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1. Introduction

A significant part of mathematical models of dynamic 
systems functioning processes are constructed and de-
scribed in terms of general graph theory [1, 2]. It is usually 
assumed that the system can be in one of the possible states 
at any time and passes from that state to another under the 
influence of some random process. The distribution laws of 
the duration of stay in each of the possible states before tran-
sition to another state are taken to be defined (or can be ob-
tained by statistical processing of the original data). In many 
practical cases, the problem of finding the stationary prob-
ability distribution of the system states can be formulated 
and solved. However, the theoretical and practical interest 
is to solve a more complex problem – finding the probability 
distribution of the system stay in its possible states at an 

arbitrary point of time after the start of functioning from a 
given initial state.

The solution to this problem under the most general as-
sumptions regarding the nature of the influencing random 
process is practically impossible. However, this solution can 
be obtained for an important special case when the process 
is Markov [3, 4]. Comprehensive results are obtained for 
the case when the random process determining transitions 
from one state to another is discrete in the phase state space, 
and the distribution law of intervals between transitions is 
exponential [5, 6]. Relations for calculating the final state 
probability distributions are also obtained for semi-Markov 
systems, when the distribution densities of the length of stay be- 
fore transition to another state are integrable functions [7, 8].  
However, the problem of obtaining simple relations for cal-
culating the probabilities of stay in each of the states at an 
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Розглянуто задачу iмовiрнiсного аналiзу складної 
динамiчної системи, яка в процесi функцiонування в 
випадковi моменти часу переходить з одного стану в 
iнший. Запропоновано методику розрахунку умовних 
ймовiрностей попадання системи в заданий момент 
часу t в заданий стан за умови, що в початковий 
момент часу система перебувала в будь-якому з 
можливих станiв. Вихiднi данi для аналiзу представ-
ляють собою безлiч експериментально отриманих 
значень тривалостi перебування системи в кожно-
му з станiв до вiдходу в iнший стан. Апроксимацiя 
одержуваних при цьому гiстограм з використан-
ням розподiлу Ерланга дає набiр щiльностi розподiлу 
тривалостi перебування системи в можливих ста-
нах до вiдходу в iншi стани. При цьому вибiр належ-
ного порядку розподiлу Ерланга забезпечує отриман-
ня адекватного опису напiвмарковських процесiв, що 
протiкають в системi. Запропоновано математич-
ну модель, що зв'язує отриманi щiльностi розподiлу 
з функцiями, що визначають вiрогiдну динамiку 
системи. Модель описує випадковий процес переходiв 
системи з будь-якого можливого початкового стану 
в будь-який iнший стан протягом заданого тимчасо-
вого iнтервалу. З використанням моделi отримана 
система iнтегральних рiвнянь щодо шуканих функ-
цiй, що описують iмовiрнiсний процес переходiв. Для 
вирiшення цих рiвнянь використано перетворення 
Лапласа. В результатi рiшення системи iнтеграль-
них рiвнянь отриманi функцiї, що задають розподiл 
ймовiрностей станiв системи в будь-який момент 
часу t. Цi ж функцiї описують також i асимптотич-
ний розподiл ймовiрностей станiв. Наведено наочний 
приклад вирiшення задачi для випадку, коли щiль-
ностi розподiлу тривалостей перебування системи в 
можливих станах описанi розподiлами Ерланга дру-
гого порядку. Процедура вирiшення задачi описана 
детально для найбiльш природного окремого випад-
ку, коли початковим є стан H0

Ключовi слова: динамiчна система з безлiччю 
можливих станiв, випадковий процес переходiв, iнте-
гральнi рiвняння динамiки, перетворення Лапласа
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arbitrary point in time has not been studied enough. The 
problem is as follows. There is no methodology relating two 
mathematical objects. The first is the distribution density 
of the duration of the system stay in each of the states until 
the transition to another state. The second is the desired 
functions describing the probability dynamics of the system 
stay in its possible states. The solution to this problem is an 
urgent task.

2. Literature review and problem statement

The problem of analysis of semi-Markov systems is dis-
cussed in numerous publications. [9] considers the problem 
of evaluating the efficiency of the system, the model of which 
is a queuing system with non-uniform arrivals. In this case, 
the final state probability distribution for the nested Markov 
chain is sought. In [10], the production system is investigat-
ed using the semi-Markov model. The analysis ends with the 
calculation of the final probability distribution of the system 
states [11] describes a queuing system with arbitrary arriv-
als. The result of the study is a stationary state probability 
distribution. In [12], the possibility of using semi-Markov 
models for the analysis of computer networks, transport 
networks, and Internet of things objects is investigated. 
The decision regarding the efficiency of the system is made 
on the basis of the final state probability distribution ob-
tained. [13] explores a queuing system with non-Poisson ar-
rivals and non-exponential service in order to obtain station-
ary performance characteristics. In [14], a queuing system 
with semi-Markov arrivals is investigated. The analysis of 
the system ends with the calculation of the final state prob-
ability distribution. Finally, in [15], an analysis of a queuing 
system with an arbitrary distribution of random service du-
ration is made. To evaluate the efficiency of the system, the 
obtained stationary state probability distribution is used.

As a result of the review of the known publications on the 
problem of analysis of semi-Markov systems, the following 
conclusion can be drawn. The known theoretical results of 
the study of semi-Markov systems are limited to the cal-
culation of the final probability distribution of the system 
states. This is sufficient for solving some practical problems. 
However, in many cases, for example, when solving problems 
of evaluating the efficiency of restored systems, it is essential 
to know the probability dynamics of the system stay in a set 
of functional states. The same problem is important for crit-
ical multi-channel service systems. The availability of such 
systems is determined by the probability that the number of 
normally functioning channels is not lower than the given 
one. Thus, in the theoretically and practically important 
direction of ​​studying an extensive class of complex systems, 
the functioning model of which is described in terms of the 
theory of semi-Markov processes, there is a significant gap 
associated with studying the state probability dynamics of 
such systems.

3. The aim and objectives of the study

The aim of the study is to develop a methodology for 
determining the probability dynamics of the system stay in 
its possible states. When solving many practical problems, 
it is important to know not only the stationary distribution 
of the probabilities of the system states, but also the values 

of these probabilities at any time. This information makes it 
possible to solve the problems of system state management.

To achieve this aim, the following objectives are set.
– to develop a mathematical model establishing a re-

lationship between a given set of distribution densities of 
random durations of the system stay in its possible states and 
functions describing the state probability dynamics;

– to develop a method for obtaining analytical relation-
ships for the direct calculation of the probabilities of the 
system stay in possible states at an arbitrary point in time;

– to consider the implementation of the developed meth-
odology for calculating the relationships describing the 
probabilistic dynamics of the states of the semi-Markov 
system using a specific example.

4. Development of a mathematical model of  
the probability dynamics of system states

We introduce a mathematical model of the probabilistic 
dynamics of the system states as follows. Let the semi-Mar-
kov system be in one of n  possible states ( )1,..., .nH H  The 
system functions in an external environment, under which 
it passes from one state to another. A formal description of 
the mechanism of the environment and system interaction is 
given by the following set of distribution densities of random 
variables:

( )ijf t  – distribution density of the duration of the sys-
tem stay in the state iH  before transition to the state ;jH  

1, 2, ..., ,i n=  1, 2, ..., .j n=
The random dynamics of the system states is described 

by the set of functions:
( )ijG t  – conditional probability of being in the state jH  

at the time t, if at the initial moment the system was in the 
state ,iH  1, 2, ..., ,i n=  1, 2, ..., .j n=

To find the unknown functions ( ),ijG t  we introduce a 
system of integral equations

( ) ( ) ( )
0

d ,
t

ij ik kjG t f G t= τ - τ τ∫  1, 2, ..., ,i n=  1, 2, ..., .j n=

Consider the implementation of the method using a sim-
ple example of a system with two possible states H0 and H1.

For this system, we introduce:
( )01f t  – distribution density of the duration of the system 

stay in the state 0H  before transition to the state 1;H
( )10f t  – distribution density of the duration of the system 

stay in the state 1H  before transition to the state 0;H
( )00G t  – conditional probability of being in the state 0H  

at the time t  if the object is in the state 0H  at the initial 
time;

( )01G t  – conditional probability of being in the state 1H  
at the time t  if the object is in the state 0H  at the initial 
time;

( )10G t  – conditional probability of being in the state 0H  
at the time t  if the object is in the state 1H  at the initial 
time;

( )11G t  – conditional probability of being in the state 1H  
at the time t  if the object is in the state 1H  at the initial 
time.

We record the system of equations for the unknown 
functions ( )00 ,G t  ( )01 ,G t  ( )10 ,G t  ( )11 .G t

The object that is in the state 0H  at the initial time may 
be in the state 0H  when one of two possible independent op-
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tions is implemented. Firstly, the object can stay in 0H  with-
out leaving this state for the entire interval [ ]0, .t  Secondly, 
the object can leave the state 0H  at some time [ ]0, ,tτ Î  then 
returning to the state 0H  by the time .t  Hence:

( ) ( ) ( ) ( )00 01 01 10
0 0

1 d d .
t t

G t f f G t
 

= - τ τ + τ ⋅ - τ τ  ∫ ∫  	 (1)

The object that is in the state 0H  at the initial time 
can be in the state 1H  passing into that state at the time 

[0, ),tτ Î  then in the interval ( , ]tτ  remaining until the time 
,t  making a number of transitions from the state 1H  return-

ing to it by the time .t  Wherein:

( ) ( ) ( )01 01 11
0

( d .
t

G t f G= τ ⋅ -τ τ∫  	 (2)

The object that is in the state 1H  at the initial time 
can be in the state 0H  passing into that state at the time 

[0, ),tτ Î  then in the interval ( , ]tτ  remaining until the time 
,t  making a number of transitions from the state 0H  return-

ing to it by the time .t  Wherein:

( ) ( ) ( )10 10 00
0

d .
t

G t f G t= τ ⋅ - τ τ∫  	 (3)

Finally, the object that is in the state 1H  at the initial 
time can stay in this state until the time ,t  or, leaving 
that state at the time [0, ),tτ Î  return to it at the time .t  
Wherein:

( ) ( ) ( ) ( )11 10 10 01
0 0

1 d d .
t t

G t f f G t
 

= - τ τ + τ ⋅ - τ τ  ∫ ∫  	 (4)

The system of integral equations (1)–(4) forms a mathe-
matical model that relates the known distribution densities 
of the lengths of the system stay in possible states and the 
desired functions that describe the probabilistic dynamics of 
the system. We use this model.

Note that when constructing the model, no restrictions 
were imposed on the nature of the densities. Thus, this model 
can be used for probabilistic analysis of any semi-Markov 
system. The resulting system of equations (1)–(4) is solved 
using the Laplace transform [16–18].

The Laplace transform of the function ( )u t  is the func-
tion:

( )( ) ( )
0

d .stL u t u t e t
∞

-= ∫  	 (5)

To simplify recording, it is convenient to introduce 
( )( ) ( )* .L u t u s=
Taking into account the properties of the Laplace trans-

form, we record equations (1)–(4) in operator form.
If we integrate (5) in parts, then:

( ) ( )

( ) ( )

( )( ) ( )

0 0 0

00 0

*

d d

1
d d

1 1
.

t t
st

t
st st

L u e u

e u e u
s

L u u s
s s

∞
-

∞∞
- -

   
τ τ = τ τ =      

  
= - τ τ - τ τ =     

= τ =

∫ ∫ ∫

∫ ∫

In this case, the Laplace images of the relations (1)–(4) 
will have the form:

( ) ( )( ) ( ) ( )* * * *
00 01 01 10

1
1 ,G s f s f s G s

s
= - + ⋅  	 (6)

( ) ( ) ( )* * *
01 01 11 ,G s f s G s= ⋅  	 (7)

( ) ( ) ( )* * *
10 10 00 ,G s f s G s= ⋅  	 (8)

( ) ( )( ) ( ) ( )* * * *
11 10 10 01

1
1 .G s f s f s G s

s
= - + ⋅ 	 (9)

The resulting system of equations breaks down into two 
pairs {(6), (8)} and {(7), (9)}, each containing two unknown 
functions. We have:

( ) ( )( ) ( ) ( )* * * *
00 01 01 10

1
1 ,G s f s f s G s

s
= - + ⋅

( ) ( ) ( )* * *
10 10 00 .G s f s G s= ⋅

Substituting the second of these equations into the first, 
we get:

( ) ( )( ) ( ) ( ) ( )* * * * *
00 01 01 10 00

1
1 .G s f s f s f s G s

s
= - + ⋅ ⋅

Hence:

( ) ( ) ( )( ) ( )( )* * * *
00 01 10 01

1
1 1 ,G s f s f s f s

s
⋅ - ⋅ = -

( ) ( )
( ) ( )

*
01*

00 * *
01 10

11
.

1

f s
G s

s f s f s

-
= ⋅

- ⋅
	 (10)

Substituting (10) in (8), we get:

( ) ( )( ) ( )
( ) ( )

* *
01 10*

10 * *
01 10

11
.

1

f s f s
G s

s f s f s

- ⋅
= ⋅

- ⋅
	 (11)

Similarly:

( ) ( ) ( )* * *
01 01 11 ,G s f s G s= ⋅

( ) ( )( ) ( ) ( ) ( )* * * * *
11 10 10 01 11

1
1 .G s f s f s f s G s

s
= - + ⋅ ⋅

Hence:

( ) ( ) ( )( ) ( )( )* * * *
11 10 01 10

1
1 1 ,G s f s f s f s

s
⋅ - ⋅ = -

( ) ( )
( ) ( )

*
10*

11 * *
10 01

11
.

1

f s
G s

s f s f s

-
= ⋅

- ⋅
	 (12)

Now substitute (12) in (7):

( ) ( )( ) ( )
( ) ( )

* *
10 01*

01 * *
10 01

11
.

1

f s f s
G s

s f s f s

- ⋅
= ⋅

- ⋅
	 (13)

We use the obtained general relations describing the 
Laplace images of the desired functions to solve a specific 
problem. Let the restored system be in one of two states:
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–  0H  – the system is functioning normally;
–  1H – the system is restored after failure.
We first perform calculations for the simplest case when 

the system is Markov. We set the distribution density of the 
duration of stay in each of the states before transition to 
another state as follows:

( )01 ,tf t e-λ= λ  ( )10 .tf t e-µ= µ

Wherein:

( )*
01 ,f s

s
λ

=
+ λ

 ( )*
10 .f s

s
µ

=
+ µ

	 (14)

Substituting (14) in (10)–(13), we obtain analytical 
descriptions of the images ( )*

00 ,G s  ( )*
01 ,G s  ( )*

10 ,G s  ( )*
11G s  corre-

sponding to the given initial data.
Wherein:

( )

( )
( ) ( )

*
00

2

11

1

1
.

sG s
s

s s

s s s
s s s s s

λ-
+ λ= ⋅ =λ µ- ⋅

+ λ + µ
+ µ + µ

= ⋅ =
+ λ + µ ⋅ + λ + µ

	 (15)

We perform the inverse Laplace transform by decom-
posing (15) into elementary fractions. Find the roots of 
the polynomial in the denominator, solving the equation, 
whence:

1 0,s =  ( )2 .s = - λ + µ

Now we rewrite (15) as follows:

( ) 1 2

.

s
s s s s s s

s s

+ µ a b= + =
+ λ + µ - -

a b
= +

+ λ + µ
	 (16)

After bringing to a common denominator, we get:

( )
( )

( )
( ) ( )

( ) .

s ss
s s s s

s

s s

+ λ + µ a + b+ µ
= =

+ λ + µ + λ + µ

a + b + a λ + µ
=

+ λ + µ
	 (17)

We find the unknown coefficients a  and b  in (16) by 
solving the system of equations obtained after equating the 
coefficients of like powers of s  in the numerators of fractions 
on the left and right in (17). We have:

1,

.

a + b =
aλ + aµ = µ

Hence:

,
µ

a =
λ + µ

 .
λ

b =
λ + µ

 	 (18)

Substituting (18) in (16), we get:

( ) ( )
*
00

1 1
.

s
G s

s s

s s

+ µ
= =

+ λ + µ
µ λ

= ⋅ + ⋅
λ + µ λ + µ + λ + µ

	

Using the correspondence table of the functions and 
their Laplace transforms, we record:

( ) ( )
00 .tG t e- λ+µ ⋅µ λ

= + ⋅
λ + µ λ + µ

	 (19)

The inverse transformations for the images of other func-
tions describing the laws of probability distribution are given 
without explanation.

( ) ( )( ) ( )
( ) ( )

( )

( )
( )

( )
( ) ( )

( )

* *
01 10*

10 * *
01 10

2

11
1

1
1 1

1

,

f s f s
G s

s f s f s

ss s
s s s s

s s

s s s s

s s s

s s s s

- ⋅
= ⋅ =

- ⋅

λ µ - ⋅   µ+ λ + µ= ⋅ = ⋅ =λ µ + λ + µ- ⋅
+ λ + µ

µ a b
= = + =

+ λ + µ + λ + µ

a + a λ + µ + b a + b + a λ + µ
= =

+ λ + µ + λ + µ

( )
0,

.

a + b =
a λ + µ = µ

Hence:

,
µ

a =
λ + µ

 .
µ

b =
λ + µ

( )*
00

1 1
.G s

s s
µ µ

= ⋅ - ⋅
λ + µ λ + µ + λ + µ

	 (20)

( ) ( )
00 .tG t e- λ+µ ⋅µ µ

= - ⋅
λ + µ λ + µ

	 (21)

Then:

( )
1,

.

a + b =
a λ + µ = λ

Hence:

,
λ

a =
λ + µ

 .
µ

b =
λ + µ

( ) ( )
( ) ( )

( )

( )
( )

( ) ( )
( )

*
10*

11 * *
10 01

11
1

1
1

1

.

f s
G s

s f s f s

ss
s s s

s s

s s

s s s s

s

s s

-
= ⋅ =

- ⋅
µ-

+ λ+ µ= ⋅ = =µ λ + λ + µ- ⋅
+ µ + λ

a + λ + µ + ba b
= + = =

+ λ + µ + λ + µ

a + b + a λ + µ
= ∞

+ λ + µ
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( )*
11

1 1
.G s

s s
λ µ

= ⋅ + ⋅
λ + µ λ + µ + λ + µ

( ) ( )
11 .tG s e- λ+µ ⋅λ µ

= + ⋅
λ + µ λ + µ

	 (22)

Finally,

( ) ( )( ) ( )
( ) ( )

( )

( )
( )

( )
( ) ( )

( )

* *
10 01*

01 * *
10 01

2

11
1

1
1 1

1

,

f s f s
G s

s f s f s

s s s
s s s s

s s

s s s s

s s s

s s s s

- ⋅
= ⋅ =

- ⋅

 µ λ- ⋅ + µ + λ  λ
= ⋅ = ⋅ =µ λ + λ + µ- ⋅

+ µ + µ
λ a b

= = + =
+ λ + µ + λ + µ

a + λ + µ + b a + b + a λ + µ
= =

+ λ + µ + λ + µ

( )
0,

.

a + b =
a λ + µ = λ

Hence:

,
λ

a =
λ + µ

 .
λ

b = -
λ + µ

( )*
01

1 1
.G s

s s
λ λ

= ⋅ - ⋅
λ + µ λ + µ + λ + µ

( ) ( )
01 .tG t e- λ+µ ⋅λ λ

= - ⋅
λ + µ λ + µ

	 (23)

If the initial state of the system is normal functioning, 
the result of solving the problem is the following functions 
describing the dynamics of states:

( ) ( )
00 ,tG t e- λ+µ ⋅µ λ

= + ⋅
λ + µ λ + µ

( ) ( )
01 .tG t e- λ+µ ⋅λ λ

= - ⋅
λ + µ λ + µ

In this case, of course, ( ) ( )00 01 1.G t G t+ =
The obtained relations determine the values of the prob-

abilities of the system stay in the states 0Н  and 1Н  at an 
arbitrary time .t  In particular, it follows that these values 
asymptotically approach their stationary values:

( )0 ,P H
µ

=
λ + µ

 ( )1 .P H
λ

=
λ + µ

	 (24)

Let us now consider a more complex situation when the 
system functioning processes are semi-Markov. Let us de-
scribe the distribution densities of the length of the system 
stay in each of the states before transition to another state by 
second-order Erlang distributions:

( ) 2
01 ,tf t t e-λ= λ  ( ) 2

10 .tf t t e-µ= µ

The Laplace images of these functions have the form:

( )
2

*
01 2 ,

( )
f s

s
λ

=
+ λ

 ( )
( )

2
*

10 2 .f s
s

µ
=

+ µ
		  (25)

It is clear that out of the four functions ( )00 ,G t  ( )01 ,G t  
( )10 ,G t  ( )11 ,G t  only the first of them ( )00G t  is of practical in-

terest. Accordingly, we substitute (25) in (10). In this case, 
we get:

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )

2

2*
01*

00 2 2* *
01 10

2 2

2 2 22

2 2 2 2 2

22

2 2 2 2

2

2 2

1
11 1

1
1

1

21

2

2 2

f s s
G s

s f s f s s

s s

s s s

s s s s

s s s

s s s

s s

s s s s

s s s

s s

λ-
- + λ

= ⋅ = ⋅ =
λ µ- ⋅ - ⋅
+ λ + λ

 + λ - λ ⋅ + λ ⋅ + µ = ⋅ =
 + λ ⋅ + λ ⋅ + µ - λ ⋅µ 

+ λ ⋅ + µ
= ⋅ =

+ λ ⋅ + µ - λ ⋅µ

+ λ ⋅ + µ
= =

   + λ ⋅ + µ - λµ ⋅ + λ ⋅ + µ + λµ   
+ λ ⋅ + µ + µ

=
⋅ + λ + µ ( )( )

( ) ( )
( ) ( )( )

2

3 2 2 2

2

2

2 4 2
.

2

s s

s s s

s s s

=
⋅ + ⋅ λ + µ + λµ

+ ⋅ λ + µ + ⋅ λµ + µ + λµ
=

⋅ + λ + µ ⋅ + λ + µ + λµ
(26)

The structure and analytical representation of the prob-
lem solution depend on the nature of the denominator roots 
in (26). The first two roots are determined directly:

0 0,s =  ( )1 .s = - λ + µ

The last two roots are obtained by solving the equation:

( )2 2 0,s s+ λ + µ + λµ = .	 (27)

Wherein:

( )2

2,3 2 .
2 4 2

s D
λ + µλ + µ λ + µ

= - ± - λµ = - ± 	 (28)

If is the discriminant 0D > , then the equation (27) has 
two different real roots:

2 ,
2

s D
λ + µ

= - +  

3 .
2

s D
λ + µ

= - - 	 (29)

If the discriminant 0,D =  then the roots 

2 3 .
2

s s
λ + µ

= = -

If, finally, 0,D <  then the roots 2s  and 3s  are complex.
In all these cases, the expression for the inverse Laplace 

transform is found using the decomposition of (26) into ele-
mentary fractions.

If all the roots are real and different, this decomposition 
is as follows:
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( )

( )( )( ) ( )( )
( )( )( )

( )( ) ( )( )
( )( )( )

( )
( )( )( )

* 0 1 2 3
00

0 1 2 3

0 1 2 3 1 2 3

1 2 3

2 1 3 3 1 2

1 2 3

1 2 3

.

G s
s s s s s s s

s s s s s s s s s s s

s s s s s s s

s s s s s s s s s s

s s s s s s s

A s

s s s s s s s

a a a a
= + + + =

- - -

a - - - + a - -
= +

- - -

a - - + a - -
+ =

- - -

=
- - -

	 (30)

After multiplication and cancellation of like terms, this 
decomposition takes the form:

( )
( ) ( )
( ) ( )

( )

3
0 1 2 3

0 1 2 3 1 2 32

2 1 3 3 1 2

0 1 2 1 3 2 3
0 1 2 3

1 2 3 2 1 3 3 1 2

( ) )

.

A s s

s s s s s
s

s s s s

s s s s s s
s s s s

s s s s s s

= a + a + a + a +

 -a + + + a + +
+ + 

+a + + a +  
 a + + +

+ - a 
+a + a + a  

	 (31)

Now, equating the coefficients of like powers of s  in (26) 
and (31), we obtain a system of equations with respect to 0,a  

1,a  2,a  3 :a :

( ) ( )
( ) ( ) ( )

( )

0 1 2 3

0 1 2 3 1 2 3

2 1 3 3 1 2

0 1 2 1 3 2 3 1 2 3

2
2 1 3 3 1 2

2
0 1 2 3

1,

2 ,

4 ,

2 .

s s s s s

s s s s

s s s s s s s s

s s s s

s s s

a + a + a + a =
-a + + + a + +
+a + + a + = λ + µ


a + + + a +
+a + a = λµ + µ
-a = λµ

	 (32)

Since 

( )2

2 ,
4

D
λ + µ

= - λµ
 

then:

( )2 3 ,
2 2

s s D D
λ + µ λ + µ

+ = - + - - = - λ + µ

( ) ( )1 3

3
,

2 2
s s D D

λ + µ
+ = - λ + µ - + = - λ + µ +

( ) ( )1 2

3
,

2 2
s s D D

λ + µ
+ = - λ + µ - - = - λ + µ -

( )1 2 3 2 ,s s s+ + = - λ + µ 	  (33)

2 2

2 3 2 2 ,
2 2

s s
 λ + µ λ + µ   = - - λµ = λµ         

( )2

1 2 ,
2 2 4 2

s s D D
λ + µλ + µ λ + µ λ + µ = - - - = +  

( )2

1 3 ,
2 2 4 2

s s D D
λ + µλ + µ λ + µ λ + µ = - - + = -  

( )1 2 3 2 .s s s = - λ + µ ⋅ λµ

In view of (33), the solution of the system of equations (32) 
is as follows:

0 ,
µ

a =
λ + µ

 1 ,
λ

a = -
λ + µ

 

2 3 .
λ

a = a =
λ + µ

	 (34)

Now, using (30) and (34), we record the result of the 
inverse transformation ( )*

00 :G s :

( ) ( )
00

2 2 .

t

D t D t

G t e

e e

- λ+µ

λ+µ λ+µ   - + - -      

µ λ
= - +

λ + µ µ

λ λ
+ +

λ + µ λ + µ
	 (35)

Since in the present case 

2

2 ,
4

λ + µ  > λµ  
 

the probability (35) of the system stay in the state 0H  at the 
time t  has a stationary value equal to, as in the Markov case,

( )0 .P H
µ

=
λ + µ

Let now 0.D <  The roots of the equation (27) are 
equal to:

( )1 ,s = - λ + µ

( )
2 ,

2
s i D

λ + µ
= - +

( )
3 ,

2
s i D

λ + µ
= - -

and the decomposition of (26) into elementary factors has 
the form:

( ) ( )
( ) ( )( )

( ) ( )( )
( )( ) ( ) ( )

( ) ( )( )

( ) ( )

* 0 1 2 3
00 2

0 1 2 3 2 3

2
0 1 2 3 2 3

2
1 2 3 2 3

2 2
1 2 3 2 3 1 1 3 1

2
1 2 3 2 3

0 1 2 3 1 23 2
0 1 2

1 3 2 1 3

0 1 2 1 3

1

s
G s

s s s s s s s s s

s s s s s s s s

s s s s s s s s s

s s s s s s s s s s s s s

s s s s s s s s s

s s s s
s s

s s
B

s s s s s

a a a + a
= + + =

- - + +

a - - + +
= +

- - + +

a - + + + a - + a -
+ =

- - + +

 a + + + a +
a + a + a - + +a + a - a =

+ a +( )( )2 3 1 2 3 3 1 0 1 2 3

,

s s s s s s s s

 
 
 
 

+ + a - a - a  

	 (36)

( ) ( )( )2
1 2 3 2 3 .B s s s s s s s s s= - - + +

After equating the coefficients of like powers of s  in (26) 
and (36), we obtain the system of equations:
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( ) ( )
( )

1 2 3

0 1 2 3 1 2 1 3 2 1 3

2
0 1 2 1 3 2 3 1 2 3 3 1

2
0 1 2 3

1,

2 ,

4 ,

2 .

s s s s s s

s s s s s s s s s

s s s

a + a + a =
-a + + + a + a + a - a = λ + µ


a + + + a - a = λµ + µ
-a = λµ

	

The solution to this system:

0 ,
µ

a =
λ + µ

 

1 2 ,
2( )

λ
a = a =

λ + µ

( )
( )2 2

3 2 2 .
2

µ  a = - µ + λ + λ λ + µ

Thus:

( ) ( )

( ) ( ) ( )

( )

*
00

1

2 2
2

2
2 3 2 3

1 1
2

2
2 2

.

G s
s s s

s

s s s s s s

µ λ
= ⋅ + +

λ + µ λ + µ -
λ µ  ⋅ + µ + λ + λ λ + µ λ + µ

+
- + +

	 (37)

We bring the third term in (37) to the form convenient 
for performing the inverse Laplace transform. Wherein:

( )
( ) ( )

( )

( )

2
2 3 2 3

2 2

2 3 2 32 2 3
2 3

2 2

2 3 2 3

22

2 2

2
2 4 4

2
2 2

2
2 4

, 0.

s s s s s s

s s s ss s
s s s s

s s s s
s

s

s b a a

- + + =

+ ++
= - + + - =

+ +   = - - + λµ =      

λ + µλ + µ = + - + λµ =  

= + + > 	 (38)

Then:

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )
( )

( )
( )

( )

( )

2 2
1 3 2

2 2

2 2

2

22 2

3 3

4 5
2 2

4 5
2

2 4
2

2 4

2

2 4

2 2 2

2 2

s
s

s

s

s

s

s

λ µ  a + a = + µ + λµ + λ = λ + µ λ + µ

 λ µ
= + µ + λµ + λ = λ + µ λ λ + µ  

 λ µ
= + λ + µ + λµ + λ = λ + µ λ λ + µ  

 µ λµ + λλ µ = + λ + µ + =
λ + µ λ λ λ + µ  

 µ λµ + λλ λ + µ λµ + µ - λ = + + + =
λ + µ λ λ λ + µ  

λ λ + µ µ - λ +
= + +

λ + µ ( )
( )

2 26 8
2

.c s b d

 λµ + λ µ
= λ λ + µ  

= + +  (39)

In view of (38) and (39), the relation (37) takes the 
form:

( ) ( )

( ) ( )

*
00

1

2 22 2

1 1
2

12 .

G s
s s s

s
с cd

s b a s b a

µ λ
= ⋅ + +

λ + µ λ + µ -
λ + µ+

+ ⋅ + ⋅
+ + + +

	 (40)

We get the result of the inverse transformation ( )*
00 :G s

( ) ( )
( )

( ) ( )
2 2

2
00 2

cos sin .
t t

t
G t e

cd
c at e at e

a

λ+µ λ+µ
- -

λ+µ
-µ λ

= + +
λ + µ λ + µ

+ ⋅ ⋅ + ⋅ 	 (41)

The solution to the problem is completed. The resulting 
relation determines the probability of the system stay in the 
state 0H  at any time .t  If, as in the considered special case, 
reliability analysis of the restored system is carried out, this 
relation allows to reasonably formulate and solve the opti-
mization problem of increasing the system efficiency using 
standard parameter management technologies.

5. Discussion of the results of developing  
the methodology of probabilistic analysis of non-Markov 

systems

Thus, the methodology of probabilistic analysis of 
semi-Markov systems is proposed. The methodology is based 
on the model of the probability dynamics of the system 
states. The model contains a set of integral equations for the 
unknown functions describing the probabilistic dynamics of 
the system (1) –(4). The solution of these integral equations 
is obtained using the Laplace transform (5)–(13). As a result 
of solving the integral equations, the desired relation (41)  
is obtained for calculating the conditional probability of 
the object stay in the state 0H  at an arbitrary time t  if 
the object was in the state 0H  at the initial time. Thus, the 
proposed methodology, in contrast to the known ones, allows 
not only to calculate the final probability distribution of the 
system, but also the probability value of any state at an arbi-
trary time t. The obtained relations, firstly, make it possible 
to solve the problems of evaluating the efficiency of a system 
depending on the values of a given set of its parameters. Sec-
ondly, they can be used to optimize the limited resource al-
location management in order to increase system efficiency.

Note that the proposed methodology for analyzing the 
functioning of dynamic systems is generalized in the follow-
ing directions.

Firstly, this methodology can be applied if the ana-
lyzed system has 2m >  states. In this case, it is necessary 
to introduce and analytically describe 2m  conditional 
probabilities of the system stay in each of the states at 
the time ,t  provided that at the initial time the system 
was in another state. It is important that the complexity 
of solving this problem does not depend on the number of 
system possible states.

Secondly, when solving the problem of statistical pro-
cessing of initial data on the duration of system transforma-
tion in each of the possible states, it is advisable to use a more 
adequate model than the above – Erlang distribution of an 
arbitrary order ,n  that is 
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( ) ( )
1

.
1 !

n n
tt

f t e
n

-
-λλ

=
-

 

The accuracy of the histogram approximation natural-
ly increases, but the complexity of the problem solution 
remains practically the same due to the fact that the 
Laplace transform of the n  order Erlang distribution has  
the form:

( )( ) ( )
.

n

nL f t
s

λ
=

- λ
 

The resulting feature consists in the need to find the 
roots of an algebraic equation of 2 ,n  2n >  degree. Of course, 
an analytical solution to this problem is impossible, but nu-
merical is always feasible, which significantly increases the 
applicability of the proposed method.

6. Conclusions

1. The methodology for analyzing the system, which 
in the process of functioning at random times passes from 
one state to another is proposed. The methodology is based 
on the proposed mathematical model of the relationship 
between the distribution densities of the duration of the sys-
tem stay in possible states and the functions describing the 
system dynamics. To describe the probabilistic mechanism of 
transitions, the Erlang distribution is used.

2. The methodology allows obtaining relations for calcu-
lating the conditional probabilities of the system stay in any 
of its possible states at the time ,t  provided that the system 
was in another state at the initial time.

3. The implementation of the proposed methodology for 
solving a specific problem of probabilistic analysis of reliabil-
ity of the restored system is considered.
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