
21

Mathematics and cybernetics – applied aspects

1. Introduction

Numerous problems, known as routing tasks, are char-
acterized by an ever-expanding list of practical applications,
occupying a traditionally important place in the study of
combinatorial optimization problems. The routing task in a
broad sense is the problem on current planning, the process
of which involves the selection of movable objects and the de-
termination of trajectories and schedules of their movement.

The tasks on routing in road transportation, as well as
the methods to solve them, are studied within the framework
of a scientific field ‒ transport logistics, whose mathematical
apparatus is represented by the theory of graphs and the study
of operations. Most routing tasks are NP-complete [1] and

can be solved only by combinatorial sorting methods [1, 2].
These methods often require the use of significant computing
resources and, as a result, a long time to solve the problem.

The most commonly used methods for solving NP-com-
plete routing problems are the branch and boundary meth-
ods [2], which employ relaxation to calculate the lower and
upper bounds. Relaxation is generally understood as a com-
binatorial optimization problem, the set of whose valid solu-
tions are injected with a set of valid solutions to the original
problem [3]. Typically, the original NP-problem is complete,
and its relaxation is solved over a polynomial time [3].

One of the problems that can be used as a relaxation to an
NP-complete salesman problem [3, 4] is the problem about
matching (MP).

Received date 20.09.2019

Accepted date 18.11.2019

Published date 28.12.2019

Copyright © 2019, A. Morozov, T. Loktikova, I. Iefremov, A. Dykyi, P. Zabrodskyy

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

CONSTRUCTING
AN ALGORITHM OF

QUADRATIC TIME
COMPLEXITY FOR FINDING

THE MAXIMAL MATCHING
A . M o r o z o v

PhD, Associate Professor, 	
Vice Rector in Scientific and Pedagogical Work

Department of Computer Science*
Е-mail: morozov@ztu.edu.ua

T . L o k t i k o v a
Senior Lecturer

Department of Software Engineering*
Е-mail: dfikt_ltn@ztu.edu.ua

I . I e f r e m o v
PhD, Associate Professor

Department of Software Engineering*
Е-mail: org_eyum@ztu.edu.ua

A . D y k y i
PhD, Associate Professor

Department of Economic Security, 	
Public Administration and Management*

Е-mail: anatoliy@ztu.edu.ua
P . Z a b r o d s k y y

PhD, Associate Professor
Department of Mechanics and Agroecosystems Engineering

Zhytomyr National Agroecological University
Staryi blvd., 7, Zhytomyr, Ukraine, 10008

E-mail: zabrm@gmail.com
*Zhytomyr Polytechnic State University

Chudnivska str., 103, Zhytomyr, Ukraine, 10005

Базуючись на розвитку iдеї пошуку в шири-
ну у дводольних графах та основних визначеннях
теорiї паросполучень, показано, що задача побу-
дови максимального паросполучення в довiльно-
му графi може бути зведена до його дводольного
випадку. Доведено, що кожному поточному паро-
сполученню в довiльному графi взаємно одно-
значно вiдповiдає паросполучення в дводольному
графi. Проiлюстровано, що жодний з поточних
розв’язкiв задачi побудови максимального паро-
сполучення в довiльному графi не втрачається
при переходi до iтерацiйної схеми побудови мак-
симального паросполучення у дводольному графi.

Для знаходження збiльшуючого шляху вiд-
носно фiксованого паросполучення потужностi k
запропоновано модифiкацiю вiдомого алгоритму
пошуку шляхiв з даної вершини у всi досяжнi вер-
шини довiльного графу. Роботу запропонованої
модифiкацiї проiлюстровано на прикладi.

На основi викладених iдей, доведених
тверджень та запропонованих алгоритмiв та
їх модифiкацiї побудовано алгоритм знаходжен-
ня максимального паросполучення з покращеною
часовою оцiнкою, порiвняно з вiдомим алгорит-
мом Едмонса, що має часову оцiнку складностi
O(n4). Основним недолiком алгоритму Едмонса є
використання трудомiсткої технiки стиснення
циклiв непарної довжини, якi називають «квiт-
ками», що робить алгоритм непридатним для
застосування в системах реального масшта-
бу часу. Iншi вiдомi алгоритми вiдрiзняються
вiд алгоритму Едмонса тiльки бiльш доскона-
лою органiзацiєю зберiгання даних та обчислень,
разом з тим зберiгаючи складнi дiї по виявленню i
упаковцi циклiв непарної довжини.

Запропонований пiдхiд переходу вiд довiльно-
го графу до дводольного графу дозволив уникнути
виникнення циклiв непарної довжини, що дозволи-
ло значно пiдвищити ефективнiсть алгоритму.
Подальше пiдвищення продуктивностi можли-
во за рахунок побудови паралельних версiй алго-
ритму i оптимальної органiзацiї зберiгання даних

Ключовi слова: паросполучення, максимальне
паросполучення, дводольний граф, збiльшуючий
шлях, задача про призначення

UDC 519.161

DOI: 10.15587/1729-4061.2019.188104

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (102) 2019

22

In [4], a solution to MP is used as an element of the
algorithm to obtain an approximate solution to the sales-
man’s problem. The downside of the algorithm from [4]
is its computational complexity, specifically O(n4), which
makes the algorithm almost unusable for real-time use. The
relevant area of research is to derive a faster algorithm for
solving MP, which would speed up the implementation of
algorithm [4].

A solution to MP could also be used as a lower bound in
the branch and boundary methods used to solve closed-route
problems. In most implementations of the branch and bound-
ary method, the vertices of the solution tree are matched
with a distance matrix that excludes some of the elements, or
some rows and columns are removed. Thus, another import-
ant area of research is the construction of an algorithm that,
based on an existing solution to MP, finds a new solution to
MP for the matrix, which differs from the original one by the
absence of some elements.

2. Literature review and problem statement

Paper [1] summarizes the problems on combinatorial
optimization related to the construction of vehicle routes.
It shows that most routing problems are NP-complete prob-
lems of discrete optimization, deriving solutions to which
employs sorting methods. This is the method that is consid-
ered in work [2], which proposes the use of the branch and
boundary method to solve various combinatorial problems
on processing big data. Study [3] proposes the use of relax-
ations as the elements of algorithms and methods for solving
the problems on building closed routes, including within the
methods of branches and boundaries. Work [4] proposes to
use the 2-factor of the minimum weight as a relaxation to the
salesman problem within the branch and boundary method.
Article [5] reports analysis of the approximate algorithm for
solving the metric problem of a salesman with an accuracy
estimate of 1.5, using the algorithm for obtaining the perfect
matching combination.

The above works [1–5] suggest solving auxiliary sub-
problems in order to speed up calculations in accurate, and
improve accuracy in approximate, methods for solving the
problems on building closed routes, at the steps of the rele-
vant algorithms. At the same time, the cited studies do not
address issues related to better implementations or lower
computational complexity of existing algorithms, which
could speed up the construction of closed routes.

A subset of the graph’s edges, which do not have common
vertices, is termed the M matching [6]. An MP implies find-
ing the Mmax matching of maximal power (maximal match-
ing) in a given graph H=(V, E) with the set of vertices V and
the set of edges U).

Paper [7] established that MPs belong to the class of
effectively solvable tasks by proposing the algorithm to
solving MP with a temporal assessment of complexity O(n4),
|V |=n, when using a labor-intensive procedure for compress-
ing certain odd cycles ‒ flowers. Other known Mmax deriva-
tion algorithms, whose authors are listed in [8, 9], differ from
the algorithm described in [7] only by a better organization
of memory and computation, while maintaining the difficult
actions to detect and “cut” flowers. Work [10] gives the
statement of an assignment problem with additional conflict
constraints, which comes down to the task of finding the
maximum perfect matching of minimum cost. The problem

under consideration is solved by a labor-intensive algorithm,
as well as a salesman problem’s variant, which is considered
in [11], that uses the search for matching in the graph. The
complexity of solving the specified problems is related to the
presence of flowers in the graph [8].

A flower is a simple cycle of odd length with 2k+1 ver-
tices, containing k matching edges [7]. Flowers are not
included in a bipartite graph, therefore, for a bipartite graph
the task on finding the maximum matching is significantly
simplified. In addition, a flower in an arbitrary graph H is
determined with respect to a certain fixed M matching as a
subgraph with the maximum density of the edges forming a
subset MM ′ ⊆ [7]. Obviously, the less matching power at
which activities start aimed at increasing it, the fewer flow-
ers are found in H. If |M |=1, there are no flowers in H, or all
the flowers are the cycles with three vertices and a common
edge of M matching (buds).

The methods discussed in the above studies that are
related to the construction of prolonged paths include ad-
ditional steps to pack the flowers. This is because the algo-
rithms listed in papers [3, 5, 7, 8] are performed on arbitrary
graphs that allow the existence of odd-length cycles. There-
fore, a transition to a bipartite graph would make it possible
to avoid the evolution of flowers, and, as a result, could give
an opportunity to improve the speed of the algorithm.

Our considerations suggest it must be a relevant idea
worth considering to find the maximum matching in arbi-
trary graph H=(V, U) by using the simpler structure of a
bipartite graph D=(X, Y, E). In a bipartite graph, D under
X and Y denotes the sets of vertices, |X |=|Y |=|V |=n, E ‒ the
set of edges (), ,i j ,i XÎ .j YÎ In D (), ,i j EÎ if { }, ,i jv v UÎ

,i j¹ { }, 1, 2, , ,i j nÎ  |E |=2|U |, in H.

3. The aim and objectives of the study

The aim of this study is to develop an algorithm for solv-
ing an MP, which derives a solution to the MP over a time
outperforming the existing algorithms for solving an MP.

To accomplish the aim, the following tasks have been set:
– to reduce the problem on matching, solved on an arbi-

trary graph, to a bipartite case and to justify the correctness
of such a reduction;

– to devise and substantiate the linear procedure of
building a prolonged path in a bipartite graph relative to the
fixed matching;

– to suggest an algorithm for deriving the maximum
matching in an arbitrary graph over a quadratic time.

4. Reducing the problem to a bipartite case

Designate []ij nh and []ij nd ‒ the adjacency matrices of,
respectively, graphs H and D: hij=1, if in H the vertex vi is
adjacent to the vertex vj and hij=0 otherwise; dij=1, if the
vertex i XÎ in D is adjacent to the vertex j YÎ and dij=0
otherwise. It follows from the match between matrices [hij]n
and [dij]n that if a solution to MP was built for D, the solution
is built for H, too.

In graph H, the edge {v, u} of the M matching is denoted
[v, u]. In it, the vertex u is the partner of the vertex v. Edges
that are not included in a matching are called free. The ver-
tex, which belongs to the edge of the matching, is defined
as saturated. The rest of the graph’s vertices are termed

23

Mathematics and cybernetics – applied aspects

unsaturated or free. The power of the maximum matching of
graph H with n vertices is limited by the magnitude / 2 .n  
A simple path in graph H is called alternating relative to M if
the edges of the path through one are present in M [6–8]. An
alternating path, which begins and ends with edges that do
not belong to the M matching, is termed increasing relative
to the M matching.

We shall define the arbitrary edge {vi, vj} taken in H as
the original matching M={[vi, vj]}. Then, if |V |=|U |=3, then
M is the solution to the MP. Assume |V |=4, and the graph H
includes a single cycle of odd length. Obviously, in this case,
the number of edges |U | is minimal and equals 4. Graph Hmin
of four vertices and four edges, forming the odd cycle Z, is
shown in Fig. 1, a). If [vi, vj]ÎZ, i, jÎ{1, 2, 3, 4}, then Z is a
bud in graph Hmin (Fig. 1, b). Otherwise, M={[vi, vj]} does not
form a bud (Fig. 1, c). In Fig. 1, and all the following figures,
the edges of matching are represented by thickened lines. It
is clear from Fig. 1 that Mmax is derived either by adding, to
M={[vi, vj]}, an edge that has no common vertices with edge
[vi, vj] (Fig. 1, a) or by building, from any free vertex (v1 or
v4) (Fig. 1, b), the prolonged path relative to M.

a b

c	
Fig. 1. Graph Hmin of four vertices and four edges forming

the odd cycle of Z: a – Mmax is derived by adding, to 	
M={[vi, vj]}, an edge that has no common vertices with edge

[vi, vj]; b – [vi, vj]ÎZ, i, jÎ{1, 2, 3, 4}, then Z is the bud in
graph Hmin; c – M={[vi, vj]} does not form a bud

Each vertex vkÎV of graph H will be represented by a pair
of vertices (ik, jk) of the bipartite graph D=(X, Y, E), where
ikÎX is the beginning of edge (ik, jl)ÎE, and jkÎY is the end
of edge (im, jk)ÎE. Then, in D, any prolonged path relative
to a fixed matching begins in some free vertex ir and ends in
some loose vertex , .sj r s¹ In graph H, it is matched with a
path from vr to vs. Obviously, any technique for building a
maximal matching in the bipartite graph D, which is simul-
taneously a solution to the MP for arbitrary graph H, does
not imply flower detection activities. Fig. 2, a shows graph
Dmin, built based on graph Hmin, in which the matching M=
={[v2, v3]} forms bud (v1, v3, v2, v1) (Fig. 1b). In Dmin, the
bud is represented by a path from i1 to j1, composed of edges
(i1, j3), [i2, j3], (i2, j1). The beginning and end of the path,
which increases the power {[i2, j3]} by unity, is, respectively,
the vertex i4 and j1. This path includes edges (i4, j3), [i2, j3],
(i2, j1), which determine the matching {[i2, j1], [i4, j3]} (Fig. 2, b),
which in graph Hmin is matched with the maximal matching
{[v2, v1], [v4, v3]}.

Thus, it has been shown that the problem on finding the
maximal matching in arbitrary graph H=(V, U) could be
reduced to the problem on finding the maximal matching on

the bipartite graph D=(X, Y, E). In the bipartite graph D, X
and Y denote the sets of vertices of graph D, |X |=|Y |=|V |=n,
E is the set of edges (), ,i j ,i XÎ .j YÎ In D (), ,i j EÎ if
{ }, ,i jv v UÎ ,i j¹ { }, 1, 2, , ,i j nÎ  |E |=2|U | in H.

 a

b

Fig. 2. Graph Dmin, built on graph: 	
a – matching M={[v2, v3]} forms a bud (v1, v3, v2, v1); 	

b – the beginning and end of the path that increases the
power {[i2, j3]} by unity, are respectively, vertices i4 and
j1. This path includes edges (i4, j3), [i2, j3], (i2, j1), which

determine the matching {[i2, j1], [i4, j3]}

5. Justification of mutual match between matchings in
arbitrary and bipartite graphs

Let in the bipartite graph D=(X, Y, E), |X |=|Y |=n≥6 be
the fixed matching (),M D () 2,M D ≥ corresponding to the
M matching in graph H. M(D) transforms into a matching

() ()M D M D P= ⊕′ of power () () 1M D M D== +′ as soon
as there is a prolonged path p relative to (),M D P is the set
of edges along the path.

Statement 1. Each current matching  in the arbitrary
graph H is mutually unambiguously matched with a match-
ing M(D) in the bipartite graph D.

Proof. Suppose H contains a matching

[] [] []{ }2 3 4 5 2 2 1, , , , , , ,k kM v v v v v v += 

and the path (v1, v2, v3, …, v2k, v2k+1, v2k+2) prolonged relative
to M. Assume that D, built from H, includes no any alternat-
ing path (j1, j2, j3, …, j2k, j2k+1, j2k+2). However, building graph
D implies the inclusion of edges ()1 2, ,i j []2 3, ,i j …, []2 2 1, ,k ki j +
()2 1 2 2,k ki j+ + and edges ()2 1, ,i j ()3 2, ,i j …, ()2 2 2 1, ,k ki j+ + contain-
ing a combined prolonged path (j2k+2, j2k+1, j2k, …, j3, j2, j1)
from the vertex 2 2ki + to the vertex 1j relative to matching

() [] [] []{ }2 3 4 5 2 2 1, , , , , , ,k kM D i j i j i j += 

which corresponds to M in graph H. Proof is completed.
The proof of statement 1 indicates that none of the current

solutions M in the arbitrary graph H is lost when moving to the
iterative scheme for building Mmax(D) in the bipartite graph D.

6. Development of a linear procedure for building
a prolonged path in a bipartite graph relative to

the fixed matching

Let the matching () []{ }, | 1, ,k l lM D i j l k= = be built in
graph D, where li is the beginning lj is the end of the l-th

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (102) 2019

24

edge, / 2 1,k n< -   ,l li j¹ { | 1, }, k lI i l k= = { | 1, }k lJ j l k= = are
the subsets of the saturated vertices of sets X and Y, respec-
tively. In M(D), denote via lj YÎ the mapping of beginning

li of edge [,],l li j li XÎ is the mapping of end jl of this edge,
(), ,l li j is the subset of mappings of vertices ,kJ

{ }1, k lJ j l k= =

is the subset of mappings of vertices Ik.
To determine whether the matching Mk(D) is maximal or

is converted into the matching Mk+1(D), one finds the first
free vertex ()1 ,kk ki X I I+ Î - ∪ which is considered to be the
beginning of a prolonged path

1ki
p

+
relative to Mk(D) to any

free vertex { }()1 .s k k kj Y J J j +Î - ∪ ∪ Here 1kj + is the map-

ping of ik+1. If there is a path

1
,

ki
p

+
then

() ()
11 .

kk k iM D M D P
++ = ⊕

It is known that the matching M of graph H is maximum
then and only when there is no prolonged path in H relative
to M [6, 7]. Let the set ()kkX I I- ∪ includes not a single
vertex ir that connects it to at least one of the vertices from

the set { }()1k k kY J J j +- ∪ ∪ through the prolonged path in

relation to matching Mk(D). Mk(D) is then maximal.

Designate via
1ki

D
+

the subgraph of graph D, in which the
matching Mk(D) is fixed, all the vertices from the set k kI J∪
are removed, and each edge connecting the vertex 1kj + with
the vertex from Ik is removed (Fig. 3). It is required in sub-
graph

1ki
D

+
to either to build a path

1ki
p

+
or to establish that

is absent in
1
.

ki
D

+

Fig. 3. Subgraph of graph D, in which matching Mk(D) is

fixed, all the vertices from set k kI J∪ are removed, and
each edge connecting the vertex

1kj +
 to the vertex from Ik is

removed

We propose a PATH procedure for building
1ki

p
+
 in the

subgraph
1
.

ki
D

+
 The procedure is the modification of a known

algorithm for finding paths from a given vertex to all achiev-
able vertices of arbitrary graph H [6]. The PATH procedure
consists of the following steps:

S0. Q is the set of marked vertices, R is the set of un-
marked vertices; 1{ },kQ i += ,kR I= 1.l =

S1. If li RÎ and vertex lj is incident to a vertex from
Q, then put

{ }, lQ Q i= ∪ { };lR R i= -

if li is incident to vertex { }()1 ,s k kj Y J j +Î - ∪

then proceed

to step S4.
S2. l=l+1.
S3. If l>k, it is over: the subgraph

1ki
D

+
does not contain

path
1ki

p
+

 otherwise proceed to step S1.

S4. If the vertex 1,ki + is adjacent to vertex sj then it is
over: ()

1 1, ,
ki k sp i j

+ += otherwise the saturated vertex ;mi QÎ is
adjacent to vertex sj put ()

1
, ,

ki m sp i j
+

= 1.r =
S5. While li QÎ is adjacent to mj and 1l ki i +¹ put

()
1 1

, , ,
k ki l m ip i j p

+ +
= ,m li j= , m lj j= 1.r r= +

S6. Put

()
1 11, , .

k ki k m ip i j p
+ ++=

Statement 2. The PATH procedure correctly builds in
the subgraph

1ki
D

+
the prolonged path pk+1 relative to the

fixed matching of power k over time O(k).
Proof. Step S3 determines that subgraph

1ki
D

+
 has no path

1ki
p

+
 from the vertex 1ki + to any free vertex { }()1 ,s kj Y J j +Î - ∪

and step S4 finds edge (),m si j and the set of marked vertices

()1 1, ,..., .k mQ i i i+=

Assume
1ki

D
+

 does not contain
1
.

ki
p

+
 Then the induction

based on the number of cycle executions that forms steps S1–

S3 establishes that
1ki

D
+

 has no vertex { }()1 ,s kj Y J j +Î - ∪

incident to any vertex from Q.

On the other hand, let there be a found edge (), .m si j
in

1ki
D

+
 Then the induction for l yields a simple path

()1 1 1, , , , , , , , ,k l l m si j i j i i j+   which is built at step S5, from the
vertex sj to the vertex 1.ki +

The time of procedure execution is estimated based
on that in the worst case the maximum number of ver-
tices along path

1ki
p

+
 is k+1. To establish the existence of

path
1
,

ki
p

+
 one needs O(k) elementary activities. The same

amount of action will be needed to build it. Therefore, the
time complexity of the PATH procedure is estimated by
magnitude O(k). The proof is complete.

Example 1. Let us illustrate work of the PATH procedure
for subgraph

5
,iD depicted in Fig. 3. In

5i
D we defined the

current matching

() []{ }4 , | 1,4 ,l lM D i j l= = { }5 ,Q i=

{ }| 1,4 ,lR i l= = .l li j¹

 Since the marked vertex 5i is adjacent to vertices 2j and

3,j then we mark any of the vertices via 2i or 3i . Let it be the
vertex 2,i

{ }5 2, ,Q i i= { }1 3 4, , .R i i i=

Vertex 3j is incident to vertices 2i and 3,i between
which we shall choose, for example, 3.i Now,

{ }5 2 3, , ,Q i i i= { }1 4, .R i i=

The vertex 4,j adjacent to 4 ,i RÎ is connected to verti-
ces 2i QÎ and 3 .i QÎ After adding 4i to the current set of
marked vertices, we derive { }5 2 3 4, , , .Q i i i i= But, ()4 6,i j is

such an edge that { }()6 1k kj Y J j +Î - ∪ .

The path
5i

p from vertex 5i to vertex 6j is built as a
result of execution of steps S4‒S6. Since 6j is adjacent to

4,i we put ()
5 4 6, ,ip i j= 1.r = The vertex 2i is adjacent to 4,j

 1 5kj j  1j 2j 3j 4j 6sj j 7qj j

 1 5ki i  2i 1i 3i 4i si 7qi i

25

Mathematics and cybernetics – applied aspects

therefore ()
5 2 4 4 6, , , ,ip i j i j= The vertex 3i is adjacent to 2,j

therefore, ()
5 3 2 2 4 4 6, , , , , ,ip i j i j i j= 3.r = Since 5i is incident

to 3,i then the desired path ()
5 5 3 3 2 2 4 4 6, , , , , , , .ip i j i j i j i j=

7. Algorithm for finding the maximal matching

Our considerations are detailed in the description of the
following algorithm.

S0. The algorithm for finding in the arbitrary graph
H=(V, U) the maximal matching Mmax, [hij]n is the sym-
metrical adjacency matrices of graph H. The solution Mmax
is mutually unambiguously consistent with the maximal
matching

() []{ }max , | , 1,l l l lM D i j i j l k= ¹ =

in a bipartite graph D=(X, Y, E), in which X, Y are the sets
of vertices, 4,X Y n= = ≥ E is the set of edges, { }, ,i j EÎ if

{ }, ,i jv v UÎ ,i j¹ { } , 1, 2, ..., ,i j nÎ 2 .E U=

S1. As a result of the application of heuristics with a tem-
poral difficulty estimate not higher than O(n2), find in [hij]n
the original matching

{ }, | 1, ,
l lk i jM v v l k = = 

where li is the number of the initial vertex, and lj is the
number of the final vertex of edge , ,

l li jv v   il<jl.

() []{ }, | 1,k l lM D i j l k= =

is the matching in a bipartite graph D corresponding to Mk.

{ }| 1, ,k lI i l k= = { }| 1, ,k lJ j l k= = { }| 1, ,k lI j l k X= = Ì

{ }| 1, ,k lJ j l k Y= = Ì (),k kR X I I= - ∪ ().k kS Y J J= - ∪

If / 2 ,k n=    then Mk(D) is the matching corresponding
to Mmax in H.

S2. Form a subgraph Dk of graph D that includes Mk(D)
and all free edges with initial vertices in kI and final verti-
ces in ; 2 1.kJ r k= +

S3. k=k+1.
S4. Identify the subgraph

rxD of graph D by adding to

1kD - all the free edges linking the vertex rx RÎ to vertices
in kJ and all the free edges with the initial vertex in kI and
a final vertex in { },rS y- .rry x=

S5. Perform the PATH procedure to find in the subgraph

rxD the prolonged path
rxp relative to matching ()1kM D- to

the vertex { },s rj S yÎ - achievable from the vertex .rx
S6. If the path ,

rxp is built, then

() ()1 ,
rk k xM D M D P-= ⊕

otherwise proceed to step S8.
S7. If / 2 ,k n<    then

{ }1 ,k k rI I x-= ∪ { }1 ,k k sJ J j-= ∪ { }1 ,k k sI I j X-= ∪ Ì

,ssj i= { }1 , rk kJ J y Y-= ∪ Ì ,rry x=

{ }, ,r sR R x j X= - Ì { }, ,s rS S j y Y= - Ì

where rx XÎ is the beginning, and sj YÎ is the end of path
;

rxp proceed to step S2, otherwise ()kM D

is the matching

that corresponds to Mmax in graph H.
S8. { }, 1;rR R x r r= - = + if ,r n≤ proceed to step S4,

otherwise ()1kM D- is the matching corresponding to
Mmax in H.

Theorem. The maximal matching in an arbitrary n-vertex
graph H is correctly derived over time O(n2).

Proof. Because the bipartite graph D does not contain
odd-length cycles, the reduction of MP in the arbitrary
graph H to a bipartite case excludes flower detection and
removal operations. By building, the subgraph

rxD contains
each edge corresponding in graph H to that that may belong
to the prolonged path relative to matching ()1 ,kM D- hence,
if graph H contains 1,kM - then, after building at step S5 a
path

rxp , at steps S6‒S7 we determine the matching Mk(D).
Excluding a vertex rx from the list of free vertices R

when there is no ,
rxp in the subgraph

rxD

is based on the

consequence from the theorem proven in [7]. If at some stage
of the algorithm for solving MP there is no prolonged path
from vertex v, then v cannot be considered as the starting
vertex of the prolonged path at all other stages.

The algorithm terminates at / 2k n≤    either after
constructing Mk(D), when {0,1},R Î or after constructing

()1 ,kM D- when there is no path .
rxp from each vertex rx RÎ .

In the first case,

() / 2 ,kM D n=   

in the second case, the necessary and sufficient condition is
met under which the matching ()1kM D- is maximal.

Let us assess the time complexity of the algorithm pre-
sented.

Finding at step S1 in graph H the original matching
Mk could be performed over time O(n2), for example, by
choosing each time in the matrix [hij]n the element hij and
by excluding the rows and columns with numbers i and j.
The resulting matching leaves in graph H not a single edge
incident to two free vertices. The bipartite graph D, which
includes the matching Mk(D), is formed over n2 references to
the elements of matrix [] .ij nh Therefore, step S1 is executed
over time O(n2).

The starting phase for solving MP is step S2 that builds
the subgraph Dk, in which the matching Mk(D) corresponds
to the original matching M in graph H. The first subgraph

, ,
rx rD x RÎ derived from ,kD transforms to 1,kD + if

rxD
includes the path .

rxp Building kD requires no more than
k(k–1) comparison operations with elements from the matrix
[hij]n. To assess the laboriousness in solving MP, it would
suffice to consider two extreme cases of the algorithm’s
termination.

In a first case, the algorithm terminates when the
matching Mk(D) is returned, corresponding to the original
matching Mk in graph H. Then each subgraph , ,

rx rD x RÎ
2 ,R n k= - does not include the prolonged path

rxp rela-
tive to Mk(D). The subgraph

rxD is determined by attach-
ing to kD not more than k edges (), ,r lx j ,l kj JÎ and not
more than ()2 1k n k- - edges (), ,l si j , l ki IÎ { },s rj S yÎ -

.r ry x= Consequently, it takes a time of k(n–2k)2+c(k+2)
(n–2k)+k(k–1), c<k, to check the optimality of the initial
solution Mk(D). Since the labor-intensity of building Mk(D)
is limited by magnitude O(n2), then the time complexity of
the algorithm in the considered case is estimated by the same
magnitude.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (102) 2019

26

In a second case, the algorithm converts the original
matching Mk(D) into a matching of power / 2 .n k>   La-
bor-intensity of building Mk+1(D) is estimated by magnitude

1,kt + which includes k(k–1) and k+k(n–2k–1) elementary
actions to form graphs kD and ,

rxD respectively, as well as
c(k+2) operations to build path

rxp and ()1c k +′ operations
to execute step S7:

() ()
() ()

1 1 2

2 1 ,
kt k k k n k

c k c k
+ = - + - +

+ + + +′

.c k<′

It is obvious that the construction of ()2kM D+ could be
done at labor-intensity

() ()()
() ()

2 1 2 1

3 2 ,

kt k n k

c k c k

+ = + - + +

+ + + +′

and construction of (),mM D 3 / 2 ,k m n+ ≤ ≤    at labor-in-
tensity

() ()() ()1 2 1 1 .mt m n m c m c m= - - - + + + ′

The total cost of converting the matching Mk(D) into a
matching of power / 2n   is estimated by magnitude

() ()
/2 /2 /2

1 1 1

1 1 ,
n n n

m
m k m k m k

T k k t c m c m
          

= + = + = +

= - + + + + ′∑ ∑ ∑

where

() 21 ,k k n- <

() ()
() ()

/2 /2 1

1

2

2 / 2

2 ,

n n

m
m k m k

t m n m n k

k n k O n

-      

= + =

= - ≤ - ´  

´ - =

∑ ∑

()
/2

2

1

1 ,
n

m k

c m cn
  

= +

+ <∑

/2
2

1

.
n

m k

c m c n
  

= +

<′ ′∑

Since the time to build the original matching Mk(D) is
limited by the magnitude O(n2) and T=O(n2), then in this
case, too, the algorithm solves the MP at labor-intensity
O(n2). The proof of the theorem is complete.

Example 2. Fig. 4, a shows the graph H=(V, U), for which,
by applying the algorithm from [7] set out in [6], the maxi-
mal matching was derived

[] [] [] []
[] [] [] []

1 2 3 4 5 6 7 16

max max

8 9 10 17 11 12 13 14

, , , , , , , ,
, | | 8.

, , , , , , ,

v v v v v v v v
M M

v v v v v v v v

  = = 
  

The presented algorithm finds a matching of the same
power (Fig. 4, b).

At step S1, a rapid heuristic builds the original matching
in matrix 17[]ijh

[] [] []
[] [] []

2 3 4 6 8 9

6

10 11 12 13 14 16

, , , , , ,
;

, , , , ,

v v v v v v
M

v v v v v v

  =  
  

() [] [] []
[] [] []

2 3 4 6 8 9

6

10 11 12 13 14 16

, , , , , ,

, , , , ,

i j i j i j
M D

i j i j i j

  =  
  

‒ corresponding matching in the bipartite graph D;

{ }6 2 4 8 10 12 14, , , , , ,I i i i i i i=

{ }6 3 6 9 11 13 16, , , , , ,J j j j j j j=

{ }6 3 6 9 11 13 16 , , , , , ,I j j j j j j X= Ì

{ }2 4 8 10 12 146 , , , , , ,J i i i i i i Y= Ì

{ }1 1 5 7 15 17, , , , ,R i i i i i=

{ }1 5 7 15 17, , , , .S j j j j j=

6 / 2 8.k n= < =  

a

b
Fig. 4. Graph H=(V, U): a – maximal matching derived by 	
the Edmons algorithm; b – maximal matching derived by 	

the proposed algorithm

At step S2, a subgraph 6D is formed (Fig. 5), 13,r =
7.k = Step S4 builds a subgraph

13
,xD 13 1 ,x i R= Î in which

the vertex 1i is isolated. Therefore, the PATH procedure es-
tablishes that there is no path from 13x to the vertex of the
set { }13 ,S y- 13 1;y j= { }5 7 15 17, , , ,R i i i i= r=14, in the subgraph

27

Mathematics and cybernetics – applied aspects

13xD . Now a subgraph 14D is built for the vertex 14 5.x i= 14D
is shown in Fig. 6. The PATH procedure builds the pro-
longed path ()

14 5 5 6 4 15, , ,x iP p i j i j= = relative to the matching
()6M D and, therefore, determines

() ()
[] [] []
[] [] []

() [] (){ }
() [] (){ }

[] [] []
[] [] []

57 6

2 3 4 6 8 9

10 11 12 13 14 16

5 6 4 6 4 15

5 6 4 6 4 15

2 3 4 6 8 9

10 11 12 13 14 16

, , , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , , ,

, , , , ,

iM D M D P

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i

= ⊕ =

    -   = ∪   
 

-  
 -
  ∪ =   -   

    

=
[] [] [] []
[] [] []

2 3 4 15 5 6 8 9

10 11 12 13 14 16

, , , , , , , ,
.

, , , , ,

j i j i j i j

i j i j i j

  
 
  

At step S7 7 / 2 8, k n= < =  

{ }7 2 4 5 8 10 12 14, , , , , , ,I i i i i i i i=

{ }7 3 6 9 11 13 15 16, , , , , , ,J j j j j j j j=

7 7 ,I J X= Ì 77 ,J I Y= Ì { }7 17 , ,R i i= { }7 17 , .S j j=

Subgraph 7D is shown in Fig. 7, 15,r = and the subgraph

15 15 7,xD x i= x15=i7 – in Fig. 8; 8.k =

Fig. 5. Subgraph D6 formed at step S2

Fig. 7. Subgraph D7

Fig. 8. Subgraph Dx15
, x15=i7

Thus, the PATH procedure builds, in the subgraph
15

,xD
the prolonged path ()

15 15 7 11 10 17, , ,xp x i j i j= = relative to the
matching 7()M D from the vertex 7i to the vertex in the set

17{ }S j= and is derived

() [] [] [] []
[] [] [] []

2 3 4 15 5 6 7 11

8

8 9 10 17 12 13 14 16

, , , , , , , ,
,

, , , , , , ,

i j i j i j i j
M D

i j i j i j i j

  =  
  

coinciding with an accuracy to designations with the match-
ing max 8,M M= shown in Fig. 4, b).

8. Discussion of results of constructing
an algorithm with a quadratic time complexity to find

the maximal matching

Known methods from [5–8] make it possible to derive a
solution to the similar problem over time О(n4). The algorithm
for solving the matching problem outlined in work [8] could be
implemented as a computer software with a temporal complex-
ity of О(n3) provided data structures are optimally utilized.

Existing algorithms from studies [5–8] are based on the
execution of the algorithm for bypassing the graph in width,
at the steps of which the detection and packaging of flowers
are made (cycles of odd length).

The results reported in our article provide a solution to
the matching problem over time О(n2). Winning in speed is
achieved by moving from an arbitrary to a bipartite graph,
on which there is no need to find and pack flowers. Thus, the
algorithm that we proposed would provide for the accelera-
tion in solving the problem by at least n times.

However, in practice, there is often a need to solve the prob-
lem on a weighted graph. In this case, one should talk about
the problem of weighted matching. The approach proposed in

this article cannot be applied directly to solve the
problem of weighted matching. Therefore, we plan
to advance the ideas proposed in the current paper
to build an algorithm to solve the specified problem.

Solving a problem of weighted matching could
be used as a lower estimate of the cost in accurate
and approximate methods for finding Hamilton
cycles on graphs and routing problems, which are
reduced to the problem of a salesman, which would
make it possible to bring down computational costs
and speed up the time it takes to find solutions to
these problems.

9. Conclusions

1. Reducing the problem on building the maximal
matching, solved in an arbitrary graph, to the correspond-
ing bipartite variant makes it possible to avoid the need
to process flowers [7] and reduce the computational com-

Fig. 6. Subgraph D14 for vertex x14=i5

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (102) 2019

28

plexity of the algorithm to solve an MP. By reducing the
complexity of the algorithm, the speed of solving an MP
is increased compared to known methods. The proof of
mutually unambiguous correspondence between a match-
ing in the arbitrary graph and the matching in a bipartite
graph allows us to assert the correctness of the proposed
reduction.

2. The proposed PATH procedure with a linear time
assessment of complexity makes it possible to build a pro-
longed path in a bipartite graph relative to the current
matching. The procedure greatly simplifies and, as a result,

accelerates the derivation of a new matching, which has one
edge more than the original.

3. Based on the iterative execution of the PATH proce-
dure, we have proposed and substantiated an algorithm for
building the maximal matching, which has a quadratic tem-
poral complexity. Solving an MP by proposed algorithm as a
relaxation within the branch and boundary method makes it
possible to save computing resources of computers and serv-
ers used for computations and, as a result, to gain a win in the
speed of building accurate solutions to certain NP-complete
routing problems.

References

1.	 Toth, P., Vigo, D. (Eds.) (2014). Vehicle Routing: Problems, Methods, and Applications. SIAM. doi: https://doi.org/10.1137/

1.9781611973594

2.	 Brusco, M. J., Stahl, S. (2005). Branch-and-Bound Applications in Combinatorial Data Analysis. Springer. doi: https://doi.org/

10.1007/0-387-28810-4

3.	 Coste, P., Lodi, A., Pesant, G. (2019). Using Cost-Based Solution Densities from TSP Relaxations to Solve Routing Problems.

Lecture Notes in Computer Science, 182–191. doi: https://doi.org/10.1007/978-3-030-19212-9_12

4.	 Matsiy, O. B., Morozov, A. V., Panishev, A. V. (2016). Fast Algorithm to Find 2-Factor of Minimum Weight. Cybernetics and Systems

Analysis, 52 (3), 467–474. doi: https://doi.org/10.1007/s10559-016-9847-9

5.	 Zenklusen, R. (2019). A 1.5-Approximation for Path TSP. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, 1539–1549. doi: https://doi.org/10.1137/1.9781611975482.93

6.	 Papadimitriu, H., Stayglits, K. (1985). Kombinatornaya optimizatsiya: Algoritmy i slozhnost’. Moscow: Mir, 510.

7.	 Edmonds, J. (1965). Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17, 449–467. doi: https://doi.org/10.4153/cjm-

1965-045-4

8.	 Lovas, L., Plammer, M. (1998). Prikladnye zadachi teorii grafov. Teoriya parosochetaniy v matematike, fizike, himii. Moscow:

Mir, 653.

9.	 Sharifov, F. A. (2008). Sovershennye parosochetaniya i rasshirenniy polimatroid. Kibernetika i sistemniy analiz, 3, 173–179.

10.	 Öncan, T., Şuvak, Z., Akyüz, M. H., Altınel, İ. K. (2019). Assignment problem with conflicts. Computers & Operations Research, 111,

214–229. doi: https://doi.org/10.1016/j.cor.2019.07.001

11.	 Naser, H., Awad, W. S., El-Alfy, E.-S. M. (2019). A multi-matching approximation algorithm for Symmetric Traveling Salesman

Problem. Journal of Intelligent & Fuzzy Systems, 36 (3), 2285–2295. doi: https://doi.org/10.3233/jifs169939

