing high-fre-
quency vibrations on the medium.

As regards agricultural technological processes, grain
crop act as grain media. Therefore, it is important to study
both the static and dynamic processes (outflow of grain from
a bunker, the dynamics of a grain layer on a sieve, separation
of pure grain and weed impurities). The considered material
is a two-phase environment with a carrier in the form of
a gas filling the space between grains, and a dispersed com-
ponent — grain. The grain’s density significantly exceeds the
density of a gas. Therefore, the impact of gas on the state of
such an environment can be neglected in general.



The phenomenon of loosening and compaction of gra-
nular media at displacement was noted for the first time by
O. Reynolds in 1886. He termed the phenomenon dilatancy
and explained it by repacking the particles of sand at displace-
ment. The simplest environment in which dilatancy processes
manifest themselves is a granular medium. It consists of sepa-
rate solid particles, which, at a known density, form a certain
packed arrangement in space. Dilatancy manifests itself at
both elastic and plastic and viscous deformation, and, in all
cases, it can be accompanied by both an increase in volume
and its decrease. It is typical for most highly concentrated
dispersed systems (mostly high-filled with a solid phase).

Constructing a model of a grainy environment taking
into consideration the Reynolds effect and elastic properties
employs a thermodynamic approach, based on the first and
second laws of equilibrium thermodynamics. The characte-
ristic kinetic property of a grainy environment at defor-
mation, which distinguishes it from the elastic medium, is
a dilatancy effect or the Reynolds effect. It implies that
under shear deformations the particles are repackaged, which
changes their volumetric concentration. Such an approach to
modeling a grainy medium provides for the prospects of using
the developed methods of nonequilibrium thermodynamics
for a wider range of problems (the grain media dynamics).

The relevance of this study is due to the systematic use
of equilibrium (and, subsequently, nonequilibrium) thermo-
dynamics methods to derive equations of the balance of
grainy materials mechanics, as well as to demonstrating the
need to devise methods for solving appropriate boundary-
value problems.

2. Literature review and problem statement

By its mechanical properties, grainy structures occupy
an intermediate position between solid and liquid bodies.
However, while the fundamental equations of the latter (the
equations of elasticity theory, the Navier-Stokes equations,
etc.) have long and firmly been established from the general
principles of mechanics, the statement of such equations for
a grainy medium motion is still an unresolved task. The grainy
environment refers to a cohesive set of chaotically packaged
particles that maintains contacts among neighbors when
moving. At moderate deformations, the environment with
a sufficiently dense initial packing is able to maintain equi-
librium in a deformed state, like an elastic body. However, at
large enough deformations, it loses stability and, like a liquid,
demonstrates fluidity. The kinetic variables in this case are no
longer the deformations, but the speed of the deformations.

Granular materials are widespread in nature and are used
in various technological processes [1]. However, despite con-
siderable efforts to develop the relevant theory, the successes
in this field of mechanics are insignificant while the results
are contradictory.

The difficulty of studying the behavior of granular ma-
terials is predetermined by their physical properties [2].
A granular material is a multi-phase environment, whose
dispersed component is rather large solid particles, and the
carrier environment is typically a gas (or a liquid) [3]. The
effect of a carrier environment on dispersed particles is ge-
nerally neglected [4].

Given that the particles of the environment are large and
can acquire an intricate shape, the character of their inter-
action is reduced to a contact, impact, friction. Due to the

absence of gravitational forces among the particles, there can
be no stretching forces in the environment — normal stresses
should be negative [5]. This leads to various effects in such
media, in particular, their separation into fractions [6], which
was experimentally confirmed by studies [7, 8].

The properties of a granular environment are significant-
ly dependent on the state that this environment is in:

1) solid — particles are densely packed, which prevents
them from executing significant relative displacements [11];

2) liquid — the relative movements of particles can be
significant, but have weak fluctuations of the field of velo-
cities [11]. In this case, the behavior of the environment is
significantly influenced by the presence of a carrier environ-
ment — a liquid (a gas) [3];

3 gaseous — particles execute intense chaotic motion,
similar to the movement of atoms (molecules) of gas at high
enough temperatures. Such a state is called a «fast move-
ment» state [12—14].

The second and third states are typically reduced to one
and denote it a state of «pseudo-fluidization». This state can
be entered by a granular environment by imposing small-
scale rapidly oscillating external force fields (vibrations) on
it. Technical implementation of the pseudo-fluidization of
loose (granular) materials has received much attention in
papers [10, 15, 16, 18].

The main issue is deriving a rheological ratio, which
would define the relationship between a stress tensor and the
deformation tensor. Such a relation should take into conside-
ration the character of interaction among dispersed particles.

There are the following approaches to obtaining such ratios:

a) phenomenological, whereby mathematical ratios are
established on the basis of the experiments [11]. It simulates
a granular environment in the form of identical spherical
balls of a small diameter. The dependence of stresses on an
environment’s density and a technique of initial arrangement
of balls has been established. However, the cited work does
not take into consideration the Reynolds effect in deforming
the environment;

b) representation of a granular environment in the form
of a finite set of particles of a certain shape (a system with
the finite number of degrees of freedom). In this case, the be-
havior of an object is described by ordinary differential equa-
tions from analytical mechanics, which are usually solved
numerically. Work [15] gives such a solution. The dynamic
character of the circulation of gas and particulate matter, the
distribution of their concentration within a working zone
were investigated based on the rate of pseudo-fluidization
and the average size of particles. However, the rheological
ratio was not established either, which is a characteristic
drawback of other works;

¢) the use of statistical physics methods, whereby the
type of a distribution function is established for a certain
type of particle interaction, based on which the laws are
formulated. These laws govern the behavior of a granular
environment [18].

Our analysis of studies [11, 15, 19, 20] has also revealed
a failure to account for the Reynolds effect.

This effect is considered in [21] with the construction of
a rheological ratio, but only for the case of perfectly smooth,
absolutely solid ball-shaped particles. In this case, the authors
build an environment’s equilibrium equations for the case of
small deformations. However, solving specific applied equi-
librium problems by such equations is difficult; they are not
considered. In addition, resolving rheological ratios is based



on the variation principle of virtual works, but the potential
energy of deformation is taken equal to zero, which does not
make it possible to take into consideration elastic deforma-
tions in the model of an environment.

Thus, our analysis of known studies has identified an
issue related to the absence of theoretical approaches to mo-
deling the static of a grain granular environment taking into
consideration the Reynolds effect.

3. The aim and objectives of the study

The aim of this study is to derive a closed system of
equations and boundary conditions describing the static of
a grain environment in the external force fields, taking into
consideration the Reynolds effect.

To accomplish the aim, the following tasks have been set:

— to derive a principal thermodynamic equality for the
chosen object of a continuous medium, the dependence of
stress tensor on the deformation tensor in isothermal pro-
cesses;

— to state the boundary-value problems on a grain me-
dium’s statics;

— to solve the simplest problems on a grain medium’s
equilibrium;

—to determine significant parameters for a grain me-
dium’s equilibrium process.

4. Mathematical methods for studying the equilibrium
state of a grainy environment

A procedure for solving the problems on modeling the
equilibrium state of a grainy environment implies the following
algorithm: study the thermodynamics of a grainy material with
the derivation of a rheological expression for its static; state
a boundary-value problem and determine conditions for the
course of the process; verify the devised procedure using ap-
plied problems on the equilibrium of a horizontal grainy layer
along a solid horizontal plane in a two-dimensional statement.

4. 1. Thermodynamics of a grainy material

Introduce the following designations: x1, x9, 23 — coordi-
nates of the Cartesian system of coordinates; uy, us, us — vec-
tor of infinitesimal movements;

1 du;, ou 1
8ik:2( +k} Yz‘k=€ik_§(€11+822+833)6i}e’

dx, ox,

where 8y, are the symbols by Kronecker; 6y is the stress tensor;
Ty =0y + POy,

where

1
p= _g(cn +0y +G.‘53)

is the stress tensor deviator; p is the density of a grain material:

P=p;T, 1)

where T is the volumetric grain density; ps3is the true density
of a grain’s material.

The volumetric density T depends on the way the grains
are packed in a grainy environment [21, 22]. In the case of
a random packing, we have t1=0.61+0.74.

We shall consider infinitely small deformations, which
corresponds to the linear theory of elasticity. In this case, one
can consider that a body before and after the deformation
occupies the same area of space. At the same time, a material’s
density pg, prior to deformation, and p, after it, satisfies the
following equation to an accuracy of second order small values:

p(1+divii)=p,. (2)

Let the grainy environment fill the area of space V, which
is limited by surface X=3,+%; and which is exposed to ex-
ternal mass intensity forces g and surface forces p at border ¥
of area V. Denote by U the displacements of surface points Y.
We consider the statics when a body under the influence of
the specified force factors enters a certain strained deformed
state of equilibrium. This state is described by the following
equations:

%s +pg =0 @
X

and boundary conditions:
u,=U,(Z,), (4)

G, = Pp; (Zc), (%)

(i, k=1, 2, 3). Over repeated indices, summation is from 1 to 3!

Set the body’s points into virtual movements du;, which
meet conditions [4]. Elementary work 8A¢, performed by ex-
ternal bodies (external forces: mass g and surface p) to a given
body in the specified virtual movements, is equal to:

SA" = J.pglﬁui dv +g.> p;dudx.
Vv z

Considering (3) to (5) and applying a Gauss-Ostro-
gradsky formula, this ratio is reduced to the form:

SA" = J.Gl.k&ik dv,
%4

which can be interpreted as the equality of elementary works
by external bodies to the system and the work of the system
to external bodies.

Thus, the magnitude of work of external forces to system
da’, per unit of a body’s mass, is equal to:

da’ = lcik8€ik7 (6)
P
where
1 ddu, ddu
de, =~ Ly —H
* 2( dx,  ox; ]
If one uses the representation of second-rank tensors in
the form of amounts of ball tensors and deviators:

1 1
Gy =—D8;,+1y, (pz_gakk)7 881‘1@25868%"'57&’



ratio (6) can then be represented in the following form:

sa =-Lso+11,5y,. (7
PP

Next, we proceed to considering the Reynolds effect.
Resistance of granular materials when one part shifts against
another is determined by the friction of sliding and rolling of
moving particles, and in dense coarse-grained media — also by
the so-called grip. The latter is part of the general resistance
to shear, which in dense granular materials is necessary for
some lifting and upward movement of particles, without
which they, being wedged among neighboring particles, can-
not move or roll over one another (dilatancy by O. Reynolds).

Studies into a dilatancy phenomenon and its effect on the
character of deformation of granular media under load, on the
example of soils, were reported in [23, 24]. The authors note
that not taking into consideration the phenomenon of dila-
tancy leads to distortion of estimated indicators and schemes
of soil deformations. It was established that the reliability of
foundations and buildings in general is based on an in-depth
representation of the mechanism of internal friction in soils,
elucidation of the dilatancy properties, detailed research and
studying the strength of loose soils, which serve as the base
for structures.

Thus, using the Reynolds effect is justified in modeling
the equilibrium state of grain granular media.

For the isotropic environment, we have the following
ratio [21, 22]:

0 =0(1,(v,)), ®)

where Iy(Yir, Yir)=1/2Yavi is the second invariant of a stress
tensor deviator. For the case of infinitesimal deformations,
ratio (8) takes the form:

V=WYy Vi ®)

where p is the positive constant equal to 0.59+0.63.
Variating the last ratio produces the following expression:

00 =2y,,8Y,,.
Expression (7) can then be transformed to the form:
da’ =1,8vy,

where

*

1
Tt :E(Tik_2up71k)~ (10)

Knowing the expression for elementary equilibrium work
of external bodies to the body, we can record a principal ther-
modynamic equality, which is the result of the implementa-
tion of the first and second laws of thermodynamics:

du="Tds+1,87,, 11)
where u=u(s, y) is the internal energy of the system; T is
temperature; s is entropy. It should be noted that the number
of independent thermodynamic variables here is less by unity
compared to the generally accepted basic thermodynamic
equality.

Equation [11] can be rewritten in terms of the thermo-
dynamic potential of free energy f=f(T, yi)=u—T5:

&f =-s0T +7,0y,, (12)
hence, the expressions for caloric:
of
() 13
* (BT)M (13)
and thermal:
N of )
t=| 2|, (14)
' (a’Yik T

state equations.

Here, the thermodynamic potential f is a function of
independent thermodynamic variables T, y;. Consequently,
there are dependences s=s(Ty), Ty =7T4(T, ;)

Following the procedure of linear thermodynamics, rep-
resent free energy in the form of a Taylor series in the vicinity
of initial equilibrium state (T=Ty, y%=0, 6;=0) and leave in
the expansion those terms that do not exceed a second order:

100)= 100+ (L) T-n)e( L) vr

ik
2 2
+1[a€] (T—nf+( oL ) x
2\a17 ), , arar, ), ,

1 3
x(T-T,)y,+—= )
( O)Ylk Z(a’YZka'Ym JT ) szYmn

(15)

Let the initial state be natural:

w) (w]
s=|—=—| =0,0,=[—"—| =0.
(E)T 7,0 ' N, 7,0

Then the expression for free energy, determined with
an accuracy to a constant, will be simplified. The following
designations are introduced:

2 C 2
BIT—Toy[a];J =—7,( afJ =
or* )., 21,"\aTay, ), ,

2
= _bik’ ( a f ) = Aikmn’
BYikaYWn 7,0

where C, is the heat conductance in the absence of deforma-
tions; b, Ajpmy are constants. It follows from (15):

C 1
f(T’yik) = _ﬁGQ _bikeyik + 7Aikmn’Yik’Ymn' (16)
0

2

This expression makes it possible to derive rheological
ratios for the case of an anisotropic environment. Hereaf-
ter, we shall consider isotropic media. For them, free ener-
gy will depend on invariants 9, I»(yj). A first invariant
Li(Yir) =7Y11+Y22 Y33 is zero. Therefore, the second term in (16)
for the case of an isotropic environment in the presence of the
Reynolds effect is absent. The expression for free energy will
take a simpler form:



a7

A%
0°+ o YV

c
P
S(Toyy)= 200

2T,

0

where v is the constant, pg is a material’s density in the initial
state; and at minor deformations we accept Py = p-

It should be noted that the constants Cy, v, present here,
should be positive magnitudes, as it follows from a condition
for the thermodynamic stability [25, 26]. Hereafter, we shall
consider the equilibrium of a grainy environment at a con-
stant temperature, that is an isothermal transition from the
unloaded state to the stressed-deformed state. The necessary
rheological ratio for a given case follows from (12), (14), (17)
and from determining 7, :

. 5} 2v
Tik:(fJ:pYik’ Tik:2(V+HP)Yik- (18)

My

Returning to the stress tensor, we obtain a rheological
ratio from (18):

Gy = =Py +2(V+up) v (19)

This rheological ratio (19) is the closing ratio in the
system of equations of the statics of a grainy material. The
difference between ratio (19) and those previously consi-
dered by other authors is that in the right-hand part there
is an additional parameter v, responsible for the presence of
elastic deformations in a grainy environment.

Further verification of the resulting expressions im-
plies stating a boundary-value problem and solving spe-
cific applied problems on the equilibrium of a horizontal
grainy layer.

4. 2. A boundary-value problem on a grainy material’s
equilibrium

For the further research, we shall state a boundary-
value problem on the equilibrium of a grainy material,
which occupies region V, limited by the surface X=3,+.
If ¥, is a solid unmovable wall, one can assign two types
of conditions for it:

a) u,=0;

b) u, =0, mo,u, /‘ﬁ‘ =[x m0oun; (nkckini > 0)y u
mG, —mGunn,— fy mounu, /|il, (n,o,n,>0).

Here, n; is the external single normal vector to Y, fx is
the external ratio of dry friction. In the second case, it is
believed that the boundary points of a body at deformation
overcome the force of friction according to the law of dry
friction by Coulomb. If a boundary ¥ divides two different
media (in particular, it can separate a region, occupied by
a grainy environment, from an empty space), then one assigns
the «dynamic» boundary conditions on it:

=0,

n

<nk0kini> =0, <nleckiti> =0, (20)
where 1; is the single vector, tangent to Y.; angular brackets
in the expressions denote a jump of the corresponding mag-
nitude in a transition over the surface Y.

In particular, if = is exposed to external distributed
forces p=np,+tp: (P, px — normal and tangent components of
these forces), boundary conditions (20) take the form:

05,1 = Dy

21

(22)

(o) — ()
nkaiTi - mem ’

where ’C(,:)(OL= 1,2) are the two noncollinear single vectors,

tangent to X_. The stressed-deformed state of an environ-
ment is described by variables u,,u,,u,,p that satisty, in
region V, static equations:

D | g =0, (23)
ox,
rheological ratios:
0, =-pd, +2(v+up)e,, gikzl du, +% , (24)
2\ dx, o,
closing ratio:
1
=1 (Y, 74)=0 (’Yikzeik_gﬁaik)' (25)

For the resulting solution, the p > 0 condition must be met.

Above is the relationship between the density of an en-
vironment and its volumetric density (1). In order not to
disrupt the continuity of an environment, the volumetric
density T must accept limited values Tp,i,<T<Tpax. Therefore,
when solving a problem, one needs to make sure that the den-
sity of a material is in the interval p3T,in<p<p3Tmax. The law
of mass preservation produces a ratio that makes it possible
to define density as a function of deformations:

p(1+ﬁ)=po- (26)

Thus, it is obvious that solving such problems is associa-
ted with significant mathematical difficulties, which testifies
to the relevance of the devised methodology. Next, we shall
consider two relatively simple applied problems on the equi-
librium of a horizontal grainy layer along a solid horizontal
plane in a two-dimensional statement, which is typical for
the technological processes related to agricultural machines.

4. 3. Equilibrium of a two-dimensional horizontal grain
layer in the field of gravity forces
Consider a layer of permanent thickness 4, located on
a horizontal wall, and is exposed to gravity force g=esg,
where e, is the Oz axis ort (Fig. 1). Consider a layer of perma-
nent thickness £, located on a horizontal wall, and is exposed
to gravity force g=esg, where e, is the Oz axis ort (Fig. 1).

z

Fig. 1. Schematic of a horizontal grain layer:
g — free fall acceleration; g — intensity of tangent stresses;
h— layer’s thickness

Let the field of displacements depend only on variable z
and has a single non-zero component u=e,w(z). Then the
strain tensor has one non-zero component €szz=w’, where



() means differentiation by variable z. The corresponding
non-zero components of the deviator of strain tensor and
a stress tensor are equal:

1 1,

Y= _gw’? Voo = _gw )

Oy ==—P, Op="P, Op= —p+2(v+up)w’,

Yir =0 :O(i;tk).

The first two equations in (23) suggest that pressure
p does not depend on variables x, y, the third equilib-
rium equation takes the form of an ordinary differential
equation:

—(1-2u@’) p’+(v+2up)w” =—pg. 27)

Here, the function p=p(z), in which a given dependence
is determined from the law of mass preservation (26):

po pO
p= X 28
1+9 1+10' ( )

A Reynolds condition is a closing equation:

w'—%u(w')‘ =0. (29)

The last equation produces two solutions:

a) w'=0;

b) w'=3/(2p).

Hence, due to the boundary condition w(/#)=0, we obtain:

a) w=0;

b) w=3z/(2p).

Boundary condition (22) is met identically (p,=0),
and condition (21) takes the form p(0)=0. It follows from
equation (27), (28), taking into consideration the boundary
conditions at z=/A:

—case a):
P =p&z (30)
— case b):
Po8H
= . 31
H=-3 31)

Expression (31) produces negative values for pressure,
which does not correspond to the physical state of a grainy
environment. Ratio (30) corresponds to the distribution of
pressure in a column of an ideal homogeneous environment.

4. 4. Equilibrium of a horizontal layer when a horizontal
shear force acts on the free surface

A more interesting and more complex solution is pro-
duced by the problem, in which, in addition to gravity force,
there is an evenly distributed tangent effort g=e,q acting on
the free surface (z=0):

ﬁz(u(z),O,w(z)),

dependent on a single variable z. Then the non-zero compo-
nents of a strain tensor are equal to g3=u’/2, €33=w’, and the

(32)

non-zero components of a stress tensor are equal to 6y1=—p,
G33=—p+2(vtpp)w’.
The equilibrium equations take the form:

90, rele]
—=0, —E+pg=0. 33
> 5, TP8 (33)
Consider that there is a friction force on the wall (z=h)
that prevents the layer from moving:

u(h)=w(h)=0, (34)
Conditions (21), (22) hold at the free surface (z=0):

0, =(v+up)u'=—q, (2=0), (35)
Gy =—p+2(v+up)w’ =0, (z=0). (36)

Note that there is the first integral derived from the first
equation (33), which, taking into consideration boundary
condition (35), can be written in the form:

[v+up(z)]u’(z):—q‘ 37

Let us consider this ratio as an equation for finding p:

(38)

The second ratio (33) considering (38) produces an or-
dinary differential equation relative to unknowns u(z), w(2):

(i[:l(v—;],)+2(v+up)w']+ﬁj=0. (39)
A Reynolds condition takes the form:
0 =2 /3uw? -1/ 2uu’* =0. (40)
Differentiate (40) for z and we obtain:
—pu'u” +(1-4pw’/3)w” = 0. (41)

Excluding variables «’, u”, using (40), (41), from ra-
tio (39):

6 1/ 3-9 ’ ’_ ”
yoNouel@-2ue) - (dpw’-3)w (42)

3u , 6uw (3-2nw’)

and solving it relative to @”, we obtain:

o= 2P U (200 =3) | w'(3-2w'h)
3q(1+w)(2w'n+3) u

. (43)

Equation (43) can be reduced to a first-order equation
by introducing a new variable:
_dw(z)
Cdz

W (z)

and consider a Cauchy problem with an initial condition that
follows from ratios (36), (38), (42):
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After finding a solution to the Cauchy problem,
we determine the displacement u(z) by integrating
the first ratio (42) and pressure according to (38).
It should be noted that the variables u, w are deter-
mined with an accuracy to the constant component.
This flaw is eliminated by the requirement that
conditions u(h)=w(h)=0 should be met on a rigid
wall (z=h).

5. Results of a numerical study of the
equilibrium of a grainy layer lying on
the horizontal plane

The calculation results are given in the form of
charts in Fig. 2—5; their location is given in Table 1.

Table 1
Calculation results
h, m 0.01 0.02
g, n/m? 10 100 10 100
Figure 2 3 4 5

Each figure contains six graphic windows
marked with letters a)—f) with four charts inside,
which represent the following diagrams for different
values of parameter v=10, 50, 100, 150 n/m? and
value p=0.65:

a) distributions, along z, of the vertical move-
ments of body points w(z);

b) distributions, along z, of the horizontal move-
ments of body points u(z);

¢) distribution, along z, of pressure p(z);

d) distributions, along z, of tangent stresses
631(2);

e) distributions, along z, of normal stresses
033(2);

f) distributions, along z, of the medium’s densi-
ty p=p(2).

Our analysis of dependences in Fig. 2-5, a has
established that the normal movements are neg-
ative, they are directed towards the free surface
(z=0) with their module increasing, which causes
the layer to thicken. Our analysis of Fig.2-5,b
shows that the horizontal movements are directed
in the same direction as the surface load ¢ and in-
crease as they approach the free surface.

Pressure in the layer increases with depth not
according to a linear law (charts in all figures
marked with letter ¢). Density of the environment
increases with depth (Fig. 2—5, /). The dependences
shown in Fig. 2-5, e indicate a slight dependence
of tangential stresses and close values on their tan-
gential stress, which is created on the free surface
631=—¢q. Normal stress turns to zero on the free
surface, and in the remaining points of the layer is
negative, which indicates the adequacy of the model
built (Fig. 2-5, ).
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Fig. 2. For the intensity of tangent stresses and the thickness of
a layer, equal to g=10 n/m™2, h=0.01 m: a — vertical movements;
b — horizontal movements; ¢ — pressure, d — tangent stresses;
e — normal stresses; f— environment’s density
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Fig. 3. For the intensity of tangent stresses and the thickness of
a layer, equal to g=100 n/m™2, h=0.01 m: a — vertical movements;
b — horizontal movements; ¢ — pressure, d — tangent stresses;
e — normal stresses; f— environment’s density
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Fig. 4. For the intensity of tangent stresses and the thickness of
a layer, equal to g=10 n/m™2, h=0.02 m: @ — vertical movements;
b — horizontal movements; ¢ — pressure, d — tangent stresses;

e — normal stresses; f— environment’s density
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Fig. 5. For the intensity of tangent stresses and the thickness of
a layer, equal to g=100 n/m™2, h=0.02 m: a — vertical movements;
b — horizontal movements; ¢ — pressure; d — tangent stresses;

e — normal stresses; f— environment’s density

The effect of parameter v (similar to the Lame
coefficient in elasticity theory) is seen as follows.
With an increase in v:

— © grows;

— u falls;

—p falls;

— p grows;

— 033 normal stress grows by module, while re-
maining negative.

The tangent stress o3 acquires the value deter-
mined from the value of force q in accordance with
the first integral in static equations (37).

6. Discussion of results from solving problems
on the equilibrium of a horizontal grainy layer
numerically

The results obtained, which relate to rheologi-
cal dependence (19), are explained by taking into
consideration the Reynolds effect at shear deforma-
tions of a grainy material. This ultimately leads to
other static equations.

Special feature of the proposed method for stat-
ing the boundary-value problems on the statics of a
grainy material is accounting for an additional limita-
tion on the field of environment’s deformations (9).

When stating the boundary-value problems on
statics, characteristic are the limitations, which im-
ply minor deformations of an environment.

The disadvantages of this work include the emer-
gence of new phenomenological coefficients p, v.
Identification of their natural values requires addi-
tional experiments.

Experimental studies into the gravitational flows
of granular media are based on the use of various
kinds of penetrating radiation (laser, X-ray, ultrason-
ic and microwave radiation), which makes it possible
to obtain the integrated characteristics of a moving
stream. Examples of implementing such methods
include: continuous pulling, through the appropriate
meter, of an examined material, made in the form of
a tape [27]; using tomographic measurements, by
y-rays, of the binary mixture flow when it is unloaded
from a bunker with a beam scanner [28]; passing,
across a material’s layer, a pulsed ultrasound beam or
ultrasound tomography [29, 30].

Such methods make it possible to rather reliably
control the integrated characteristics of the flow
of a grainy medium. Determining the microstruc-
tural characteristics of some near-order of particle
pairing, as well as defining phenomenological coeffi-
cients , v, is related to significant technical difficul-
ties, which require complex specialized equipment.

The implemented experimental-analytical me-
thod [31] for studying gravitational currents of
grainy materials on a rough ramp using the moder-
nized equation of the state of a grainy medium
establishes the relationship between the structural,
dynamic, and kinetic characteristics.

Experimental confirmation of the need to take
into consideration the Reynolds effect in theo-
retical studies was given in [24]. With the help
of designed devices for direct, oblique cutting of



soils, the authors investigated magnitudes of the limiting
resistance of soil to a shear and the angle of dilatancy under
the influence of applied tangential stresses. This has made it
possible to establish the dependence of soil strength on the
conditions of its destruction and properties.

The use of video recording with subsequent processing of
photographic images in the experimental studies of statics and
dynamics of different granular media has confirmed the com-
plex non-linear behavior of particles at individual locations,
and has proven the need to account for the dilatancy effect [32].

This gives grounds for the validity of the devised provisions
and the use of the Reynolds effect for simulating the equili-
brium state of grain media. Application of such procedures for
experimental research [24, 32] would make it possible to per-
form the final verification of the devised theoretical provisions.

The current study could be advanced by applying a given
procedure to the practical tasks related to the dynamics of
grainy media.

7. Conclusions

1. The application of the devised theoretical procedure
has made it possible to state the principal thermodynamic

equality (the identity by Gibbs) and to derive a rheological
ratio for a grainy material taking into consideration the
Reynolds effect.

2. We have stated the boundary-value problem on the
equilibrium of a grainy material taking into consideration
the derived rheological ratio, the established conditions for
the course of the examined process, taking into consideration
the additional limitation on the field of environment’s defor-
mations.

3. Verification of the devised procedure has been car-
ried out by solving the applied tasks on the equilibrium of
a horizontal grainy layer in the field of gravity forces in the
absence of tangential efforts on the free surface of the layer
and in the presence of tangential stresses, distributed over
a free surface, on a solid horizontal plane in a two-dimen-
sional statement. The derived solutions to these problems
are consistent with the heuristic concepts about an actual
loading of grainy materials.

4. The implementation of the devised method has made
it possible to obtain a degree of influence exerted by phe-
nomenological coefficients p, v on the vertical and horizontal
movements, pressure, tangential and normal stresses, the
density of an environment, which define the dynamic charac-
ter of the course of machines’ technological processes.
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