n-

Представлено результати дослідження гідроімпульсного струменя. Розроблено математичну модель диспергування, отримано співвідношення, що зв'язують характеристики дисперсності, форму факела і далекобійність струменя з частотою і амплітудою пульсацій тиску, що генеруються в струмені. Проведені експерименти продемонстрували хороший збіг їх результатів з розрахунковими даними

-0

Ключові слова: гідроімпульсний струмінь, модель диспергування, форма факела, далекобійність

Представлены результаты исследования гидроимпульсной струи. Разработана математическая модель диспергирования, получены соотношения, связывающие характеристики дисперсности, форму факела и дальнобойность струи с частотой и амплитудой, генерируемых в струе пульсаций давления. Проведенные эксперименты продемонстрировали хорошее совпадение их результатов с расчетными данными

Ключевые слова: гидроимпульсная струя, модель диспергирования, форма факела, дальнобойность

1. Введение

0

Диспергированные струи жидкостей и технологии на их основе применяются в различных областях деятельности общества. Однако расширение сферы применения наиболее широко используемых способов их получения ограничивается узостью диапазона регулирования дисперсности при фиксированном расходе жидкости и низкой дальнобойностью получаемых капельных потоков.

В значительной степени указанные недостатки могут быть преодолены при использовании гидроимпульсного способа диспергирования, представляющего собой комбинацию гидравлического и пульсационного способов. В этом случае экономичность и дальнобойность гидравлического диспергирования дополняются не только характерными для пульсационного диспергирования высоким качеством и однородностью дробления, но и потенциальной возможностью управления дисперсностью и интенсивностью распада струи при фиксированном расходе жидкости [1].

2. Анализ исследований и публикаций

Анализ публикаций по распаду жидкостных струй, носящих обзорный характер [2 – 4], показал, что количество работ, посвященных изучению влияния на процесс диспергирования струй импульсов давления, крайне ограничено. При этом известные результаты экспериментальных исследований носят преимущественно качественный характер и не могут быть ис-

УДК 614.84

ГИДРОИМПУЛЬСНАЯ СТРУЯ: ТЕОРИЯ И ХАРАКТЕРИСТИКИ ДИСПЕРГИРОВАННОГО ПОТОКА

В. С. Бабенко

Кандидат технических наук Директор ООО «Импульс» ул. Комсомольская, 16/18, г. Днепропетровск, Украина, 49000 E-mail: pozh.bezpeka@gmail.com

> А.П.Кремена Начальник отдела ГП «КБ «Южное»

ул. Криворожская, 3, г. Днепропетровск, Украина, 49008 E-mail: andr_petr@ukr.net

пользованы для построения обобщающих эмпирических зависимостей, устанавливающих объективные связи между характеристиками дисперсности, формой факела гидроимпульсной струи и параметрами ее истечения.

В свою очередь результаты теоретических исследований процесса распада струй жидкости, полученные в предположении малости деформаций их поверхности по сравнению с начальным диаметром струи [3], не могут быть однозначно распространены на случай периодического воздействия на струю значительных осевых импульсов давления, коренным образом изменяющих картину ее распада [2, 3].

В целом, отсутствие адекватной действительности теории диспергирования струи жидкости, подвергаемой воздействию интенсивных периодически повторяющихся импульсов давления, является фактором, сдерживающим разработку и внедрение ряда перспективных технологий.

3. Формирование целей и задач исследования

В соответствии с общей методологией исследований разработка теории распада гидроимпульсной струи (ГИС) обусловливает необходимость:

 выполнения базирующегося на объективных и информативных экспериментальных данных феноменологически содержательного описания процесса распада ГИС, с выделением составляющих его "элементарных" актов, процессов и связей между ними;

- разработки формализованной схемы процесса диспергирования ГИС и его математической модели с использованием минимального числа "элементарных" актов, процессов и физических параметров, преимущественным образом определяющих описываемый процесс;
- получения на основе математической модели соотношений, устанавливающих объективные связи между параметрами истечения ГИС, характеристиками дисперсности и факела струи.

4. Основные результаты исследования и их обсуждение

Содержательное описание процесса распада ГИС должно основываться на анализе материалов экспериментальных исследований. Однако недостаточная информативность и даже противоречивость известных результатов исследований ГИС [2, 3] предопределили необходимость проведения экспериментальных исследований, акцентированных на установление объективной физической картины их распада. Исследовались струи, истекающие при давлении питания *P_n* = 1,93 МПа из насадков с диаметрами отверстий $d_{\mu} = 16,6; 17,6; 18,8; 20,8 x 10^{-3}$ м. Струи нагружались периодическими импульсами давления с амплитудой $P_u = (0,45 - 1,10)P_n$ и частотой f = 100-500 Гц. Эти колебания генерировались трубкой Вентури, находящейся в жидкостном контуре перед насадком и работающей в режиме периодически – срывной кавитации [5].

Регистрация изменений, происходящих в ГИС, в процессе ее движения осуществлялась скоростной киносъемкой при согласованном выборе параметров истечения струи, частоты и амплитуды генерируемых в ней пульсаций давления и скорости съемки (~ 1500-4000 кадр/с). Это обеспечило высокую детальность наглядной информации и, как следствие, возможность объективного ранжирования "элементарных" актов и процессов в ГИС и инициирующих их механизмов по значимости влияния на распад струи. В свою очередь, использование фиксируемых на кинограмме координатной сетки (с шагом 0,1 м) и временных отметок (0,001 с, 0,01 с и 0,1 с), позволило получать объективные количественные данные о геометрических и кинематических характеристиках, трансформирующейся в процессе движения ГИС.

 Φ рагмент типичной кинограммы ГИС представлен на рис. 1.

Рис. 1. Фрагмент кинограммы гидроимпульсной струи при диаметре отверстия насадка *d*₀ = 0,0208 м

Анализ и сопоставление с визуальной картиной ГИС данных об изменении по ее длине диаметра трансформирующейся части истекающей в течение периода пульсаций порции жидкости, диаметра остаточной (не трансформирующейся) струи и скорости порции позволил выделить ряд характерных особенностей протекания процесса распада:

- истекающая из насадка струя формируется из последовательности идентичных порций жидкости, каждая из которых состоит из низкоскоростной струи, истекающей при давлении *P_n* в течение промежутка времени, соответствующего продолжительности паузы (*t_n*), и высокоскоростной струи, истекающей при давлении *P_u* в течение промежутка времени, равного продолжительности действия импульса (*t_u*);
- в процессе взаимодействия указанных струй происходит проникание высокоскоростной струи в низкоскоростную, инициирующее трансформацию порции жидкости в структуру, состоящую из осесимметричного формообразования и остаточного участка низкоскоростной струи;
- после первоначального ускорения последующее движение порции жидкости происходит с близкой к постоянной скоростью; при этом диаметр осесимметричного образования возрастает, а диаметр остаточного участка остается практически неизменным;
- в начале процесса трансформации порции жидкости интенсивность диспергирования мала и лишь на удалении от насадка, когда осесимметричное образование принимает форму близкую к сферичной, она скачкообразно возрастает.

Формализованная схема и математическая модель pacnada гидроимпульсной струи. Выявленная при анализе кинограмм содержательная информация позволяет сформулировать базовые предпосылки и допущения для разработки формализованной схемы и математической модели распада гидроимпульсной струи:

- диспергирование ГИС представляет собой повторяющуюся последовательность процессов трансформации и распада идентичных порций жидкости, истекающих из сопла в течение промежутка времени, равного периоду повторения импульсов;
- процесс взаимодействия высокоскоростной и низкоскоростной струй, составляющих порцию жидкости, учитывая кратковременность импульса, четко выраженное начало его действия и текучесть жидкости, может рассматриваться как прямой неупругий удар, инициирующий деформационные процессы в жидкости и определяющий интенсивность их протекания;
- силы аэродинамического происхождения, как не относящиеся в рассматриваемом случае к разряду ударных [6], не оказывают существенного влияния на обусловленные соударением струй деформационные процессы в рассматриваемой порции жидкости;
- в результате соударения струй, образующих порцию жидкости, последняя превращается в структуру, состоящую из осесимметричного формообразования, трансформирующегося в

процессе движения в каплю, и остаточного участка струи, истекающей в течение паузы, движущихся с одинаковой скоростью;

 указанные субструктуры (капля и струя) дробятся в потоке обтекающего их газа независимо друг от друга, образуя распределения капель, суперпозиция которых формирует факел ГИС.

С учетом изложенного рассмотрим прямое центральное соударение двух струй, одна из которых, движущаяся со скоростью V_n , сформирована во время паузы, а другая, движущаяся со скоростью V_u – во время импульса, в системе координат, относительно которой первая струя неподвижна.

При неупругом соударении двух струй энергия, расходуемая на работу деформации струй, определяется выражением [7]:

$$\Delta E_{\partial} = \frac{m_{\mu} \cdot m_{\pi}}{2(m_{\mu} + m_{\pi})} \cdot \Delta V^2 , \qquad (1)$$

где m_u – масса струи, сформированной во время импульса; m_n – масса струи, сформированной во время паузы; $\Delta V = V_u - V_u$ – скорость соударения струй.

Соотношения, определяющие указанные величины, имеют вид [8, 9]:

$$\mathbf{m}_{_{\mathrm{H}}} = \frac{\boldsymbol{\pi} \cdot \mathbf{d}_{_{0}}^{2}}{4} \cdot \boldsymbol{\rho} \cdot \boldsymbol{\phi} \cdot \frac{\boldsymbol{\gamma}}{\mathrm{f}} \sqrt{2 \mathrm{g} \mathrm{H}_{_{\mathrm{H}}}} , \qquad (2)$$

$$m_{\pi} = \frac{\pi \cdot d_0^2}{4} \cdot \rho \cdot \phi \cdot \frac{1 - \gamma}{f} \sqrt{2gH_{\pi}} , \qquad (3)$$

$$V_{\mu} = \phi \cdot \sqrt{2 g H_{\mu}} , \qquad (4)$$

$$V_{\pi} = \phi \cdot \sqrt{2 g H_{\pi}} , \qquad (5)$$

где ρ – плотность жидкости; ϕ – коэффициент расхода, учитывающий уменьшение действительной скорости истечения по сравнению с теоретической; d_0 – диаметр отверстия насадка; H_n , H_u – питательный напор и напор в импульсе, соответственно; $g - 9,81 \text{ м/c}^2$ – ускорение свободного падения; $\gamma = t_{\mu} / T$ – коэффициент заполнения; T – период повторения импульсов; f – частота следования импульсов.

В связи с тем, что, как показано в [9], форма импульса и его частотный диапазон «не изменяют параметров технологического процесса энергетической гидроимпульсной системы», далее будем полагать, что импульсы, генерируемые в ГИС, имеют идеальную прямоугольную форму и не содержат высокочастотных составляющих.

Из (1-5) следует, что энергия, идущая на деформацию порции жидкости, составляет:

$$\Delta E_{\partial} = \frac{\pi \cdot d_{0}^{2}}{2\sqrt{2}} \rho \cdot \phi^{3} \cdot g^{1.5} \frac{1-\gamma}{f} \cdot \frac{H_{\mu}^{0.5} H_{\pi}^{0.5} \left(H_{\mu}^{0.5} - H_{\pi}^{0.5}\right)^{2}}{H_{\mu} + \frac{1-\gamma}{\gamma} H_{\pi}^{0.5}}, \quad (6)$$

а установившаяся после соударения струй скорость порции жидкости определяется выражением:

$$V_{y} = \sqrt{2g} \cdot \phi \cdot \left[H_{\pi}^{0,5} + \frac{H_{\mu}^{0,5} \left(H_{\mu}^{0,5} - H_{\pi}^{0,5} \right)}{H_{\mu}^{0,5} + \left(1 - \gamma \right) / \lambda \cdot H_{\pi}^{0,5}} \right].$$
(7)

В результате соударения деформации подвергается вся высокоскоростная (ударяющая) струя и часть сплошного участка низкоскоростной (ударяемой) струи. Протяженность этой части определяется глубиной проникания ударного воздействия, равной длине ударяющей струи [10].

Вследствие указанного обстоятельства, в результате соударения струй, образующих порцию жидкости, в последней формируются две характерных субструктуры:

 деформирующийся под действием силы, обусловленной потерянной при ударе кинетической энергии, участок ГИС длиной:

$$l_{\mu} = 2l_{\mu} = 2V_{\mu}t_{\mu} = 2\phi\sqrt{2gH_{\mu}}\cdot\frac{\gamma}{f};$$
 (8)

 недеформирующаяся от действия указанной силы часть сплошного участка l_{ид}, истекающей во время паузы струи, длина которой составляет:

$$l_{\mu\mu} = l_{\mu} - l_{\mu} = \sqrt{2g} \frac{\phi}{f} \Big[(1 - \gamma) H_{\mu}^{0.5} - \gamma \cdot H_{\mu}^{0.5} \Big],$$
(9)

где l_n и l_u – длины струй, истекающих во время паузы и импульса, соответственно.

Важнейшей составной частью математической модели распада ГИС является поле скоростей в деформирующемся, вследствие соударения струй, участке порции жидкости, которое в цилиндрической системе координат, где ось х совпадает с осью ГИС, а ось *r* перпендикулярна ей, определяется зависимостями:

$$V_{r} = V_{r}(r, x) \quad \mu \quad V_{x} = V_{x}(r, x).$$
 (10)

Для отыскания этих зависимостей воспользуемся приведенным в [11] решением задачи о пластическом деформировании центральным ударом цилиндрической заготовки, в соответствии с которым радиальная скорость пластической деформации участка струи длиной $2l_u$ в цилиндрической системе координат, где направление оси х противоположно направлению движения струи, а начало отсчета совпадает с границей проникания ударного воздействия, описывается зависимостью:

$$V_{\rm r} = \frac{3\Delta V \operatorname{rx} (x - 2l_{\scriptscriptstyle \rm H})}{8l_{\scriptscriptstyle \rm H}^3}.$$
 (11)

Осевая составляющая полной скорости деформации определится из условия неразрывности

 $\frac{\partial V_r}{\partial r} + \frac{\partial V_x}{\partial x} + \frac{V_r}{r} = 0$, которое с учетом (11) запишется в

виде:

$$\frac{\partial V_x}{\partial x} = -\frac{3\Delta V \cdot x \cdot (x - 2l_\mu)}{4l_\mu^3}.$$
 (12)

Интегрируя (12), с учетом того, что при $x=0~V_{\rm x}=0$, получим, что

$$V_{x} = \frac{3\Delta V x^{2} \left(l_{\mu} - \frac{x}{3} \right)}{4 l_{\mu}^{3}}.$$
 (13)

Выражения, определяющие геометрические характеристики деформирующейся части порции жидкости в процессе ее движения, получаются интегрированием (11, 13) при условии, что в момент соударения (t=0)

$$\mathbf{r} = \mathbf{r}_{0} = \frac{\mathbf{d}_{0}}{2}, \mathbf{a} \ \mathbf{x} = 2\mathbf{l}_{\mu} \text{ и имеют вид:}$$
$$\mathbf{d} = \mathbf{d}_{0} \cdot \mathbf{e} \left(\frac{3\Delta \mathbf{V} \cdot \mathbf{x} (\mathbf{x} - 2\mathbf{l}_{\mu})}{8\mathbf{l}_{\mu}^{3}} \cdot \mathbf{t} \right), \tag{14}$$

$$\frac{1}{x} + \frac{1}{3l_{\mu}} \cdot \ln \left| \frac{l_{\mu} - \frac{x}{3}}{x} \right| + \frac{1}{10l_{\mu}} = \frac{3}{4} \frac{\Delta V}{l_{\mu}^2} \cdot t .$$
(15)

Используя (14, 15) можно оценить продолжительность промежутка времени t_{ϕ} , в течение которого в порции жидкости, истекающей из отверстия насадка за время между двумя импульсами, формируется структура, состоящая, в общем случае, из капли сферической (или близкой к ней) формы диаметром:

$$\mathbf{d}_{\kappa} \le \sqrt{3} \mathbf{d}_0^2 \cdot \mathbf{l}_{\mu} \tag{16}$$

и остаточного участка цилиндрической струи диаметром d₀ и длиной:

$$\mathbf{l}_{_{\mathrm{H}\mathrm{J}}} = \mathbf{l}_{_{\mathrm{I}}} - \mathbf{l}_{_{\mathrm{H}}} \,. \tag{17}$$

Так, например, как показывают расчеты, выполненные по (14-17), в гидроимпульсной струе с парамеє трами $d_0 = 0,0208$ м, f=360 Гц, $\gamma = 0,375$, $H_n = 193$ м и $H_u = 540$ м в течение времени $t_{\phi} = 0,00865 - 0,00918$ с, т.е. на расстоянии $\approx 0,65 \cdot 0,69$ м от насадка, формируется сферическая капля диаметром $d_{\kappa} = 0,052$ м, движущаяся со скоростью $V_y = 77$ м/с. Эти результаты находятся в хорошем соответствии с экспериментальными данными, приведенными на рис. 1. Близкое к полученным по (14, 15) значениям времени формирования капли дает формула:

$$t_{\phi} = \frac{2l_{\mu} - d_{\kappa}}{\Delta V}, \qquad (18)$$

полученная из условия, что скорость процесса формообразования определяется скоростью проникания ударяющей струи в ударяемую, равной половине ско-

рости соударения – $\frac{\Delta V}{2}$ [10].

Количественное значение критерия разрушения капли, движущейся в потоке обтекающего ее газа, в качестве которого традиционно используется число Вебера (We), изменяется в диапазоне 3<We<25 [6, 12].

При «статической» деформации капли в обтекающем ее газовом потоке, когда время нарастания аэродинамических сил велико по сравнению с периодом собственных колебаний капли, $We_{\kappa p} = 17$. Для случая внезапного приложения аэродинамической нагрузки и жидкости малой вязкости $We_{\kappa p} = 8,5$ [12].

По значению We_{кр} определяется наибольший диаметр капель, образовавшихся в результате распада исходной капли (d_{κ}):

$$d_{max} = \frac{2We_{\kappa p}\sigma}{\rho V_y^2},$$
 (19)

где **σ** и **ρ** – коэффициент поверхностного натяжения жидкости и плотность газа, соответственно.

Для определения размера капель, образующихся при распаде остаточной струи, целесообразно использовать полученную обработкой экспериментальных данных зависимость [3]:

$$d_{43} = \frac{47 \cdot 10^3 \cdot v}{V_v},$$
 (20)

где d_{43} – средневзвешенный по объему всех капель диаметр; ν – кинематическая вязкость жидкости.

Таким образом, в результате распада порции жидкости образуется диспергированный поток, медианный диаметр капель которого, для случая наиболее широко используемого в практике распределения Розин-Раммлера [13], определяется соотношением:

$$d_{M_{\Sigma}} = \frac{0.362d_{_{Max}} \cdot 2m_{_{\mu}} + 0.94d_{_{43}} \cdot (m_{_{\pi}} - m_{_{\mu}})}{m_{_{\pi}} + m_{_{\mu}}}, \qquad (21)$$

или с учетом (2, 3, 7, 19, 20)

$$\begin{split} d_{M_{\Sigma}} &= \frac{7,38 \cdot 10^{-2} \, W e_{\kappa p} \cdot \sigma}{\phi^{2} \rho_{r}} \cdot \gamma \frac{(1-\gamma) H_{n}^{0.5} H_{u}^{0.5} + \gamma \cdot H_{u}}{\left[(1-\gamma) H_{n} - \gamma H_{u} \right]^{2}} + \\ &+ \frac{10^{4} \, \upsilon_{\kappa}}{\phi} \frac{(1-\gamma) H_{n}^{0.5} - \gamma H_{u}^{0.5}}{(1-\gamma) H_{n} + \gamma H_{u}} \end{split}$$
(22)

Полученное значение d_{м₂} может быть использовано для определения различных видов среднего диаметра капель в факеле ГИС, представляющих реальный полидисперсный поток фиктивным монодисперсным, отражающим преимущественно те или иные свойства совокупности капель.

К характеристикам формы факела, определяющим его размеры и конфигурацию относятся, прежде всего, начальный диаметр факела d_{f_0} , угол его раскрытия β и дальнобойность $l_{\text{гис}}$.

Начальный диаметр факела определяется диаметром капли, формирующейся в порции жидкости, и может быть оценен по соотношению (рис. 1):

$$d_{f_0} = 4,2 \ \sqrt[3]{\phi} \ d_0^2 H_{\mu}^{0,5} \cdot \frac{\gamma}{f}$$
 (23)

Выражение, определяющее относительный угол раскрытия факела, полученное обработкой экспериментальных данных, имеет вид:

$$\overline{\beta} = \frac{\beta}{\beta_{\rm c}} = 1,13 - 0,13 \,\mathrm{e}^{-\left(\frac{f}{40}\right)},\tag{24}$$

где $\beta_{\rm c}~$ – угол раскрытия цилиндрической струи [2, 13].

Учёт сложного комплекса взаимосвязанных процессов, влияющих на дальнобойность гидравлических струй как сплошных, так и диспергированных, ввиду недостаточной их изученности в настоящее время не представляется возможным. Этим объясняется отсутствие надёжных аналитических методик расчёта дальнобойности гидравлических струй в зависимости от параметров истечения. Указанный вывод в полной мере может быть отнесён к ГИС.

В настоящей работе представлен подход к определению дальнобойности ГИС, основанный на ряде положений, следующих из экспериментально обоснованной феноменологической модели формирования движения и диспергирования ГИС и результатов исследований кинематики гидравлических струй [2, 14 – 16].

Эти основные положения состоят в следующем:

- длина начального участка ГИС в десятки раз меньше её дальнобойности, в связи с чем, может быть исключена из рассмотрения при решении рассматриваемой задачи;
- дальнобойность ГИС, как и других гидравлических струй, является функцией начальных параметров истечения и сопротивления воздуха её движению;
- формирующаяся в порции ГИС осесимметричная структура распадается практически мгновенно, образуя облако капель жидкости, движущееся вдоль оси ГИС;
- остаточная струя порции ГИС продолжает движение, постепенно распадаясь, но оставаясь достаточно компактной, и индуктирует при этом спутный поток воздуха, снижающий сопротивление движению капельного облака;
- распад остаточной струи начинается с её периферии, в связи с чем максимальную дальность полёта будут иметь капли, образующиеся из центральной части остаточной струи.

Таким образом, учитывая, что основным фактором, определяющим, наряду с гравитационными силами, дальность полёта струи, является её инерция, зависящая от начальной массы остаточной струи и начальной скорости её движения, можно сделать вывод, что снижение дальнобойности ГИС ($l_{\text{гис}}$), по сравнению с дальнобойностью сплошной струи ($l_{\text{спл}}$) с аналогичными питательным напором и диаметром насадка (d_n), будет пропорционально уменьшению массы сплошной струи (остаточной), обусловленному процессом трансформации порции жидкости в течение промежутка времени, равного периоду повторения гидравлических импульсов. При этом соотноше

ние для определения относительной дальнобойности ГИС будет иметь вид:

$$\overline{l}_{TWC} = \frac{l_{TWC}}{l_{cnn}} = \frac{l_n - l_u}{l_{cnn}}, \qquad (25)$$

а с учетом (8) и (9):

$$\bar{I}_{THC} = 1 - \gamma \left(1 + \sqrt{\frac{H_{\mu}}{H_{\mu}}} \right).$$
(26)

Для случая использования в качестве генератора гидравлических импульсов гидроударного клапана [1, 9]:

$$\gamma = \frac{2l_{_{\rm IT}}}{a} \cdot \overline{\tau}_{_{\rm H}}^{a} \cdot f , \qquad (27)$$

где $l_{\mu\tau}$ – длина питательной трубы устройства генерирования гидравлических импульсов; а – скорость распространения ударной волны в питательном трубопроводе; $\overline{\tau}_{\mu}^{a}$ – относительная активная длительность импульса [9].

С учетом (27) соотношение для определения дальнобойности ГИС будет иметь вид:

$$\overline{l}_{THC} = 1 - \frac{2l_{\pi\tau}}{a} \cdot \overline{\tau}^{a}_{\mu} \cdot f\left(1 + \sqrt{\frac{H_{\mu}}{H_{\pi}}}\right).$$
(28)

Экспериментальная проверка достоверности определения относительной дальнобойности ГИС в зависимости от параметров истечения жидкости из насадка и конструктивных параметров питательной трубы по (28) осуществлялась на установке, схема и внешний вид которой приведены на рис. 2.

Рис. 2. Экспериментальная установка: 1 - гидроударный клапан; 2 - питательный трубопровод; 3 - насадок; 4 - пневмогидроаккумулятор; 5 - запитывающая магистраль; 6 - сливной трубопровод; 7 - вентиль; 8 - датчики давления; 9 - преобразователь; 10 - осциллограф; 11 - расходомер; 12 - емкость для воды; 13 - баллонная батарея; 14 - редуктор давления; 15 - манометр; 16 - заправочная горловина; 17 - запорный вентиль

Результаты экспериментов по определению относительной дальнобойности ГИС \bar{l}_{TUC}^{\Im} в зависимости от параметров истечения из насадка, полученные для питательных трубопроводов с различными конструктивными характеристиками:

- сборка № 1: l_{пт} = 2,2 м, d_{пт} = 0,055 м, и d_µ = 0,013 м;
- сборка №2: l_{пт} = 3,0 м, d_{пт} = 0,068 м, и d_µ = 0,019 м;
- приведены в табл. 1. Здесь же приведены расчетные значения Трасч., полученные по (28).

Сопоставительный анализ полученных расчётом и экспериментальных результатов определения относительной дальнобойности ГИС в широком диапазоне изменения параметров истечения (H_n , H_u , f) и при различных значениях конструктивных параметров устройства ($l_{\rm nr}$, $d_{\rm nr}$, $d_{\rm u}$) показал их удовлетворительное совпадение. Отмечено, что увеличение частоты гидравлических импульсов f, как и увеличение H_u при неизменном питательном напоре приводит к уменьшению относительной дальнобойности ГИС, что полностью согласуется с предложенной феноменологической моделью гидроимпульсной струи.

Результаты экспериментов по определению относительной дальнобойности гидроимпульсных струй

Таблица 1

№ сборки	Параметр	Значение параметра						
Сборка № 1	H_{n} , МПа	0,4	0,6	0,6	0,8	1,0	1,0	1,04
	Н _и , МПа	1,6	2,56	3,31	2,85	2,13	3,32	3,75
	f , Гц	50	18	27,5	24	24,5	31	16
	l ^э _{гис} , м	11,1	17,5	18,5	20,2	23,2	22,8	23,6
	$l^{\Im}_{_{\scriptscriptstyle {\rm CILT}}}$, M	14	20	22	23,5	25,5	25,6	26
	\overline{l}_{ruc}^{\Im}	0,79	0,88	0,84	0,86	0,91	0,886	0,924
	1 расч. ТИС	0,76	0,91	0,85	0,89	0,91	0,886	0,924
Сборка № 2	$H_{_{\Pi}}$, МПа	0,5	0,6	0,7	0,8	0,9	1,0	1,0
	Н _и , МПа	1,5	1,6	1,7	1,9	2,0	2,1	3,1
	f , Гц	30	32	35	38	40	42	20
	$l^{\vartheta}_{_{\mathrm{TUC}}}$, M	19,4	20,5	21,5	22	23	25,4	28,5
	l ^э , м	23,5	25	26,5	27,5	28,5	31	31,2
	<u></u> Тис	0,826	0,82	0,81	0,8	0,81	0,82	0,92
	1 расч. ГИС	0,82	0,815	0,803	0,79	0,77	0,774	0,89

В целом, хорошее соответствие расчётных и экспериментальных данных показывает, что принятое допущение о зависимости между потерей дальности ГИС и длиной остаточной (сплошной) струи в порции жидкости, истекающей из насадки в течение периода повторения, генерируемых в питательном трубопроводе гидравлических импульсов достаточно близко к действительности.

5. Выводы

Разработаны формализованная схема и математическая модель распада гидроимпульсной струи, учитывающая основные особенности физической картины исследуемого процесса и представления о центральном неупругом соударении двух струй идеальной несжимаемой жидкости. Установлены зависимости характеристик дисперсности и формы факела от параметров истечения струи.

Предложен методический подход и с использованием разработанной модели диспергирования гидроимпульсной струи получено выражение для расчётного определения её относительной дальнобойности в зависимости от начальных параметров истечения жидкости, согласующееся с экспериментальными данными.

Литература

- Способ и устройство для получения струи жидкости с управляемой дисперсностью капель [Текст] : пат. 2140333 Российская Федерация: МПК 7B05B1/58 / Алексеев Ю. С., Межуев Н.Н., Нода А. А., Свириденко Н. Ф., Скобелев Н.К.; заявители и патентообладатели Нода А.А., Свириденко Н. Ф. – № 97116461/12; заявл. 24.09.97; опубл. 27.10.99. – Бюл. № 30. – 3 с.
- Пажи, Д. Г. Распылители жидкости [Текст] / Д. Г. Пажи, В. С. Галустов. – М.: Химия, 1979. – 216 с.
- Исаев, А. П. Гидравлика дождевальных машин [Текст] / А. П. Исаев. – М.: Машиностроение, 1973. – 216 с.
- Иванов, В. А. О дроблении жидкой струи [Текст] / В. А. Иванов // ПМТФ. – № 4. – 1966. – С. 30-37.
- Пилипенко, В. В. Кавитационные автоколебания [Текст] / В. В. Пилипенко. – Киев: Наук. думка, 1989. – 316 с.
- Волынский, М. С. Деформация и дробление капель в потоке газа [Текст] / М. С. Волынский, А. С. Липатов // ИФЖ. – Т.XVIII. – № 5. – 1970. – С. 838-843.
- Воронков, И. М. Курс теоретической механики [Текст] / И. М. Воронков. – М.: Гостехиздат, 1953. – 552 с.
- Угинчус, А. А. Гидравлика и гидравлические машины [Текст] / А. А. Угинчус. – Харьков: Изд-во Харьковск. ун-та, 1970. – 395 с.
- Могендович, Е. М. Гидравлические импульсные системы [Текст] / Е. М. Могендович. – Л.: Машиностроение, 1977. – 216 с.
- Лаврентьев, М. А. Проблемы гидродинамики и их математические модели [Текст] / М. А. Лаврентьев, Б. В. Шабат. – М. : Наука, 1973. – 416 с.
- Соич, Л. О. Исследование поля скоростей перемещения частиц металла при штамповке биметаллического поршня [Текст] / Л. О. Соич // Самолетостроение. Техника воздушного флота. – Вып.45. – Харьков: Вища школа, 1979. – С. 93-94.

- 12. Лопарев, В. П. Экспериментальное исследование дробления капель жидкости в условиях постепенного нарастания внешних сил [Текст] / В. П. Лопарев // МЖГ. № 3. –1975. С. 174-178.
- 13. Бородин, В. А. Распыливание жидкостей [Текст] / В. А. Бородин, Ю. Ф. Дитянин, Л. А. Клячко, В. И. Ягодкин. М.: Машиностроение, 1967. – 263 с.
- Ольшанский, В. П. О траектории гидравлической пожарной струи [Текст] / В. П. Ольшанский // Проблемы пожарной безопасности. – 2003. – Вып. 14 – С. 144-151.
- 15. Мурзабаев, М. Т. Динамика дождевальных струй [Текст] / М. Т. Мурзабаев, А. Л. Ярин // Механика жидкости и газа. 1985. № 5. С. 60-67.
- 16. Анаников, С. В. О движении капли в свободной струе [Текст] / С. В. Анаников, Е. В. Поляков // Изв. ВУЗов. Авиационная техника. 1977. № 1. С. 11-16.

викладена V cmammi методика інженерного розрахунку параметрів удару високошвидкісного пневмоагрегата з вбудованим резервуаром, що ґрунтується на раціональному способі нормування нелінійної математичної моделі з виділенням мінімальної кількості критеріїв динамічної подоби. Завдяки виділенню невеликого числа критеріїв динамічної подоби за допомогою 4-х графіків вдалося охопити всю область існування ударних пневмоагрегатів з вбудованим резервуаром. Дається приклад розрахунку

-

n---

Ключові слова: методика інженерного розрахунку, кінематичні параметри, ударний пневмоагрегат з вбудованим резервуаром

В статье изложена методика инженерного расчёта параметров удара высокоскоростного пневмоагрегата со встроенным резервуаром, в основе которой лежит рациональный способ нормирования нелинейной математической модели с выделением минимального количества критериев динамического подобия. Благодаря выделению небольшого числа критериев динамического подобия с помощью 4-х графиков удалось охватить всю область существования ударных пневмоагрегатов со встроенным резервуаром. Даётся пример расчёта

Ключевые слова: методика инженерного расчёта, кинематические параметры, ударный пневмоагрегат со встроенным резервуаром

1. Введение

В работе [1] предложена и обоснована рациональная схема управления ударным пневмоагрегатом (ПА) со встроенным резервуаром и даётся его развёрнутая математическая модель, описывающая все фазы движения рабочего органа. Модификация этой схемы представлена на рис. 1. При этом показано,

УДК 621.05

ИНЖЕНЕРНАЯ МЕТОДИКА РАСЧЁТА КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ УДАРНОГО ПНЕВМОАГРЕГАТА СО ВСТРОЕННЫМ РЕЗЕРВУАРОМ

Ю. Л. Атаманов Директор

ООО «Харьковгазоборудование» ул. Кооперативная, 6/8, г. Харьков, Украина, 61003 E-mail: hgo_pochta@ukr.net

Г. А. Крутиков

Доктор технических наук, профессор Кафедра «Гидропневмоавтоматика и гидропривод»* E-mail: gkrutikov@gmail.com **М. Г. Стрижак**

Кандидат технических наук, старший преподаватель Кафедра «Подъёмно-транспортные машины и оборудование»* E-mail: mp9753@mail.ru *Национальный технический университет «Харьковский политехнический институт» ул. Фрунзе, 21, г. Харьков, Украина, 61002

что в период работы ПА от момента разгерметизации поршня-клапана и седла до момента соприкосновения ударника с заготовкой (вторая фаза работы ПА) ПА можно представить в виде обычного двустороннего пневмопривода с большими начальными объёмами справа и слева. В этом случае, приняв ряд вполне обоснованных допущений, можно найти аналитические выражения для координаты достижения макси-