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Basyiouuce na pozeumxy idei nowyxy 6 wupu-
HY Y 08000J1bHUX padax ma OCHOBHUX BUIHAUEHHSAX
meopii napocnoayuens, NOKaA3ano, wWo 3aoaua nooy-
006U MAKCUMATILHO20 NAPOCRONYHEHHS 8 00BLILHO-
My epadi modsce Gymu 36edena 0o 1020 08000161020
eunaoxy. Jlosedeno, wio K0IHCHOMY NOMOUHOMY NAPO-
Cnoyuent1o 6 008inbHOMY epadhi 63aE€MHO 00HO-
3HauHO 8i0n06idaec Napocnoyuens 6 06000bHOMY
epadi. Ilpoimocmposano, wo HcoOHus 3 NOMOUHUX
P036’a3Ki6 3a0aui nodY008U MAKCUMATILHOZ0 NAPO-
cnoayuenns 8 006iIbHOMY 2padi He empauacmovcs
npu nepexodi 0o imepauiiinoi cxemu nooyodoeu max-
CUMATBLHO20 NAPOCNOTYHEHHS Y 08000bHOMY 2padi.

Jna 3naxooxcenns 30imouy1on020 wasxy 6io-
HOCHO (PiKcoeano20 napocnonyuenns nomyxcrocmi k
3anpononosano mooudixauito 6i0omoz0 anzopummy
NOWYKY WNAXI6 3 0aHOT GepuUHU Y 8CT QOCAINHCHT 8ep-
wunu 006inbHO20 2padpy. Pobomy 3anpononosanoi
Mooudpixauii npoinocmposaro na npuxaaoi.

Ha ocnosi euxnadenux ioeii, 0oeedenux
meepoicen ma 3anponoHOGAHUX ATlZOPUMMIE ma
ix moodudixauii nodydosano aneopumm 3Haxooxncen-
HSL MAKCUMATIBHOZ20 NAPOCRONYHEHHS 3 NOKPAUEHOI0
UAC0B0H0 OUIHKO10, NOPIGHAHO 3 GIOOMUM ATL2OPUM-
mom Edmonca, wo mae uacogy ouinky cxaadmocmi
0(n"). Ocnosnum nedonixom anzopummy Eomonca e
BUKOPUCMANHS MPYOOMICMKOT MEXHIKU CMUCHEHHS
YUKIB HenapHoi 008XHCUHU, KT HAZUBAIOMb <K6iMm-
Kamu», wo poéumo anzopumm Henpuoammum O0Jis
3acmocyeanns 6 cucmemax peanvHoz0 Macuima-
0y uacy. Duwi eidomi anzopummu 6i0pizHAIOMbCA
6i0 anzopummy Eomonca minvku Gimvw docxona-
J1010 opeanizauieto 30epizannsa danux ma oduuciens,
Pazom 3 mum 3éepizaronu ckaaoni 0ii no 6usA6NAEHHIO |
YNaKoeui uuKie HenapHoi 006XHCUHU.

3anpononosanuii nioxio nepexody 6io 006iNbHO-
20 2pay 00 0600011020 gpaghy 003604U6 YHUKHYMU
BUHUKHEHHSL YUKII6 HenapHOT 0081CUHUL, W0 00360.1U-
J10 3HAuHO nideuWUMU eeKMUBHICMb AJIZ0PUMMY.
TIooanve nidsuwenns npooyxmueHOCMi MONCAU-
60 3a paxynox nodyooeu napanervHux éepciii anzo-
pummy i onmumanshoi opeanizauii 30epizanns danux

Kntouosi cosa: napocnonyuenns, maxcumaioie
napocnoayuens, 06000 avHuUll epag, 30iavuyrovuil
WX, 3a0a1a nPo NPUIHAeHHs

u 0

Received date 20.09.2019
Accepted date 18.11.2019
Published date 28.12.2019

1. Introduction

Numerous problems, known as routing tasks, are char-
acterized by an ever-expanding list of practical applications,
occupying a traditionally important place in the study of
combinatorial optimization problems. The routing task in a
broad sense is the problem on current planning, the process
of which involves the selection of movable objects and the de-
termination of trajectories and schedules of their movement.

The tasks on routing in road transportation, as well as
the methods to solve them, are studied within the framework
of a scientific field — transport logistics, whose mathematical
apparatus is represented by the theory of graphs and the study
of operations. Most routing tasks are NP-complete [1] and
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can be solved only by combinatorial sorting methods [1, 2].
These methods often require the use of significant computing
resources and, as a result, a long time to solve the problem.

The most commonly used methods for solving NP-com-
plete routing problems are the branch and boundary meth-
ods [2], which employ relaxation to calculate the lower and
upper bounds. Relaxation is generally understood as a com-
binatorial optimization problem, the set of whose valid solu-
tions are injected with a set of valid solutions to the original
problem [3]. Typically, the original NP-problem is complete,
and its relaxation is solved over a polynomial time [3].

One of the problems that can be used as a relaxation to an
NP-complete salesman problem [3, 4] is the problem about
matching (MP).



In [4], a solution to MP is used as an element of the
algorithm to obtain an approximate solution to the sales-
man’s problem. The downside of the algorithm from [4]
is its computational complexity, specifically O(n*), which
makes the algorithm almost unusable for real-time use. The
relevant area of research is to derive a faster algorithm for
solving MP, which would speed up the implementation of
algorithm [4].

A solution to MP could also be used as a lower bound in
the branch and boundary methods used to solve closed-route
problems. In most implementations of the branch and bound-
ary method, the vertices of the solution tree are matched
with a distance matrix that excludes some of the elements, or
some rows and columns are removed. Thus, another import-
ant area of research is the construction of an algorithm that,
based on an existing solution to MP, finds a new solution to
MP for the matrix, which differs from the original one by the
absence of some elements.

2. Literature review and problem statement

Paper [1] summarizes the problems on combinatorial
optimization related to the construction of vehicle routes.
It shows that most routing problems are NP-complete prob-
lems of discrete optimization, deriving solutions to which
employs sorting methods. This is the method that is consid-
ered in work [2], which proposes the use of the branch and
boundary method to solve various combinatorial problems
on processing big data. Study [3] proposes the use of relax-
ations as the elements of algorithms and methods for solving
the problems on building closed routes, including within the
methods of branches and boundaries. Work [4] proposes to
use the 2-factor of the minimum weight as a relaxation to the
salesman problem within the branch and boundary method.
Article [5] reports analysis of the approximate algorithm for
solving the metric problem of a salesman with an accuracy
estimate of 1.5, using the algorithm for obtaining the perfect
matching combination.

The above works [1-5] suggest solving auxiliary sub-
problems in order to speed up calculations in accurate, and
improve accuracy in approximate, methods for solving the
problems on building closed routes, at the steps of the rele-
vant algorithms. At the same time, the cited studies do not
address issues related to better implementations or lower
computational complexity of existing algorithms, which
could speed up the construction of closed routes.

A subset of the graph’s edges, which do not have common
vertices, is termed the M matching [6]. An MP implies find-
ing the My, matching of maximal power (maximal match-
ing) in a given graph H=(V, E) with the set of vertices V and
the set of edges U).

Paper [7] established that MPs belong to the class of
effectively solvable tasks by proposing the algorithm to
solving MP with a temporal assessment of complexity O(n?),
|V|=n, when using a labor-intensive procedure for compress-
ing certain odd cycles — flowers. Other known M, deriva-
tion algorithms, whose authors are listed in [8, 9], differ from
the algorithm described in [7] only by a better organization
of memory and computation, while maintaining the difficult
actions to detect and “cut” flowers. Work [10] gives the
statement of an assignment problem with additional conflict
constraints, which comes down to the task of finding the
maximum perfect matching of minimum cost. The problem

under consideration is solved by a labor-intensive algorithm,
as well as a salesman problem’s variant, which is considered
in [11], that uses the search for matching in the graph. The
complexity of solving the specified problems is related to the
presence of flowers in the graph [8].

A flower is a simple cycle of odd length with 2k+1 ver-
tices, containing & matching edges [7]. Flowers are not
included in a bipartite graph, therefore, for a bipartite graph
the task on finding the maximum matching is significantly
simplified. In addition, a flower in an arbitrary graph H is
determined with respect to a certain fixed M matching as a
subgraph with the maximum density of the edges forming a
subset M’ c M [7]. Obviously, the less matching power at
which activities start aimed at increasing it, the fewer flow-
ers are found in H. If [M|=1, there are no flowers in H, or all
the flowers are the cycles with three vertices and a common
edge of M matching (buds).

The methods discussed in the above studies that are
related to the construction of prolonged paths include ad-
ditional steps to pack the flowers. This is because the algo-
rithms listed in papers [3, 5, 7, 8] are performed on arbitrary
graphs that allow the existence of odd-length cycles. There-
fore, a transition to a bipartite graph would make it possible
to avoid the evolution of flowers, and, as a result, could give
an opportunity to improve the speed of the algorithm.

Our considerations suggest it must be a relevant idea
worth considering to find the maximum matching in arbi-
trary graph H=(V, U) by using the simpler structure of a
bipartite graph D=(X, Y, E). In a bipartite graph, D under
X and Y denotes the sets of vertices, | X|=|Y|=|V|=n, E — the
set of edges (i,j), ieX, jeY. InD (i,j)eE, if {vi,vj}eU,
i%j, ije{l,2...,n}, |E=2|U], in H.

3. The aim and objectives of the study

The aim of this study is to develop an algorithm for solv-
ing an MP, which derives a solution to the MP over a time
outperforming the existing algorithms for solving an MP.

To accomplish the aim, the following tasks have been set:

— to reduce the problem on matching, solved on an arbi-
trary graph, to a bipartite case and to justify the correctness
of such a reduction;

—to devise and substantiate the linear procedure of
building a prolonged path in a bipartite graph relative to the
fixed matching;

—to suggest an algorithm for deriving the maximum
matching in an arbitrary graph over a quadratic time.

4. Reducing the problem to a bipartite case

Designate [h;], and [d;], — the adjacency matrices of,
respectively, graphs H and D: h;=1, if in H the vertex v; is
adjacent to the vertex vj and h;=0 otherwise; d;;=1, if the
vertex i€ X in D is adjacent to the vertex jeY and d;=0
otherwise. It follows from the match between matrices [/;],
and [djj], that if a solution to MP was built for D, the solution
is built for H, too.

In graph H, the edge {ov, u} of the M matching is denoted
[, u]. In it, the vertex u is the partner of the vertex v. Edges
that are not included in a matching are called free. The ver-
tex, which belongs to the edge of the matching, is defined
as saturated. The rest of the graph’s vertices are termed



unsaturated or free. The power of the maximum matching of
graph H with n vertices is limited by the magnitude | n /2.
A simple path in graph H is called alternating relative to M if
the edges of the path through one are present in M [6-8]. An
alternating path, which begins and ends with edges that do
not belong to the M matching, is termed increasing relative
to the M matching.

We shall define the arbitrary edge {v;, vj} taken in H as
the original matching M={[0v;, v;]}. Then, if [V|=|U|=3, then
M is the solution to the MP. Assume |V|=4, and the graph H
includes a single cycle of odd length. Obviously, in this case,
the number of edges |U| is minimal and equals 4. Graph H,,;,
of four vertices and four edges, forming the odd cycle Z, is
shown in Fig. 1, a). If [v;, vj]€Z, i, je{l, 2, 3, 4}, then Zis a
bud in graph Hyi, (Fig. 1, b). Otherwise, M={[v;, vj]} does not
form a bud (Fig. 1, ¢). In Fig. 1, and all the following figures,
the edges of matching are represented by thickened lines. It
is clear from Fig. 1 that My, is derived either by adding, to
M={[v;, vj]}, an edge that has no common vertices with edge
[0, vj] (Fig. 1, @) or by building, from any free vertex (v or
v4) (Fig. 1, b), the prolonged path relative to M.

a b

c

Fig. 1. Graph Hy,, of four vertices and four edges forming
the odd cycle of Z: @ — M, is derived by adding, to
M={[v; v]}, an edge that has no common vertices with edge
[vi vil; b= v, vileZ i, je{1, 2, 3, 4}, then Zis the bud in
graph Hqin; ¢ — M={[v; v/]} does not form a bud

Each vertex veV of graph H will be represented by a pair
of vertices (i, jz) of the bipartite graph D=(X, Y, E), where
ire X is the beginning of edge (i, j))€F, and jieY is the end
of edge (i, jr)€E. Then, in D, any prolonged path relative
to a fixed matching begins in some free vertex i, and ends in
some loose vertex j,7#s. In graph H, it is matched with a
path from o, to v;. Obviously, any technique for building a
maximal matching in the bipartite graph D, which is simul-
taneously a solution to the MP for arbitrary graph H, does
not imply flower detection activities. Fig. 2, a shows graph
D in, built based on graph H,,;,, in which the matching M=
={[v9, v3]} forms bud (v4, v3, v9, v1) (Fig. 1b). In Dy, the
bud is represented by a path from #; to j;, composed of edges
(i1, j3), [io, j3], (@2, j1). The beginning and end of the path,
which increases the power {[is, 3]} by unity, is, respectively,
the vertex i4 and ji. This path includes edges (i4, j3), [i2, j3,
(i3, /1), which determine the matching {[is, j1], [i4, 73]} (Fig. 2, b),
which in graph H,;, is matched with the maximal matching
{[02, v1], [v4, v3]}.

Thus, it has been shown that the problem on finding the
maximal matching in arbitrary graph H=(V, U) could be
reduced to the problem on finding the maximal matching on

the bipartite graph D=(X, Y, E). In the bipartite graph D, X
and Y denote the sets of vertices of graph D, | X|=|Y|=|V|=n,
E is the set of edges (i,j), ieX, jeY. In D (i,j)eE, if
{o.0,}eU, i=j, ije{t,2,...n}, [E[=2|U]in H.

Fig. 2. Graph Dy, built on graph:

a — matching M={[v,, v3]} forms a bud (v, v3, v2, v1);
b — the beginning and end of the path that increases the
power {[4, 3]} by unity, are respectively, vertices /3 and
j1- This path includes edges (i, /3), [, /3], (f2, j1), which

determine the matching {[5, /11, [i4, 31}

3. Justification of mutual match between matchings in
arbitrary and bipartite graphs

Let in the bipartite graph D=(X, Y, E), | X|=|Y|=n>6 be
the fixed matching M (D), |M(D)| >2, corresponding to the
M matching in graph H. M(D) transforms into a matching
M’(D)=M(D)@P of power |M’(D)=|M(D)|+1 as soon
as there is a prolonged path p relative to M (D), Pis the set
of edges along the path.

Statement 1. Each current matching o in the arbitrary
graph H is mutually unambiguously matched with a match-
ing M(D) in the bipartite graph D.

Proof. Suppose H contains a matching

M:{[02703]’[04’05]’"'7[02k’02k+1]}’

and the path (vy, 09, v3, ..., V24, Vok+1, V2p+2) prolonged relative
to M. Assume that D, built from H, includes no any alternat-
ing path (1,2, /3, - Joks J2k+15 J2k+2). However, building graph
D implies the inclusion of edges (i, ,), [iy js ] s [dops oo ]s
(i2k+17j2k+2) and edges (i27j1)’ (isvjz)’ ) (i2k+27j2k+1)7 contain-
ing a combined prolonged path (jog+2, jor+1, J2% -nr 13, J2, J1)
from the vertex i,,,, to the vertex j, relative to matching

M(D)z{[izvje»]v [i4’j5]’"'V[izk’j2k+1]}7

which corresponds to M in graph H. Proof is completed.
The proof of statement 1 indicates that none of the current

solutions M in the arbitrary graph H is lost when moving to the

iterative scheme for building M,,,<(D) in the bipartite graph D.

6. Development of a linear procedure for building
a prolonged path in a bipartite graph relative to
the fixed matching

Let the matching Mk(D)={[i,,j,]|l=1,7k}, be built in
graph D, where i, is the beginning j, is the end of the /-th



edge, k<|n/2|-1, i, #j, I, ={i,| =1k}, J,={j,||=1k} are
the subsets of the saturated vertices of sets X and Y, respec-
tively. In M(D), denote via j, €Y the mapping of beginning
i, of edge [i,j,], i,€X isthe mapping of end j; of this edge,
i, j, |, is the subset of mappings of vertices J,,

=[5 -17)
is the subset of mappings of vertices Ij,.

To determine whether the matching My(D) is maximal or
is converted into the matching My+1(D), one finds the first

free vertex i, € X —(1, ), which is considered to be the
beginning of a prolonged path p, —relative to M(D) to any

free vertex j eY—(]k uJ, u{}kﬂ}). Here j,,, is the map-
ping of ig.1. If there is a path p, ,then

M, (D)=M,(D)®P, .

It is known that the matching M of graph H is maximum
then and only when there is no prolonged path in H relative
to M [6, 7]. Let the set X —(1, UIk) includes not a single
vertex i, that connects it to at least one of the vertices from

the set Y—(]k U/, u{;kﬂ}) through the prolonged path in

relation to matching My(D). My(D) is then maximal.
Designate via D, ~the subgraph of graph D, in which the
matching My(D) is f1xed all the vertices from the set Tx U ],
are removed, and each edge connecting the vertex j,,, with
the vertex from Iy is removed (Fig. 3). It is required in sub-
graph D, = toeither to build a path p, =~ or to establish that
isabsentin D,
Jia = Js Ji ) Js Ja Js=Js Jo =

O

b =1 i iy i i i i, =i
Fig. 3. Subgraph of graph D, in which matching M(D) is
fixed, all the vertices from set I u]k are removed, and

each edge connecting the vertex j,  to the vertex from /is
removed

We propose a PATH procedure for building p, in the
subgraph D, . The procedure is the modification of a y known
algorithm for finding paths from a given vertex to all achiev-
able vertices of arbitrary graph H [6]. The PATH procedure
consists of the following steps:

50. Q is the set of marked vertices, R is the set of un-
marked vertices; Q={i,,,}, R=1,, [=1.

S1.1If 4, € R and vertex j, is incident to a vertex from
Q, then put

=Qu{i}, R=R-{ii};

if 4, is incident to vertex j e Y—(]k u{jm}), then proceed
to step S4.

852, [=1+1.

S$3.1f [>k, it is over: the subgraph D, does not contain
path p, otherwise proceed to step S1. z

S4. If the vertex i,,,, is adjacent to vertex j, then it is
over: p, = (i,M, js), otherwise the saturated vertex i, €Q;is
adjacent to vertex j, put D, :(im,jx), r=1.

S5. While 4, €Q is adjacent to j, and i, #i,, put

i, =(bduopi, ) dw =iy Ju=ip r=r+1.
56. Put

b, = (l/(+1’]m7 b, )

Statement 2. The PATH procedure correctly builds in
the subgraph D,  the prolonged path pj. relative to the
fixed matching of power & over time O(k).

Proof. Step §3 determines that subgraph D, has no path

p,,,, from the vertex i, to any free vertex j, €Y - ( J u{}kﬂ}),
and step $4 finds edge (i,, j,) and the set of marked vertices

Q =Gy Byyeenriy)-

Assume D, ~ does not contain p, . Then the induction
based on the number of cycle executions that forms steps S1—

83 establishes that D, ~ has no vertex j EY—(]U{]k+1}),

incident to any vertex from Q.

On the other hand, let there be a found edge (im,jx).
in D, ~Then the induction for / yields a simple path
(ik+1,j1,i1,...,j,,i,,...,im,jg), which is built at step 55, from the
vertex j, to the vertex i,,,.

The time of procedure execution is estimated based
on that in the worst case the maximum number of ver-
tices along path p, is k+1. To establish the existence of
path p, ,one needs. O(k) elementary activities. The same
amount of action will be needed to build it. Therefore, the
time complexity of the PATH procedure is estimated by
magnitude O(k). The proof is complete.

Example 1. Let us illustrate work of the PATH procedure
for subgraph D, , depicted in Fig. 3. In D, we defined the
current matching

M,(D)={[i, i])l1=14}, Q={i},
z{il ‘IZH}Y i # .

Since the marked vertex i; is adjacent to vertices j, and
Js» then we mark any of the vertices viai, or i, Let it be the
vertex i,,

Q={isi,}, R={i,iyi,}-

Vertex j, is incident to vertices i, and i,, between
which we shall choose, for example, i,. Now,

Q={isii}, R={i,i}.

The vertex j,, adjacent to i, € R, is connected to verti-
ces i,€Q and i, €Q. After adding i, to the current set of
marked vertices, we derive Q={i;, i,,4,,4,}. But, (i, js) is

such an edge that j; e Y—(j,e u{}kﬂ}).

The path p, from vertex i; to vertex j; is built as a
result of execution of steps S4-S6. Since jg is adjacent to
i, weput p, =(i,,j;), r=1. The vertex i, is adjacent to j,,



=(i,jy» iy, js)» The vertex i, is adjacent to j,,

therefore p,
therefore, p, =(iy, jy iy, j5» 5 Js ), ¥ =3. Since i; is incident

to i,, then the desired path P, :(is,jg, iy, oy oy J4 i4,j6).

7. Algorithm for finding the maximal matching

Our considerations are detailed in the description of the
following algorithm.

S50. The algorithm for finding in the arbitrary graph
H=(V, U) the maximal matching My, [A;], is the sym-
metrical adjacency matrices of graph H. The solution M«
is mutually unambiguously consistent with the maximal
matching

Mmax (D):{[ll’jl] | il * jl’l :1’7}

in a bipartite graph D=(X, Y, E), in which X, Y are the sets
of vertices, |X| = |Y| =n24, Eis the set of edges, {i,j} ek, if
{o.o}ev, iz ije{t,2..n}, |E|=2[U].

S1. As a result of the application of heuristics with a tem-
poral difficulty estimate not higher than O(n?), find in [A;],
the original matching

Mk={[vi7,vh:|\l=1,7k},

where i, is the number of the initial vertex, and j, is the
number of the final vertex of edge [Ui, 0, ], i<ji.

M, (D): {[iIle] |l= 17*7}
is the matching in a bipartite graph D corresponding to M.
1={ili=1&}, J,={ili=1k} I,

Tk:{j1|l:L7}CY, R=X-(I,01,), $=

{j,\l 1k}cX

Y-(J,0 7).

If k=|n/2], then My(D) is the matching corresponding
to My.x in H.

S52. Form a subgraph Dy, of graph D that includes M(D)
and all free edges with initial vertices in I, and final verti-
cesin J,;r=2k+1.

S3. k=k+1.

S4. Identify the subgraph D, of graph D by adding to

D, , all the free edges linking the vertex x, € R to vertices
in J, and all the free edges with the initial vertex in I, and
afinal vertexin S—{y,}, vy, =x

S5. Perform the PATH procedure to find in the subgraph
D, the prolonged path p_ relative to matching M, (D) to
the vertex j,€S-{y,}, achievable from the vertex x,.

§6. If the path p, , is built, then

Mk(D):MH(D)@Px,’

otherwise proceed to step 8.
S7.1f k<Ln/2J, then

L=1_u{x}, J,=J,9{i} Li=Tuu{j}cX,
jS:;A., jkzjk_1u{yr}CY, yr:;”

R=R-{x,j}cX, S=S-{j.y}cY,

where x, € X is the beginning, and j, €Y is the end of path
p,; proceed to step 2, otherwise M, (D) is the matching
that corresponds to My, in graph H.

S8. R=R—{xr}, r=r+1; if r<n, proceed to step 54,
otherwise M, (D) is the matching corresponding to
Moy in H.

Theorem. The maximal matching in an arbitrary n-vertex
graph H is correctly derived over time O(n?).

Proof. Because the bipartite graph D does not contain
odd-length cycles, the reduction of MP in the arbitrary
graph H to a bipartite case excludes flower detection and
removal operations. By building, the subgraph D, contains
each edge corresponding in graph H to that that may belong
to the prolonged path relative to matching M, (D), hence,
if graph H contains M, ,, then, after building at step S5 a
path p_, at steps $6—57 we determine the matching M(D).

Excluding a vertex x, from the list of free vertices R
when there is no p, , in the subgraph D_ is based on the
consequence from the theorem proven in [7] If at some stage
of the algorithm for solving MP there is no prolonged path
from vertex o, then v cannot be considered as the starting
vertex of the prolonged path at all other stages.

The algorithm terminates at k<|n/2]| either after
constructing My(D), when |R|€{0,1}, or after constructing
M, (D), when there is no path p, from each vertex x, € R.
In the first case,

|Mk(D)| :L”/2Jy

in the second case, the necessary and sufficient condition is
met under which the matching M, (D) is maximal.

Let us assess the time complexity of the algorithm pre-
sented.

Finding at step S1 in graph H the original matching
M, could be performed over time O(n?), for example, by
choosing each time in the matrix [4;], the element /;; and
by excluding the rows and columns with numbers i and j.
The resulting matching leaves in graph H not a single edge
incident to two free vertices. The bipartite graph D, which
includes the matching My(D), is formed over n? references to
the elements of matrix [#;],. Therefore, step S1 is executed
over time O(n?).

The starting phase for solving MP is step S2 that builds
the subgraph Dy, in which the matching M,(D) corresponds
to the original matching M in graph H. The first subgraph
D_,x, eR, derived from D, transforms to D,,, if D,
1ncludes the path p, . Building D, requires no more than
k(k—1) comparison operations with elements from the matrix
[Ai],. To assess the laboriousness in solving MP, it would
suffice to consider two extreme cases of the algorithm’s
termination.

In a first case, the algorithm terminates when the
matching My(D) is returned, corresponding to the original
matching M, in graph H. Then each subgraph D_,x, eR,
|R|=n—-2k, does not include the prolonged path be rela-
tive to My(D). The subgraph D_ is determined by attach-
ing to D, not more than k edges (x,,7), j,€J, and not
morejhan k(n-2k-1) edges (i,j,), i€l, jeS—{y}
y,=x,. Consequently, it takes a time of k(n—2k)*+c(k+2)
(n—2k)+k(k—1), c<k, to check the optimality of the initial
solution My(D). Since the labor-intensity of building M,(D)
is limited by magnitude O(n?), then the time complexity of
the algorithm in the considered case is estimated by the same
magnitude.



In a second case, the algorithm converts the original
matching My(D) into a matching of power |n/2|>k. La-
bor-intensity of building Mj.4(D) is estimated by magnitude

t, which includes k(k—1) and k+k(n—2k—1) elementary

actions to form graphs D, and D, , respectively, as well as
c(k+2) operations to build path p, and ¢’(k+1) operations
to execute step S7:

by =k(k—1)+k(n—2k)+

+c(k+2)+c (k+1),

’

' <k.

It is obvious that the construction of M,,,(D) could be
done at labor-intensity

tr = (k+1)(n—2(k+1))+
+c(k+3)+c'(k+2),

and construction of M, (D), k+3<m<|n/2], at labor-in-
tensity

t,,=(m—1)(n=2(m=1))+c(m+1)+c'm.

The total cost of converting the matching M,(D) into a
matching of power |7 /2] is estimated by magnitude

[n/2] [n/2] [n/2]
T=k(k-1)+ Z t,+c Z (m+1)+¢ Z m,
m=k+1 m=k+1 m=k+1
where
k (k - 1) <n’,

(/2] [n/2]H

yot,= mz:k m(n—2m)<(|n/2|-k)x

m=k+1

xk(n—2k)= O(nz),

n/2] |n/2]
c z (m+1)<cn2, ¢ 2 m<c'n’.
m=k+1 m=k+1

Since the time to build the original matching My(D) is
limited by the magnitude O(»n?) and T=0(n?), then in this
case, too, the algorithm solves the MP at labor-intensity
O(n?). The proof of the theorem is complete.

Example 2. Fig. 4, a shows the graph H=(V, U), for which,
by applying the algorithm from [7] set out in [6], the maxi-
mal matching was derived

[on.:][05,0,].[05,26] [27, 246,
Mmax = ’ |Mmax |: 8
[08’09]’ [010’017]’ [0117012]’ [013’014]

The presented algorithm finds a matching of the same
power (Fig. 4, b).

At step S1, a rapid heuristic builds the original matching
in matrix [A,],;

v {[02,03], 0025, [0, ]};

[010’011]7 [012,013], [0147016

Mﬁ(D)z{[iz’js]’ [ic o) [is o] }

ligrdis]s [z dia)s [ives o]
—corresponding matching in the bipartite graph D;
I ={iy, iy, g, gy iy g
Jo = os Jos iss s Jus
To={ysJosJov i s} < X,
To =1y i g, gy iy s} €Y,
R ={iy, is, iy, i5 0}
S =i dssosdissJia}-

k=6<|n/2]=8.

Fig. 4. Graph H=(V, U): @ — maximal matching derived by
the Edmons algorithm; b — maximal matching derived by
the proposed algorithm

At step S2, a subgraph D, is formed (Fig. 5), r=13,
k=17. Step 54 builds a subgraph D, , x,=i €R, in which
the vertex i, is isolated. Therefore, the PATH procedure es-
tablishes that there is no path from x,; to the vertex of the

set S—{ys}, vi3 = j; R={i5, i;, 45,7 }, r=14, in the subgraph



D, .Now asubgraph Dy, is built for the vertex x,,=i;. D,
is shown in Fig. 6. The PATH procedure builds the pro-
longed path P, =p, = (i5, jis» ig» Ji5) relative to the matching
Mg(D) and, therefore, determines

M7(D):M6(D)®Pi§:
'{[iz,/e], (i) [iss o), }_‘

[ilO’jM]’ [i12’j13]’ [iM’le]

{5 i) [ (i)}

{CSANCEANC )=

Y _{[iml, [i0:ds]. i o] } =
| Lol [ dis] Tias o]

_{[z;,f;], lis s ) i ds ] [ o) }

Nliordi ] liardis ] o dis)

At step S7 k=7<|n/2]|=8,
L=y, iy, ds, g, gy iy g

Jr = s JorJorhisJissdissJis }

Li=J,cX, J,=L,cY, R={i,i,}, S={j.js}-

Subgraph D, isshown in Fig. 7, r =15, and the subgraph
D, , x15=i7 — in Fig. 8; k=38.

X

j} j() j9 jll jIJ jlﬁ
jZ izl iR il[) ill

Fig. 5. Subgraph D5 formed at step S2

Fig. 6. Subgraph Dy for vertex x14=is

j} j]5 jﬁ j‘) j]l jl3 j]t

12 14 lS lx ll 0 ll 2 ll4

Fig. 7. Subgraph D;

J7:y15 j3 le j(y j‘) j]l j13 jl(y j]7

L=Xs5 b Iy Is Iy L0 LY Ln

Fig. 8. Subgraph D, x15=i

Thus, the PATH procedure builds, in the subgraph D, ,
the prolonged path p, =(x,; =1, ;i j;;) relative to the
matching M,(D) from the vertex i, to the vertex in the set
S={j,,} and is derived

Nl o] [ s sG] [,
MS(D)_{[W], [ dir ), [iar i) [iwjm]}’

coinciding with an accuracy to designations with the match-
ing M, =M, shown in Fig. 4, b).

max

8. Discussion of results of constructing
an algorithm with a quadratic time complexity to find
the maximal matching

Known methods from [5—8] make it possible to derive a
solution to the similar problem over time O(n%). The algorithm
for solving the matching problem outlined in work [8] could be
implemented as a computer software with a temporal complex-
ity of O(n®) provided data structures are optimally utilized.

Existing algorithms from studies [5—8] are based on the
execution of the algorithm for bypassing the graph in width,
at the steps of which the detection and packaging of flowers
are made (cycles of odd length).

The results reported in our article provide a solution to
the matching problem over time O(n?). Winning in speed is
achieved by moving from an arbitrary to a bipartite graph,
on which there is no need to find and pack flowers. Thus, the
algorithm that we proposed would provide for the accelera-
tion in solving the problem by at least # times.

However, in practice, there is often a need to solve the prob-
lem on a weighted graph. In this case, one should talk about
the problem of weighted matching. The approach proposed in
this article cannot be applied directly to solve the
problem of weighted matching. Therefore, we plan
to advance the ideas proposed in the current paper
to build an algorithm to solve the specified problem.

Solving a problem of weighted matching could
be used as a lower estimate of the cost in accurate
and approximate methods for finding Hamilton
cycles on graphs and routing problems, which are
reduced to the problem of a salesman, which would
make it possible to bring down computational costs
and speed up the time it takes to find solutions to
these problems.

9. Conclusions

1. Reducing the problem on building the maximal
matching, solved in an arbitrary graph, to the correspond-
ing bipartite variant makes it possible to avoid the need
to process flowers [7] and reduce the computational com-



plexity of the algorithm to solve an MP. By reducing the
complexity of the algorithm, the speed of solving an MP
is increased compared to known methods. The proof of
mutually unambiguous correspondence between a match-
ing in the arbitrary graph and the matching in a bipartite
graph allows us to assert the correctness of the proposed
reduction.

2. The proposed PATH procedure with a linear time
assessment of complexity makes it possible to build a pro-
longed path in a bipartite graph relative to the current
matching. The procedure greatly simplifies and, as a result,

accelerates the derivation of a new matching, which has one
edge more than the original.

3. Based on the iterative execution of the PATH proce-
dure, we have proposed and substantiated an algorithm for
building the maximal matching, which has a quadratic tem-
poral complexity. Solving an MP by proposed algorithm as a
relaxation within the branch and boundary method makes it
possible to save computing resources of computers and serv-
ers used for computations and, as a result, to gain a win in the
speed of building accurate solutions to certain NP-complete
routing problems.
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