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Pozenanymo 3a0any imogipHicHo20 aHaizy ckaaoHoi
QunamivHol cucmemu, aKa 6 NPoueci PYHKUIOHY6aAHH 6
6UNAOK06i MOMEHMU HACY NEPEXOOUNts 3 00H020 CMAHY 6
iHwUii. 3anponono6ano Memoouxy po3paxyHKy YMoeHUx
UMO6IpHOCMeli NONA0AHHA CUCmeMU 6 3a0aHUll MOMeHM
uacy t 6 3a0anuii cman 3a Ymoéu, w0 6 NoUamKoGuil
MoMeHm uacy cucmema nepedyeana 6 0Yov-aKomy 3
Mooicaueux cmanie. Buxioni oani ons ananizy npeocmag-
AA10Mb C06010 Ge3NU eKCnepuUMeHmMANbHO OMPUMAHUX
3HAUEHb MPUBATIOCMI NEPEOYBAHHI CUCTEMU 8 KOHCHO-
My 3 cmanie 00 6i0x00y 6 inwuii cman. Anpoxcumauis
00epICYBAHUX NPU ULOMY 2iCMOZPAM 3 6UKOPUCTAH-
Ham po3nodiny Epnanza dae naodip winonocmi po3noodiny
mpueanocmi nepedy6ants cucmemu 6 MOJNCAUGUX CMma-
Hax 0o 6i0x00y 6 imwi cmanu. IIpu ybomy eudip nanesxic-
H020 nopsoxy po3nodiny Epaanea 3abesnewye ompuman-
HA a0eK6amHoz0 ONUCY HaANIBMAPKOBCHLKUX NPOUECIs, W0
npomixaioms 6 cucmemi. 3anponoHoeano mamemamun-
HY MoOeb, W0 36'A3Y€ OMPUMAHT WINLHOCH PO3N00iLY
3 Qynxuyiamu, wo eusnaualomv 6ipoziony OuHaAMIKY
cucmemu. Modens onucye 6unaoxosuil npoyec nepexoodie
cucmemu 3 6yY0b-AK020 MOHCUBOZ0 NOUAMKOB020 CAHY
6 OYO0b-aKuIl THWUIL CMAH NPOMA20M 3A0AH020 MUMIACO-
6020 iHmepeany. 3 BUKOPUCMAHHAM MOOei OMPUMAana
cucmema iHmezpanvHUX pieHAHL WO00 WYKAHUX PynK-
uiil, wo onucyromv imMosipHicHuil npoyec nepexodis. /lns
BUPIWEHHST UUX DIGHAHbL BUKOPUCHMAHO NEPEMEOPeHHs.
Jlannaca. B pe3yavmami piwennus cucmemu inmezpans-
HUX pieHanb ompumani Qynkuyii, wo 3adaiome po3nooi
UMosipHocmeli cmanie cucmemu 6 0Yoo-AKUU MoOMeHm
uacy t. Lli sc pynxuii onucyromo marxooic i acumnmomuy-
Huil po3nodin imosipnocmeii cmanie. Hagedeno naounuii
npukaad eupiuients 3adaui 0N 6UNAOKY, KOJIU Wiilb-
HoOCmi Po3n00iy mpueanocmei nepedy8ants CUCeMU 6
MONCIUBUX cmanax onucawi poznodinamu Epnanza opy-
2020 nopsoxy. Ilpouedypa eupiwenns 3ada4i onucana
demanvio 0na HAUOLILW NPUPOOHO20 OKPEMO20 6UNAO-
Ky, Koau nowamxogum € cman Hy

Kmouosi cnosa: ounamivna cucmema 3 6eszniuuio
MOJNCTUBUX CMAHIE, BUNAOKOBUL NPOUEC nepexoois, inme-
2panvii pienanns ounamixu, nepemeopenns Jlannaca
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Received date 03.10.2019
Accepted date 18.11.2019
Published date 28.12.2019

1. Introduction

A significant part of mathematical models of dynamic
systems functioning processes are constructed and de-
scribed in terms of general graph theory [1, 2]. It is usually
assumed that the system can be in one of the possible states
at any time and passes from that state to another under the
influence of some random process. The distribution laws of
the duration of stay in each of the possible states before tran-
sition to another state are taken to be defined (or can be ob-
tained by statistical processing of the original data). In many
practical cases, the problem of finding the stationary prob-
ability distribution of the system states can be formulated
and solved. However, the theoretical and practical interest
is to solve a more complex problem — finding the probability
distribution of the system stay in its possible states at an
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arbitrary point of time after the start of functioning from a
given initial state.

The solution to this problem under the most general as-
sumptions regarding the nature of the influencing random
process is practically impossible. However, this solution can
be obtained for an important special case when the process
is Markov [3, 4]. Comprehensive results are obtained for
the case when the random process determining transitions
from one state to another is discrete in the phase state space,
and the distribution law of intervals between transitions is
exponential [5, 6]. Relations for calculating the final state
probability distributions are also obtained for semi-Markov
systems, when the distribution densities of the length of stay be-
fore transition to another state are integrable functions [7, 8].
However, the problem of obtaining simple relations for cal-
culating the probabilities of stay in each of the states at an




arbitrary point in time has not been studied enough. The
problem is as follows. There is no methodology relating two
mathematical objects. The first is the distribution density
of the duration of the system stay in each of the states until
the transition to another state. The second is the desired
functions describing the probability dynamics of the system
stay in its possible states. The solution to this problem is an
urgent task.

2. Literature review and problem statement

The problem of analysis of semi-Markov systems is dis-
cussed in numerous publications. [9] considers the problem
of evaluating the efficiency of the system, the model of which
is a queuing system with non-uniform arrivals. In this case,
the final state probability distribution for the nested Markov
chain is sought. In [10], the production system is investigat-
ed using the semi-Markov model. The analysis ends with the
calculation of the final probability distribution of the system
states [11] describes a queuing system with arbitrary arriv-
als. The result of the study is a stationary state probability
distribution. In [12], the possibility of using semi-Markov
models for the analysis of computer networks, transport
networks, and Internet of things objects is investigated.
The decision regarding the efficiency of the system is made
on the basis of the final state probability distribution ob-
tained. [13] explores a queuing system with non-Poisson ar-
rivals and non-exponential service in order to obtain station-
ary performance characteristics. In [14], a queuing system
with semi-Markov arrivals is investigated. The analysis of
the system ends with the calculation of the final state prob-
ability distribution. Finally, in [15], an analysis of a queuing
system with an arbitrary distribution of random service du-
ration is made. To evaluate the efficiency of the system, the
obtained stationary state probability distribution is used.

As aresult of the review of the known publications on the
problem of analysis of semi-Markov systems, the following
conclusion can be drawn. The known theoretical results of
the study of semi-Markov systems are limited to the cal-
culation of the final probability distribution of the system
states. This is sufficient for solving some practical problems.
However, in many cases, for example, when solving problems
of evaluating the efficiency of restored systems, it is essential
to know the probability dynamics of the system stay in a set
of functional states. The same problem is important for crit-
ical multi-channel service systems. The availability of such
systems is determined by the probability that the number of
normally functioning channels is not lower than the given
one. Thus, in the theoretically and practically important
direction of studying an extensive class of complex systems,
the functioning model of which is described in terms of the
theory of semi-Markov processes, there is a significant gap
associated with studying the state probability dynamics of
such systems.

3. The aim and objectives of the study

The aim of the study is to develop a methodology for
determining the probability dynamics of the system stay in
its possible states. When solving many practical problems,
it is important to know not only the stationary distribution
of the probabilities of the system states, but also the values

of these probabilities at any time. This information makes it
possible to solve the problems of system state management.

To achieve this aim, the following objectives are set.

—to develop a mathematical model establishing a re-
lationship between a given set of distribution densities of
random durations of the system stay in its possible states and
functions describing the state probability dynamics;

— to develop a method for obtaining analytical relation-
ships for the direct calculation of the probabilities of the
system stay in possible states at an arbitrary point in time;

— to consider the implementation of the developed meth-
odology for calculating the relationships describing the
probabilistic dynamics of the states of the semi-Markov
system using a specific example.

4. Development of a mathematical model of
the probability dynamics of system states

We introduce a mathematical model of the probabilistic
dynamics of the system states as follows. Let the semi-Mar-
kov system be in one of n possible states (Hi,...,H”). The
system functions in an external environment, under which
it passes from one state to another. A formal description of
the mechanism of the environment and system interaction is
given by the following set of distribution densities of random
variables:

/;(¢) — distribution density of the duration of the sys-
tem stay in the state H, before transition to the state H P
i=1,2..,n j=12,.,n

The random dynamics of the system states is described
by the set of functions:

G, (t) — conditional probability of being in the state H,
at the time ¢, if at the initial moment the system was in the
state H,, i=12,.,n, j=12,..,n

To find the unknown functions G; (t), we introduce a
system of integral equations

t
G (0)=[ /()G (t-)dr, i=12.,n, j=12.,n.
0

Consider the implementation of the method using a sim-
ple example of a system with two possible states Hy and Hj.

For this system, we introduce:

/o (¢) — distribution density of the duration of the system
stay in the state H, before transition to the state H,;

110 (¢) — distribution density of the duration of the system
stay in the state H, before transition to the state H,;

Gy (t) — conditional probability of being in the state H,
at the time ¢ if the object is in the state H, at the initial
time;

G, (t) — conditional probability of being in the state H,
at the time ¢ if the object is in the state H, at the initial
time;

G, (t) — conditional probability of being in the state H,
at the time ¢ if the object is in the state H, at the initial
time;

G,,(t) — conditional probability of being in the state H,
at the time ¢ if the object is in the state H, at the initial
time.

We record the system of equations for the unknown
functions Gy, (¢), Gy (t), G, (t), G, (¢).

The object that is in the state H|, at the initial time may
be in the state H,, when one of two possible independent op-



tions is implemented. Firstly, the object can stay in H, with-
out leaving this state for the entire interval [0, t]. Secondly,
the object can leave the state H, at some time T€[0,¢], then
returning to the state H, by the time ¢. Hence:

()0 [ _[f;)i dT] +_[f;)1 1() t T)d (1)

The object that is in the state H, at the initial time
can be in the state H, passing into that state at the time
1€][0,¢), then in the interval (t,¢] remaining until the time
t, making a number of transitions from the state H, return-
ing to it by the time ¢. Wherein:

t)=jﬁ)1(1) G11((_T)dt~ (2

The object that is in the state H, at the initial time
can be in the state H, passing into that state at the time
1€[0,¢), then in the interval (t,¢] remaining until the time
t, making a number of transitions from the state H, return-
ing to it by the time ¢. Wherein:

j oo (7)-Gyy (£ =7)d1. (3)

Finally, the object that is in the state H, at the initial
time can stay in this state until the time ¢, or, leaving
that state at the time t€[0,¢), return to it at the time t.
Wherein:

G, ( ( jfm dr)+jfm Gy (t—1)dr. 4)

The system of integral equations (1)—(4) forms a mathe-
matical model that relates the known distribution densities
of the lengths of the system stay in possible states and the
desired functions that describe the probabilistic dynamics of
the system. We use this model.

Note that when constructing the model, no restrictions
were imposed on the nature of the densities. Thus, this model
can be used for probabilistic analysis of any semi-Markov
system. The resulting system of equations (1)—(4) is solved
using the Laplace transform [16—18].

The Laplace transform of the function u(¢) is the func-
tion:

L(u(t)): Ju(t)e'“dt. ®)

0

To simplify recording, it is convenient to introduce
L(u(t)).:u (s) .

Taking into account the properties of the Laplace trans-
form, we record equations (1)—(4) in operator form.

If we integrate (5) in parts, then:

{fre) o)

=-i[(e“;ju(r)dc) -Teﬁu(T)dr}:

0 0

In this case, the Laplace images of the relations (1)—(4)
will have the form:

Goo(5)= ( = Jy1(9))+ S (5)-Giy (), (6)
Goy(5)= f(5)-Giy (s), @)
Gio(5)= fio(5)-Goo (), ®)

Gii(s)= (1 Jio(8))+ £ (5)-Goy (5)- ©

The resulting system of equations breaks down into two
pairs {(6), (8)} and {(7), (9)}, each containing two unknown
functions. We have:

Gi(5)= 1= (9) £ 5) G ).

Gro (S) = f1*0 (s)'G(;O (S)

Substituting the second of these equations into the first,
we get:

Goo(5)= (1 Jon())+ 15 () Fio(5) G (5)-
Hence:

G5 (1= 1 (5) Fa(5) =<1 ),

. s:l- 1- /i (s)
)= ST o) o
Substituting (10) in (8), we get:

. _1.(1_](0*1(3))'](1:)(3)
K S HONHER b
Similarly:

Goi(5)= /i (5)- G (s),

Gi(5)=< (1= Fa (9) i 8) S (5) Gu ).
Hence:
Gi(5)-(1= Fu5) f(5)) = (1= £ ),

gt 1= he(s)
OS] 2
Now substitute (12) in (7):
Gy(s)=— 1 (1=/als)-fol) (13)

s 1= fw( )~f0*1(s)'

We use the obtained general relations describing the
Laplace images of the desired functions to solve a specific
problem. Let the restored system be in one of two states:



— H, — the system is functioning normally;

— H, — the system is restored after failure.

We first perform calculations for the simplest case when
the system is Markov. We set the distribution density of the
duration of stay in each of the states before transition to
another state as follows:

Sult) =1, (0)=ne™.

Wherein:

. A .
Sls) == fils)=-E

S (14)
s+
Substituting (14) in (10)—(13), we obtain analytical
descriptions of the images G, (s), Gy, (s), G, (s), G, (s) corre-
sponding to the given initial data.

Wherein:
1 1_sjf?»
G* =—— =
O
S+A s+u
1 s(s+p) S+

_§§2+dk+u)=s(s+1+uy {15)

We perform the inverse Laplace transform by decom-
posing (15) into elementary fractions. Find the roots of
the polynomial in the denominator, solving the equation,
whence:

5, =0, s,=—(A+p).

Now we rewrite (15) as follows:

s+tu o B

s(s+A+p) s-s  s-—s,

_e B (16)
S S+HA+U

After bringing to a common denominator, we get:

_(stA+pjotsp

St
s(s+A+p)  s(s+A+p)

_s(a+p)+a(r+p)
C o s(sta+p) 0

We find the unknown coefficients o and B in (16) by
solving the system of equations obtained after equating the
coefficients of like powers of s in the numerators of fractions
on the left and right in (17). We have:

oa+fB=1,

oA+ o =L.
Hence:

-_H o 18
o k+u’B Arn (18)

Substituting (18) in (16), we get:

. s+
G(s)=—2"8

() s(s+A+p)
po1 A 1

A+l s AR StA+L

Using the correspondence table of the functions and
their Laplace transforms, we record:

Gy ([): £ +

A —(A+p)e
A+p '

-e
A+l

(19)

The inverse transformations for the images of other func-
tions describing the laws of probability distribution are given
without explanation.

(1_L M
1 s+A) s+u 1 sy
N

A s Sas(orn)
S+A s+U
wooo_o B

:s(s+k+u) s sHA+R
_os+a(itp)+ps  s(o+p)+a(r+p)

s(s+A+p) s(s+A+u)
{OL+B=0,
o(A+p)=p
Hence:
o= B=L-
A+l A+u
. po1 u 1
() [ N . 20
w(s) AL S A+L SHA+U (20)
N N e e 21
Then:
. 1 1= fio(s)
Gy (S)=——"+F—=
“() S 1_][10(5)'][01(5)
B
1 s+u . s+A
s R Cs(stA+p)
S+U S+A
_o, B as+A+p)+Ps
s SHA+R s(s+A+p)
_s(a+p)+a(r+p)
C o s(s+a+p)
o+B=1,
oa(A+p)=A
Hence:
a:L, B= ad .
A+l A+u



k1+u 1

Gii(s)

=7»+u; A+l SHA+R

X+u
A+ A+p

. e—(Mp)-t )

G, (s)=

(22)

Finally,
1)l
Ts A=A

G (s) ONAD)

s
1 s+u) s+ 1 SA 3
T I _;sz+s(7p+u)_
S+W s+U

A o B

:s(s+7»+u) s s+k+p.=
_as+A+p)+Bs  s(o+B)+o(h+u)
©os(sta+n)  s(s+A+p)

o+p=0,
a(A+p)=2
Hence:

A B A
A+ A

o

At 1
A+l s A+ s+A+p

Gy (s)

:7»_7»
A+ A+u

Lo mkt

G01 (t)

(23)

If the initial state of the system is normal functioning,
the result of solving the problem is the following functions
describing the dynamics of states:

A e
GOO(t):ﬁHJ’_m-e(x g ’
A A oy
Gm(t):kﬂt_?wu.e(k .

In this case, of course, Gy, (¢)+G,, (¢)=1.

The obtained relations determine the values of the prob-
abilities of the system stay in the states H, and H, at an
arbitrary time ¢. In particular, it follows that these values
asymptotically approach their stationary values:

P(H,)

_ A
Ap

0

P(H) =570 (24)

Let us now consider a more complex situation when the

system functioning processes are semi-Markov. Let us de-

scribe the distribution densities of the length of the system

stay in each of the states before transition to another state by
second-order Erlang distributions:

fu(O)=eNe™, f(t)=tne™.

The Laplace images of these functions have the form:

B }\’2 . _ u2
S (s+0)? Juls) (s+u)2'

(25)

Joi(s)

It is clear that out of the four functions G, (¢), Gy, (¢),
G, (¢), G, (¢), only the first of them G, (¢) is of practical in-
terest. Accordingly, we substitute (25) in (10). In this case,
we get:

22
B G {5 IS S oV
EER S B RN T
s+A) (s+A)
[(s2)" =22 (s +) (s +n)’
(s+2)" [(s+2)" (s+m) =27 ]
(32 + 237») (s+ u)2
(s+A) (s+p) =A% p>
(s+21)-(s+p)’ B
[(s+2)-(s+p) =] [(s+A)-(s+p)+An]
(S+27\.)'(52 +2su+u2)
- s-(s+k+u)~(s2 +s-(k+u)+2ku)
s +2sz~(k+u)+s~(4kp+u2)+2ku2
B so(s+h+p)(s7+(A+p)+22m)

Goo (5)

—

_L
s

_L
s

(26)

The structure and analytical representation of the prob-
lem solution depend on the nature of the denominator roots
in (26). The first two roots are determined directly:

5,=0, s, =—(A+p).

The last two roots are obtained by solving the equation:

s +s(A+p)+2au=0. 27)
Wherein:

}\‘ 2
Sz.3=—77”;“i (rn) +4”) —2xu=—L“2L“i\/5. (28)

If is the discriminant D >0, then the equation (27) has
two different real roots:

SQZ_MTMJB,
s3=—7‘+T”—\/5. (29)

If the discriminant D=0, then the roots

+
Sy =85= —%.

If, finally, D<0, then the roots s, and s, are complex.

In all these cases, the expression for the inverse Laplace
transform is found using the decomposition of (26) into ele-
mentary fractions.

If all the roots are real and different, this decomposition
is as follows:



oy

" o
GOO(S)=?0+S_S
0 1

_ 0‘0(s_31)(5_52)(3_53)+a15(3_52)(5_53)+
s(s=s,)(s=s,)(s—s,)
0,3(s=5,)(s=8) + 55 =5, )(s —5,) _
s(s=s,)(s=5)(s-s,)
A(s)

s )6s)

After multiplication and cancellation of like terms, this
decomposition takes the form:

+

(30)

A(s)=5" (o + o+, +ay)) +

. 2[—oc0(s1 +5,+8,)+ 0, (s2+33)+:|

+0l, (31 +3; ) 0l (31 + 32)

3D

O, (S8, +5,5;+5,8; )+
+S|: 0(12 193 23)

} — 0L 55,8,
+0,5,8; + 00,8, S5 + 0L,S,S,

Now, equating the coefficients of like powers of s in (26)
and (31), we obtain a system of equations with respect to o),
o, O, O
(o0, + 0, + 01, + 0, =1,

—0y (8, +5,+5;) 0 (5, +5,)+

+0L, (5, +5,) + 0y (5, +5,) = 2(A+ 1),

(32)

0y (5,5, + 5,55 + 5,5, ) + 05,8, +

FO0LS, Sy + OLy8,S, = AALL+ 1%,

| —0y5,8,8, = 2’
Since

2
p= ) yn
4
then:
Syt Sy =— }Lﬂl +/D - 7#“ ~JD=~(A+p),
s1+s3=-(x+u)-7“+\/—=—g(x+u)+@,
A+l 3

si+s2=—(x+u)—7—f=—5(x+u)—\/5,

S+, 8, ==2(A+1), (33)

2 2
(152 (52 -

8,858, = —(A+ 1) 2Ap.

In view of (33), the solution of the system of equations (32)
is as follows:

__u ___r
L TR T
A
=0, =———. 34
oo =5 34

Now, using (30) and (34), we record the result of the
inverse transformation G, (s):

Gult)=5 e s
RIS G o S (35)
A+u A+l

Since in the present case
2
(%) > 2M\U,

the probability (35) of the system stay in the state H, at the
time ¢ has a stationary value equal to, as in the Markov case,

u
pi) =55

Let now D<0. The roots of the equation (27) are
equal to:

~(A+u),
B 2 B )
2
saz—w—i D],

and the decomposition of (26) into elementary factors has
the form:

. o, o 0,5 +0L
G —_ 20 1 2 3 —
w(s) S +s—s1+32—s(s2+sg)+3233
oco(s s1)(s2—s(32+53)+5233)
s(s—s, (32 s(s, +s, +3253)

—5(s,+5,)+8,8. )+0L s*(s—s,)+o,s(s—s,)

s(s—s1)(s2 -s(s, +sg)+5233)

. L0 (5,45, +55)+ 0,5, +
115 (0 +0, + 0, )= (S8t ) v s, +
+0U,S; + 0L, S — 0Ly , (36)

0us(s

5 (0t (5,5, + 5,85 + 5,8, )+ 08,8, — 035, ) — 0,85,

B:s(s—si)(s2 -s(s, +33)+5233).

After equating the coefficients of like powers of s in (26)
and (36), we obtain the system of equations:



o+, +o, =1,

=0y (8 + 8, +5;) + 0, +0US, +0Ls, — 0y = 2(A+ 1),
_ P
0y (5,5, + 5,8, + 5,8, )+ 01,8, 8, — Oy, =AML+,

— 0, 8,S; = 2M1.
The solution to this system:

__r
Ap’

o

o, = —77L
o+

U 2 42
o, =—[(u+21) +22].
: 2(x+u)2[(” ]
Thus:
. 1 A 1
Gools) =75

= — +
A+p s 2(A+p)s—s,
7\« o 2 92
S+ +20) +A
2(A+p) s 2(7L+M)2 [(“ ) ]

s = s(s,+5;) 45,5,

+

(37

We bring the third term in (37) to the form convenient
for performing the inverse Laplace transform. Wherein:

s = s(s,+8,) 48,8, =

2 2
=sz—2882-583+(82+483) +SZS3_(52*:3) _

2 2
:(8_32+53) _(sz+33) 2=
2 2

:(H%;u)z_(%ﬂtf

+2M =
n n

=(s+b) +d*, a>0. (38)
Then:

AS + 3 r
2(0+1) 2(h4p)

0, S+0l, = u2+4ku+5x2]:

l Lo 2
= AML+307) | =
2(7»+u)_s+?»(k+p,t)\H T ):|

I L 2 2) |2
300 _S+K(k+u)\(k+u) +2ML+ 4N )]—

v | u(2ku+47»2)
=2(7»+H) s+%(k+u)+7x(x+u) ]:

_ —S+x+u+xu+u2—x2 p(2hp+an?)|
2(A+p) 2 2A A(A+p)

Y I WRTRRTENS O YL Ve
= s+ + =
2h+p)| 2 2A(A+p)

=c(s+b+d). (39)

In view of (38) and (39), the relation (37) takes the
form:

p o1 A 1

G, (s)= =
n(s) A+ps 2(A+p)s—s, ’
A
+c- 2 _icd- S (40)
(s+b) +a’ (s+b) +a’

We get the result of the inverse transformation Gy (s):

(A+w)
u A S
t)= 2
Cu(?) x+u+2(x+u)e ’
_(n), (),

2 C . )
+c-cosat-e +—sinat-e
a

(41)

The solution to the problem is completed. The resulting
relation determines the probability of the system stay in the
state H, at any time ¢. If, as in the considered special case,
reliability analysis of the restored system is carried out, this
relation allows to reasonably formulate and solve the opti-
mization problem of increasing the system efficiency using
standard parameter management technologies.

5. Discussion of the results of developing
the methodology of probabilistic analysis of non-Markov
systems

Thus, the methodology of probabilistic analysis of
semi-Markov systems is proposed. The methodology is based
on the model of the probability dynamics of the system
states. The model contains a set of integral equations for the
unknown functions describing the probabilistic dynamics of
the system (1) —(4). The solution of these integral equations
is obtained using the Laplace transform (5)—(13). As a result
of solving the integral equations, the desired relation (41)
is obtained for calculating the conditional probability of
the object stay in the state H, at an arbitrary time ¢ if
the object was in the state H,, at the initial time. Thus, the
proposed methodology, in contrast to the known ones, allows
not only to calculate the final probability distribution of the
system, but also the probability value of any state at an arbi-
trary time ¢. The obtained relations, firstly, make it possible
to solve the problems of evaluating the efficiency of a system
depending on the values of a given set of its parameters. Sec-
ondly, they can be used to optimize the limited resource al-
location management in order to increase system efficiency.

Note that the proposed methodology for analyzing the
functioning of dynamic systems is generalized in the follow-
ing directions.

Firstly, this methodology can be applied if the ana-
lyzed system has m>2 states. In this case, it is necessary
to introduce and analytically describe m? conditional
probabilities of the system stay in each of the states at
the time ¢, provided that at the initial time the system
was in another state. It is important that the complexity
of solving this problem does not depend on the number of
system possible states.

Secondly, when solving the problem of statistical pro-
cessing of initial data on the duration of system transforma-
tion in each of the possible states, it is advisable to use a more
adequate model than the above — Erlang distribution of an
arbitrary order #n, that is



B tn—i)\‘n eiu

/)=

(n—1)!

The accuracy of the histogram approximation natural-
ly increases, but the complexity of the problem solution
remains practically the same due to the fact that the
Laplace transform of the n order Erlang distribution has
the form:

L(f(t)=

(1)

The resulting feature consists in the need to find the
roots of an algebraic equation of 2n, n>2 degree. Of course,
an analytical solution to this problem is impossible, but nu-
merical is always feasible, which significantly increases the
applicability of the proposed method.

6. Conclusions

1. The methodology for analyzing the system, which
in the process of functioning at random times passes from
one state to another is proposed. The methodology is based
on the proposed mathematical model of the relationship
between the distribution densities of the duration of the sys-
tem stay in possible states and the functions describing the
system dynamics. To describe the probabilistic mechanism of
transitions, the Erlang distribution is used.

2. The methodology allows obtaining relations for calcu-
lating the conditional probabilities of the system stay in any
of its possible states at the time ¢, provided that the system
was in another state at the initial time.

3. The implementation of the proposed methodology for
solving a specific problem of probabilistic analysis of reliabil-
ity of the restored system is considered.
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