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1. Introduction

Numerous problems, known as routing tasks, are char-
acterized by an ever-expanding list of practical applications, 
occupying a traditionally important place in the study of 
combinatorial optimization problems. The routing task in a 
broad sense is the problem on current planning, the process 
of which involves the selection of movable objects and the de-
termination of trajectories and schedules of their movement.

The tasks on routing in road transportation, as well as 
the methods to solve them, are studied within the framework 
of a scientific field ‒ transport logistics, whose mathematical 
apparatus is represented by the theory of graphs and the study 
of operations. Most routing tasks are NP-complete [1] and 

can be solved only by combinatorial sorting methods [1, 2]. 
These methods often require the use of significant computing 
resources and, as a result, a long time to solve the problem. 

The most commonly used methods for solving NP-com-
plete routing problems are the branch and boundary meth-
ods [2], which employ relaxation to calculate the lower and 
upper bounds. Relaxation is generally understood as a com-
binatorial optimization problem, the set of whose valid solu-
tions are injected with a set of valid solutions to the original 
problem [3]. Typically, the original NP-problem is complete, 
and its relaxation is solved over a polynomial time [3].

One of the problems that can be used as a relaxation to an 
NP-complete salesman problem [3, 4] is the problem about 
matching (MP).
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Базуючись на розвитку iдеї пошуку в шири-
ну у дводольних графах та основних визначеннях 
теорiї паросполучень, показано, що задача побу-
дови максимального паросполучення в довiльно-
му графi може бути зведена до його дводольного 
випадку. Доведено, що кожному поточному паро-
сполученню в довiльному графi взаємно одно-
значно вiдповiдає паросполучення в дводольному 
графi. Проiлюстровано, що жодний з поточних 
розв’язкiв задачi побудови максимального паро-
сполучення в довiльному графi не втрачається 
при переходi до iтерацiйної схеми побудови мак-
симального паросполучення у дводольному графi.

Для знаходження збiльшуючого шляху вiд-
носно фiксованого паросполучення потужностi k 
запропоновано модифiкацiю вiдомого алгоритму 
пошуку шляхiв з даної вершини у всi досяжнi вер-
шини довiльного графу. Роботу запропонованої 
модифiкацiї проiлюстровано на прикладi.

На основi викладених iдей, доведених 
тверджень та запропонованих алгоритмiв та 
їх модифiкацiї побудовано алгоритм знаходжен-
ня максимального паросполучення з покращеною 
часовою оцiнкою, порiвняно з вiдомим алгорит-
мом Едмонса, що має часову оцiнку складностi 
O(n4). Основним недолiком алгоритму Едмонса є 
використання трудомiсткої технiки стиснення 
циклiв непарної довжини, якi називають «квiт-
ками», що робить алгоритм непридатним для 
застосування в системах реального масшта-
бу часу. Iншi вiдомi алгоритми вiдрiзняються 
вiд алгоритму Едмонса тiльки бiльш доскона-
лою органiзацiєю зберiгання даних та обчислень, 
разом з тим зберiгаючи складнi дiї по виявленню i 
упаковцi циклiв непарної довжини.

Запропонований пiдхiд переходу вiд довiльно-
го графу до дводольного графу дозволив уникнути 
виникнення циклiв непарної довжини, що дозволи-
ло значно пiдвищити ефективнiсть алгоритму. 
Подальше пiдвищення продуктивностi можли-
во за рахунок побудови паралельних версiй алго-
ритму i оптимальної органiзацiї зберiгання даних

Ключовi слова: паросполучення, максимальне 
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In [4], a solution to MP is used as an element of the 
algorithm to obtain an approximate solution to the sales-
man’s problem. The downside of the algorithm from [4] 
is its computational complexity, specifically O(n4), which 
makes the algorithm almost unusable for real-time use. The 
relevant area of research is to derive a faster algorithm for 
solving MP, which would speed up the implementation of 
algorithm [4].

A solution to MP could also be used as a lower bound in 
the branch and boundary methods used to solve closed-route 
problems. In most implementations of the branch and bound-
ary method, the vertices of the solution tree are matched 
with a distance matrix that excludes some of the elements, or 
some rows and columns are removed. Thus, another import-
ant area of research is the construction of an algorithm that, 
based on an existing solution to MP, finds a new solution to 
MP for the matrix, which differs from the original one by the 
absence of some elements.

2. Literature review and problem statement

Paper [1] summarizes the problems on combinatorial 
optimization related to the construction of vehicle routes. 
It shows that most routing problems are NP-complete prob-
lems of discrete optimization, deriving solutions to which 
employs sorting methods. This is the method that is consid-
ered in work [2], which proposes the use of the branch and 
boundary method to solve various combinatorial problems 
on processing big data. Study [3] proposes the use of relax-
ations as the elements of algorithms and methods for solving 
the problems on building closed routes, including within the 
methods of branches and boundaries. Work [4] proposes to 
use the 2-factor of the minimum weight as a relaxation to the 
salesman problem within the branch and boundary method. 
Article [5] reports analysis of the approximate algorithm for 
solving the metric problem of a salesman with an accuracy 
estimate of 1.5, using the algorithm for obtaining the perfect 
matching combination.

The above works [1–5] suggest solving auxiliary sub-
problems in order to speed up calculations in accurate, and 
improve accuracy in approximate, methods for solving the 
problems on building closed routes, at the steps of the rele-
vant algorithms. At the same time, the cited studies do not 
address issues related to better implementations or lower 
computational complexity of existing algorithms, which 
could speed up the construction of closed routes.

A subset of the graph’s edges, which do not have common 
vertices, is termed the M matching [6]. An MP implies find-
ing the Mmax matching of maximal power (maximal match-
ing) in a given graph H=(V, E) with the set of vertices V and 
the set of edges U).

Paper [7] established that MPs belong to the class of 
effectively solvable tasks by proposing the algorithm to 
solving MP with a temporal assessment of complexity O(n4), 
|V |=n, when using a labor-intensive procedure for compress-
ing certain odd cycles ‒ flowers. Other known Mmax deriva-
tion algorithms, whose authors are listed in [8, 9], differ from 
the algorithm described in [7] only by a better organization 
of memory and computation, while maintaining the difficult 
actions to detect and “cut” flowers. Work [10] gives the 
statement of an assignment problem with additional conflict 
constraints, which comes down to the task of finding the 
maximum perfect matching of minimum cost. The problem 

under consideration is solved by a labor-intensive algorithm, 
as well as a salesman problem’s variant, which is considered 
in [11], that uses the search for matching in the graph. The 
complexity of solving the specified problems is related to the 
presence of flowers in the graph [8].

A flower is a simple cycle of odd length with 2k+1 ver-
tices, containing k matching edges [7]. Flowers are not 
included in a bipartite graph, therefore, for a bipartite graph 
the task on finding the maximum matching is significantly 
simplified. In addition, a flower in an arbitrary graph H is 
determined with respect to a certain fixed M matching as a 
subgraph with the maximum density of the edges forming a 
subset MM ′ ⊆  [7]. Obviously, the less matching power at 
which activities start aimed at increasing it, the fewer flow-
ers are found in H. If |M |=1, there are no flowers in H, or all 
the flowers are the cycles with three vertices and a common 
edge of M matching (buds).

The methods discussed in the above studies that are 
related to the construction of prolonged paths include ad-
ditional steps to pack the flowers. This is because the algo-
rithms listed in papers [3, 5, 7, 8] are performed on arbitrary 
graphs that allow the existence of odd-length cycles. There-
fore, a transition to a bipartite graph would make it possible 
to avoid the evolution of flowers, and, as a result, could give 
an opportunity to improve the speed of the algorithm.

Our considerations suggest it must be a relevant idea 
worth considering to find the maximum matching in arbi-
trary graph H=(V, U) by using the simpler structure of a 
bipartite graph D=(X, Y, E). In a bipartite graph, D under 
X and Y denotes the sets of vertices, |X |=|Y |=|V |=n, E ‒ the 
set of edges ( ), ,i j  ,i XÎ  .j YÎ  In D ( ), ,i j EÎ  if { }, ,i jv v UÎ  

,i j¹  { }, 1, 2, , ,i j nÎ   |E |=2|U |, in H.

3. The aim and objectives of the study

The aim of this study is to develop an algorithm for solv-
ing an MP, which derives a solution to the MP over a time 
outperforming the existing algorithms for solving an MP.

To accomplish the aim, the following tasks have been set:
– to reduce the problem on matching, solved on an arbi-

trary graph, to a bipartite case and to justify the correctness 
of such a reduction; 

– to devise and substantiate the linear procedure of 
building a prolonged path in a bipartite graph relative to the 
fixed matching; 

– to suggest an algorithm for deriving the maximum 
matching in an arbitrary graph over a quadratic time.

4. Reducing the problem to a bipartite case

Designate [ ]ij nh  and [ ]ij nd  ‒ the adjacency matrices of, 
respectively, graphs H and D: hij=1, if in H the vertex vi is 
adjacent to the vertex vj and hij=0 otherwise; dij=1, if the 
vertex i XÎ  in D is adjacent to the vertex j YÎ  and dij=0 
otherwise. It follows from the match between matrices [hij]n 
and [dij]n that if a solution to MP was built for D, the solution 
is built for H, too.

In graph H, the edge {v, u} of the M matching is denoted 
[v, u]. In it, the vertex u is the partner of the vertex v. Edges 
that are not included in a matching are called free. The ver-
tex, which belongs to the edge of the matching, is defined 
as saturated. The rest of the graph’s vertices are termed 
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unsaturated or free. The power of the maximum matching of 
graph H with n  vertices is limited by the magnitude / 2 .n    
A simple path in graph H is called alternating relative to M if 
the edges of the path through one are present in M [6–8]. An 
alternating path, which begins and ends with edges that do 
not belong to the M matching, is termed increasing relative 
to the M matching.

We shall define the arbitrary edge {vi, vj} taken in H as 
the original matching M={[vi, vj]}. Then, if |V |=|U |=3, then 
M is the solution to the MP. Assume |V |=4, and the graph H 
includes a single cycle of odd length. Obviously, in this case, 
the number of edges |U | is minimal and equals 4. Graph Hmin 
of four vertices and four edges, forming the odd cycle Z, is 
shown in Fig. 1, a). If [vi, vj]ÎZ, i, jÎ{1, 2, 3, 4}, then Z is a 
bud in graph Hmin (Fig. 1, b). Otherwise, M={[vi, vj]} does not 
form a bud (Fig. 1, c). In Fig. 1, and all the following figures, 
the edges of matching are represented by thickened lines. It 
is clear from Fig. 1 that Mmax is derived either by adding, to 
M={[vi, vj]}, an edge that has no common vertices with edge 
[vi, vj] (Fig. 1, a) or by building, from any free vertex (v1 or 
v4) (Fig. 1, b), the prolonged path relative to M.

a                        b  

c	
Fig. 1. Graph Hmin of four vertices and four edges forming 

the odd cycle of Z: a – Mmax is derived by adding, to 	
M={[vi, vj]}, an edge that has no common vertices with edge 

[vi, vj]; b – [vi, vj]ÎZ, i, jÎ{1, 2, 3, 4}, then Z is the bud in 
graph Hmin; c – M={[vi, vj]} does not form a bud

Each vertex vkÎV of graph H will be represented by a pair 
of vertices (ik, jk) of the bipartite graph D=(X, Y, E), where 
ikÎX is the beginning of edge (ik, jl)ÎE, and jkÎY is the end 
of edge (im, jk)ÎE. Then, in D, any prolonged path relative 
to a fixed matching begins in some free vertex ir and ends in 
some loose vertex , .sj r s¹  In graph H, it is matched with a 
path from vr to vs. Obviously, any technique for building a 
maximal matching in the bipartite graph D, which is simul-
taneously a solution to the MP for arbitrary graph H, does 
not imply flower detection activities. Fig. 2, a shows graph 
Dmin, built based on graph Hmin, in which the matching M= 
={[v2, v3]} forms bud (v1, v3, v2, v1) (Fig. 1b). In Dmin, the 
bud is represented by a path from i1 to j1, composed of edges  
(i1, j3), [i2, j3], (i2, j1). The beginning and end of the path, 
which increases the power {[i2, j3]} by unity, is, respectively, 
the vertex i4 and j1. This path includes edges (i4, j3), [i2, j3],  
(i2, j1), which determine the matching {[i2, j1], [i4, j3]} (Fig. 2, b), 
which in graph Hmin is matched with the maximal matching 
{[v2, v1], [v4, v3]}. 

Thus, it has been shown that the problem on finding the 
maximal matching in arbitrary graph H=(V, U) could be 
reduced to the problem on finding the maximal matching on 

the bipartite graph D=(X, Y, E). In the bipartite graph D, X 
and Y denote the sets of vertices of graph D, |X |=|Y |=|V |=n, 
E is the set of edges ( ), ,i j  ,i XÎ  .j YÎ  In D ( ), ,i j EÎ  if 
{ }, ,i jv v UÎ  ,i j¹  { }, 1, 2, , ,i j nÎ   |E |=2|U | in H.

 
 
 
 
 
 a
  

 
 
 
 
 
b 

Fig. 2. Graph Dmin, built on graph: 	
a – matching M={[v2, v3]} forms a bud (v1, v3, v2, v1); 	

b – the beginning and end of the path that increases the 
power {[i2, j3]} by unity, are respectively, vertices i4 and 
j1. This path includes edges (i4, j3), [i2, j3], (i2, j1), which 

determine the matching {[i2, j1], [i4, j3]}

5. Justification of mutual match between matchings in 
arbitrary and bipartite graphs

Let in the bipartite graph D=(X, Y, E), |X |=|Y |=n≥6 be 
the fixed matching ( ),M D  ( ) 2,M D ≥  corresponding to the 
M matching in graph H. M(D) transforms into a matching 

( ) ( )M D M D P= ⊕′  of power ( ) ( ) 1M D M D== +′  as soon 
as there is a prolonged path p  relative to ( ),M D  P is the set 
of edges along the path.

Statement 1. Each current matching   in the arbitrary 
graph H is mutually unambiguously matched with a match-
ing M(D) in the bipartite graph D. 

Proof. Suppose H contains a matching

[ ] [ ] [ ]{ }2 3 4 5 2 2 1, , , , , , ,k kM v v v v v v +=   

and the path (v1, v2, v3, …, v2k, v2k+1, v2k+2) prolonged relative 
to M. Assume that D, built from H, includes no any alternat-
ing path ( j1, j2, j3, …, j2k, j2k+1, j2k+2). However, building graph 
D implies the inclusion of edges ( )1 2, ,i j  [ ]2 3, ,i j …, [ ]2 2 1, ,k ki j +  
( )2 1 2 2,k ki j+ +  and edges ( )2 1, ,i j  ( )3 2, ,i j  …, ( )2 2 2 1, ,k ki j+ +  contain-
ing a combined prolonged path ( j2k+2, j2k+1, j2k, …, j3, j2, j1) 
from the vertex 2 2ki +  to the vertex 1j  relative to matching

( ) [ ] [ ] [ ]{ }2 3 4 5 2 2 1, , , , , , ,k kM D i j i j i j += 

which corresponds to M in graph H. Proof is completed. 
The proof of statement 1 indicates that none of the current 

solutions M in the arbitrary graph H is lost when moving to the 
iterative scheme for building Mmax(D) in the bipartite graph D.

6. Development of a linear procedure for building  
a prolonged path in a bipartite graph relative to  

the fixed matching

Let the matching ( ) [ ]{ }, | 1, ,k l lM D i j l k= =  be built in 
graph D, where li  is the beginning lj  is the end of the l-th 
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edge, / 2 1,k n< -    ,l li j¹  { | 1, }, k lI i l k= =  { | 1, }k lJ j l k= =  are 
the subsets of the saturated vertices of sets X and Y, respec-
tively. In M(D), denote via lj YÎ  the mapping of beginning 

li  of edge [ , ],l li j  li XÎ  is the mapping of end jl of this edge, 
( ), ,l li j  is the subset of mappings of vertices ,kJ

{ }1,  k lJ j l k= =  

is the subset of mappings of vertices Ik.
To determine whether the matching Mk(D) is maximal or 

is converted into the matching Mk+1(D), one finds the first 
free vertex ( )1 ,kk ki X I I+ Î - ∪  which is considered to be the 
beginning of a prolonged path 

1ki
p

+  
relative to Mk(D) to any 

free vertex { }( )1 .s k k kj Y J J j +Î - ∪ ∪  Here 1kj +  is the map- 
 
ping of ik+1. If there is a path 

1
,

ki
p

+
then

( ) ( )
11 .

kk k iM D M D P
++ = ⊕

It is known that the matching M of graph H is maximum 
then and only when there is no prolonged path in H relative 
to M [6, 7]. Let the set ( )kkX I I- ∪  includes not a single 
vertex ir that connects it to at least one of the vertices from 

the set { }( )1k k kY J J j +- ∪ ∪  through the prolonged path in  
 
relation to matching Mk(D). Mk(D) is then maximal.

Designate via 
1ki

D
+  

the subgraph of graph D, in which the 
matching Mk(D) is fixed, all the vertices from the set k kI J∪  
are removed, and each edge connecting the vertex 1kj +  with 
the vertex from Ik is removed (Fig. 3). It is required in sub-
graph 

1ki
D

+  
to either to build a path 

1ki
p

+  
or to establish that 

is absent in 
1
.

ki
D

+

Fig. 3. Subgraph of graph D, in which matching Mk(D) is 

fixed, all the vertices from set k kI J∪  are removed, and 
each edge connecting the vertex 

1kj +
 to the vertex from Ik is 

removed

We propose a PATH procedure for building 
1ki

p
+
 in the 

subgraph 
1
.

ki
D

+
 The procedure is the modification of a known 

algorithm for finding paths from a given vertex to all achiev-
able vertices of arbitrary graph H [6]. The PATH procedure 
consists of the following steps:

S0. Q is the set of marked vertices, R is the set of un-
marked vertices; 1{ },kQ i +=  ,kR I=  1.l =  

S1. If li RÎ  and vertex lj  is incident to a vertex from 
Q, then put 

{ }, lQ Q i= ∪ { };lR R i= -  

if li  is incident to vertex { }( )1 ,s k kj Y J j +Î - ∪
 
then proceed 

to step S4. 
S2. l=l+1. 
S3. If l>k, it is over: the subgraph 

1ki
D

+
does not contain 

path 
1ki

p
+

 otherwise proceed to step S1.

S4. If the vertex 1,ki +  is adjacent to vertex sj  then it is 
over: ( )

1 1, ,
ki k sp i j

+ +=  otherwise the saturated vertex ;mi QÎ  is 
adjacent to vertex sj  put ( )

1
, ,

ki m sp i j
+

=  1.r =
S5. While li QÎ  is adjacent to mj and 1l ki i +¹  put 

( )
1 1

, , ,
k ki l m ip i j p

+ +
=  ,m li j=   , m lj j=  1.r r= +

S6. Put 

( )
1 11, , .

k ki k m ip i j p
+ ++=

Statement 2. The PATH procedure correctly builds in 
the subgraph 

1ki
D

+
the prolonged path pk+1 relative to the 

fixed matching of power k over time O(k). 
Proof. Step S3 determines that subgraph 

1ki
D

+
 has no path 

1ki
p

+
 from the vertex 1ki +  to any free vertex { }( )1 ,s kj Y J j +Î - ∪   

 
and step S4 finds edge ( ),m si j  and the set of marked vertices 

( )1 1, ,..., .k mQ i i i+=

Assume 
1ki

D
+

 does not contain 
1
.

ki
p

+
 Then the induction 

based on the number of cycle executions that forms steps S1–

S3 establishes that 
1ki

D
+

 has no vertex { }( )1 ,s kj Y J j +Î - ∪   
 
incident to any vertex from Q. 

On the other hand, let there be a found edge ( ), .m si j  
in 

1ki
D

+
 Then the induction for l yields a simple path 

( )1 1 1, , , , , , , , ,k l l m si j i j i i j+    which is built at step S5, from the 
vertex sj  to the vertex 1.ki +

The time of procedure execution is estimated based 
on that in the worst case the maximum number of ver-
tices along path 

1ki
p

+
 is k+1. To establish the existence of 

path 
1
,

ki
p

+
 one needs O(k) elementary activities. The same 

amount of action will be needed to build it. Therefore, the 
time complexity of the PATH procedure is estimated by 
magnitude O(k). The proof is complete.

Example 1. Let us illustrate work of the PATH procedure 
for subgraph 

5
,iD  depicted in Fig. 3. In 

5i
D  we defined the 

current matching 

( ) [ ]{ }4 , | 1,4 ,l lM D i j l= =  { }5 ,Q i=  

{ }| 1,4 ,lR i l= =  .l li j¹

 Since the marked vertex 5i  is adjacent to vertices 2j  and 

3,j  then we mark any of the vertices via 2i  or 3i . Let it be the 
vertex 2,i  

{ }5 2, ,Q i i=  { }1 3 4, , .R i i i=  

Vertex 3j  is incident to vertices 2i  and 3,i  between 
which we shall choose, for example, 3.i  Now, 

{ }5 2 3, , ,Q i i i=  { }1 4, .R i i=  

The vertex 4,j  adjacent to 4 ,i RÎ  is connected to verti-
ces 2i QÎ  and 3 .i QÎ  After adding 4i  to the current set of 
marked vertices, we derive { }5 2 3 4, , , .Q i i i i=  But, ( )4 6,i j  is  
 
such an edge that { }( )6 1k kj Y J j +Î - ∪ .

The path 
5i

p  from vertex 5i  to vertex 6j  is built as a 
result of execution of steps S4‒S6. Since 6j  is adjacent to 

4,i  we put ( )
5 4 6, ,ip i j=  1.r =  The vertex 2i  is adjacent to 4,j  

 

    1 5kj j              1j                   2j                   3j                 4j                 6sj j          7qj j  

 
     1 5ki i                2i                   1i                   3i                    4i                    si                 7qi i  
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therefore ( )
5 2 4 4 6, , , ,ip i j i j=  The vertex 3i  is adjacent to 2,j  

therefore, ( )
5 3 2 2 4 4 6, , , , , ,ip i j i j i j= 3.r =  Since 5i  is incident 

to 3,i  then the desired path ( )
5 5 3 3 2 2 4 4 6, , , , , , , .ip i j i j i j i j=

7. Algorithm for finding the maximal matching

Our considerations are detailed in the description of the 
following algorithm.

S0. The algorithm for finding in the arbitrary graph 
H=(V, U) the maximal matching Mmax, [hij]n is the sym-
metrical adjacency matrices of graph H. The solution Mmax 
is mutually unambiguously consistent with the maximal 
matching 

( ) [ ]{ }max , | , 1,l l l lM D i j i j l k= ¹ =  

in a bipartite graph D=(X, Y, E), in which X, Y are the sets 
of vertices, 4,X Y n= = ≥  E is the set of edges, { }, ,i j EÎ  if 

{ }, ,i jv v UÎ  ,i j¹  { } , 1, 2, ..., ,i j nÎ  2 .E U=

S1. As a result of the application of heuristics with a tem-
poral difficulty estimate not higher than O(n2), find in [hij]n 
the original matching 

{ }, | 1, ,
l lk i jM v v l k = =   

where li  is the number of the initial vertex, and lj  is the 
number of the final vertex of edge , ,

l li jv v    il<jl. 

( ) [ ]{ }, | 1,k l lM D i j l k= =  

is the matching in a bipartite graph D corresponding to Mk. 

{ }| 1, ,k lI i l k= =  { }| 1, ,k lJ j l k= =  { }| 1, ,k lI j l k X= = Ì

{ }| 1, ,k lJ j l k Y= = Ì  ( ),k kR X I I= - ∪  ( ).k kS Y J J= - ∪

If / 2 ,k n=     then Mk(D) is the matching corresponding 
to Mmax in H.

S2. Form a subgraph Dk of graph D that includes Mk(D) 
and all free edges with initial vertices in kI  and final verti-
ces in ; 2 1.kJ r k= +  

S3. k=k+1. 
S4. Identify the subgraph 

rxD  of graph D by adding to 

1kD -  all the free edges linking the vertex rx RÎ  to vertices 
in kJ  and all the free edges with the initial vertex in kI  and 
a final vertex in { },rS y-  .rry x=

S5. Perform the PATH procedure to find in the subgraph 

rxD the prolonged path 
rxp  relative to matching ( )1kM D-  to 

the vertex { },s rj S yÎ -  achievable from the vertex .rx  
S6. If the path ,

rxp  is built, then 

( ) ( )1 ,
rk k xM D M D P-= ⊕  

otherwise proceed to step S8. 
S7. If / 2 ,k n<     then 

{ }1 ,k k rI I x-= ∪  { }1 ,k k sJ J j-= ∪  { }1 ,k k sI I j X-= ∪ Ì  

,ssj i=  { }1 , rk kJ J y Y-= ∪ Ì ,rry x=  

{ }, ,r sR R x j X= - Ì  { }, ,s rS S j y Y= - Ì  

where rx XÎ  is the beginning, and sj YÎ  is the end of path 
;

rxp  proceed to step S2, otherwise ( )kM D
 
is the matching 

that corresponds to Mmax in graph H.
S8.  { }, 1;rR R x r r= - = +  if ,r n≤  proceed to step S4, 

otherwise ( )1kM D-  is the matching corresponding to 
Mmax in H.

Theorem. The maximal matching in an arbitrary n-vertex 
graph H is correctly derived over time O(n2). 

Proof. Because the bipartite graph D does not contain 
odd-length cycles, the reduction of MP in the arbitrary 
graph H to a bipartite case excludes flower detection and 
removal operations. By building, the subgraph 

rxD  contains 
each edge corresponding in graph H to that that may belong 
to the prolonged path relative to matching ( )1 ,kM D-  hence, 
if graph H contains 1,kM -  then, after building at step S5 a 
path 

rxp , at steps S6‒S7 we determine the matching Mk(D). 
Excluding a vertex rx  from the list of free vertices R 

when there is no ,
rxp  in the subgraph 

rxD
 
is based on the 

consequence from the theorem proven in [7]. If at some stage 
of the algorithm for solving MP there is no prolonged path 
from vertex v, then v cannot be considered as the starting 
vertex of the prolonged path at all other stages. 

The algorithm terminates at / 2k n≤     either after 
constructing Mk(D), when {0,1},R Î  or after constructing 

( )1 ,kM D-  when there is no path .
rxp  from each vertex rx RÎ .  

In the first case, 

( ) / 2 ,kM D n=     

in the second case, the necessary and sufficient condition is 
met under which the matching ( )1kM D-  is maximal.

Let us assess the time complexity of the algorithm pre-
sented. 

Finding at step S1 in graph H the original matching 
Mk could be performed over time O(n2), for example, by 
choosing each time in the matrix [hij]n the element hij and 
by excluding the rows and columns with numbers i and j. 
The resulting matching leaves in graph H not a single edge 
incident to two free vertices. The bipartite graph D, which 
includes the matching Mk(D), is formed over n2 references to 
the elements of matrix [ ] .ij nh  Therefore, step S1 is executed 
over time O(n2).

The starting phase for solving MP is step S2 that builds 
the subgraph Dk, in which the matching Mk(D) corresponds 
to the original matching M in graph H. The first subgraph 

, ,
rx rD x RÎ  derived from ,kD  transforms to 1,kD +  if 

rxD
includes the path .

rxp  Building kD  requires no more than 
k(k–1) comparison operations with elements from the matrix 
[hij]n. To assess the laboriousness in solving MP, it would 
suffice to consider two extreme cases of the algorithm’s 
termination.

In a first case, the algorithm terminates when the 
matching Mk(D) is returned, corresponding to the original 
matching Mk in graph H. Then each subgraph , ,

rx rD x RÎ  
2 ,R n k= -  does not include the prolonged path 

rxp  rela-
tive to Mk(D). The subgraph 

rxD  is determined by attach-
ing to kD  not more than k  edges ( ), ,r lx j ,l kj JÎ  and not 
more than ( )2 1k n k- -  edges ( ), ,l si j  , l ki IÎ  { },s rj S yÎ -  

.r ry x=  Consequently, it takes a time of k(n–2k)2+c(k+2)
(n–2k)+k(k–1), c<k, to check the optimality of the initial 
solution Mk(D). Since the labor-intensity of building Mk(D) 
is limited by magnitude O(n2), then the time complexity of 
the algorithm in the considered case is estimated by the same 
magnitude.
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In a second case, the algorithm converts the original 
matching Mk(D) into a matching of power / 2 .n k>    La-
bor-intensity of building Mk+1(D) is estimated by magnitude 

1,kt +  which includes k(k–1) and k+k(n–2k–1) elementary 
actions to form graphs kD  and ,

rxD  respectively, as well as 
c(k+2) operations to build path 

rxp  and ( )1c k +′  operations 
to execute step S7:

( ) ( )
( ) ( )

1 1 2

2 1 ,
kt k k k n k

c k c k
+ = - + - +

+ + + +′
 

.c k<′

It is obvious that the construction of ( )2kM D+  could be 
done at labor-intensity

( ) ( )( )
( ) ( )

2 1 2 1

3 2 ,

kt k n k

c k c k

+ = + - + +

+ + + +′
 

and construction of ( ),mM D  3 / 2 ,k m n+ ≤ ≤     at labor-in-
tensity

( ) ( )( ) ( )1 2 1 1 .mt m n m c m c m= - - - + + + ′

The total cost of converting the matching Mk(D) into a 
matching of power / 2n    is estimated by magnitude

( ) ( )
/2 /2 /2

1 1 1

1 1 ,
n n n

m
m k m k m k

T k k t c m c m
          

= + = + = +

= - + + + + ′∑ ∑ ∑  

where

( ) 21 ,k k n- <  

( ) ( )
( ) ( )

/2 /2 1

1

2

2 / 2

2 ,

n n

m
m k m k

t m n m n k

k n k O n

-      

= + =

= - ≤ - ´  

´ - =

∑ ∑

( )
/2

2

1

1 ,
n

m k

c m cn
  

= +

+ <∑
 

/2
2

1

.
n

m k

c m c n
  

= +

<′ ′∑

Since the time to build the original matching Mk(D) is 
limited by the magnitude O(n2) and T=O(n2), then in this 
case, too, the algorithm solves the MP at labor-intensity 
O(n2). The proof of the theorem is complete. 

Example 2. Fig. 4, a shows the graph H=(V, U), for which, 
by applying the algorithm from [7] set out in [6], the maxi-
mal matching was derived

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2 3 4 5 6 7 16

max max

8 9 10 17 11 12 13 14

, , , , , , , ,
, | | 8.

, , , , , , ,

v v v v v v v v
M M

v v v v v v v v

  = = 
  

The presented algorithm finds a matching of the same 
power (Fig. 4, b).

At step S1, a rapid heuristic builds the original matching 
in matrix 17[ ]ijh

[ ] [ ] [ ]
[ ] [ ] [ ]

2 3 4 6 8 9

6

10 11 12 13 14 16

, , , , , , 
;

, , , , ,

v v v v v v
M

v v v v v v

  =  
  

( ) [ ] [ ] [ ]
[ ] [ ] [ ]

2 3 4 6 8 9

6

10 11 12 13 14 16

, , , , , ,

, , , , ,

i j i j i j
M D

i j i j i j

  =  
  

‒ corresponding matching in the bipartite graph D;

{ }6 2 4 8 10 12 14, , , , , ,I i i i i i i=

{ }6 3 6 9 11 13 16, , , , , ,J j j j j j j=  

{ }6 3 6 9 11 13 16 , , , , , ,I j j j j j j X= Ì  

{ }2 4 8 10 12 146 , , , , , ,J i i i i i i Y= Ì

{ }1 1 5 7 15 17, , , , ,R i i i i i=  

{ }1 5 7 15 17, , , , .S j j j j j=  

6 / 2 8.k n= < =  

a 

b 
Fig. 4. Graph H=(V, U): a – maximal matching derived by 	
the Edmons algorithm; b – maximal matching derived by 	

the proposed algorithm

At step S2, a subgraph 6D  is formed (Fig. 5), 13,r =  
7.k =  Step S4 builds a subgraph 

13
,xD  13 1 ,x i R= Î  in which 

the vertex 1i  is isolated. Therefore, the PATH procedure es-
tablishes that there is no path from 13x  to the vertex of the 
set { }13 ,S y-  13 1;y j=  { }5 7 15 17, , , ,R i i i i=  r=14, in the subgraph 
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13xD . Now a subgraph 14D  is built for the vertex 14 5.x i=  14D  
is shown in Fig. 6. The PATH procedure builds the pro-
longed path ( )

14 5 5 6 4 15, , ,x iP p i j i j= =  relative to the matching 
( )6M D  and, therefore, determines

( ) ( )
[ ] [ ] [ ]
[ ] [ ] [ ]

( ) [ ] ( ){ }
( ) [ ] ( ){ }

[ ] [ ] [ ]
[ ] [ ] [ ]

57 6

2 3 4 6 8 9

10 11 12 13 14 16

5 6 4 6 4 15

5 6 4 6 4 15

2 3 4 6 8 9

10 11 12 13 14 16

, , , ,  , , 

, , , , ,

, , , , ,

, , , , ,

, , , , , , 

, , , , ,

iM D M D P

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i

= ⊕ =

    -   = ∪   
 

-  
 -
  ∪ =   -   

    

=
[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

2 3 4 15 5 6 8 9

10 11 12 13 14 16

, , , , , , , , 
.

, , , , ,

j i j i j i j

i j i j i j

  
 
  

At step S7 7 / 2 8, k n= < =    

{ }7 2 4 5 8 10 12 14, , , , , , ,I i i i i i i i=  

{ }7 3 6 9 11 13 15 16, , , , , , ,J j j j j j j j=  

7 7 ,I J X= Ì  77 ,J I Y= Ì  { }7 17 , ,R i i=  { }7 17 , .S j j=

Subgraph 7D  is shown in Fig. 7, 15,r =  and the subgraph 

15 15 7,xD x i= x15=i7 – in Fig. 8; 8.k =  

Fig. 5. Subgraph D6 formed at step S2

Fig. 7. Subgraph D7

Fig. 8. Subgraph Dx15
, x15=i7 

Thus, the PATH procedure builds, in the subgraph 
15

,xD  
the prolonged path ( )

15 15 7 11 10 17, , ,xp x i j i j= =  relative to the 
matching 7( )M D  from the vertex 7i  to the vertex in the set 

17{ }S j=  and is derived

( ) [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

2 3 4 15 5 6 7 11

8

8 9 10 17 12 13 14 16

, , , , , , , , 
,

, , , , , , ,

i j i j i j i j
M D

i j i j i j i j

  =  
  

coinciding with an accuracy to designations with the match-
ing max 8,M M=  shown in Fig. 4, b).

8. Discussion of results of constructing  
an algorithm with a quadratic time complexity to find  

the maximal matching

Known methods from [5–8] make it possible to derive a 
solution to the similar problem over time О(n4). The algorithm 
for solving the matching problem outlined in work [8] could be 
implemented as a computer software with a temporal complex-
ity of О(n3) provided data structures are optimally utilized.

Existing algorithms from studies [5–8] are based on the 
execution of the algorithm for bypassing the graph in width, 
at the steps of which the detection and packaging of flowers 
are made (cycles of odd length).

The results reported in our article provide a solution to 
the matching problem over time О(n2). Winning in speed is 
achieved by moving from an arbitrary to a bipartite graph, 
on which there is no need to find and pack flowers. Thus, the 
algorithm that we proposed would provide for the accelera-
tion in solving the problem by at least n times. 

However, in practice, there is often a need to solve the prob-
lem on a weighted graph. In this case, one should talk about 
the problem of weighted matching. The approach proposed in 

this article cannot be applied directly to solve the 
problem of weighted matching. Therefore, we plan 
to advance the ideas proposed in the current paper 
to build an algorithm to solve the specified problem.

Solving a problem of weighted matching could 
be used as a lower estimate of the cost in accurate 
and approximate methods for finding Hamilton 
cycles on graphs and routing problems, which are 
reduced to the problem of a salesman, which would 
make it possible to bring down computational costs 
and speed up the time it takes to find solutions to 
these problems.

9. Conclusions

1. Reducing the problem on building the maximal 
matching, solved in an arbitrary graph, to the correspond-
ing bipartite variant makes it possible to avoid the need 
to process flowers [7] and reduce the computational com-

 

 

Fig. 6. Subgraph D14 for vertex x14=i5
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plexity of the algorithm to solve an MP. By reducing the 
complexity of the algorithm, the speed of solving an MP 
is increased compared to known methods. The proof of 
mutually unambiguous correspondence between a match-
ing in the arbitrary graph and the matching in a bipartite 
graph allows us to assert the correctness of the proposed 
reduction.

2. The proposed PATH procedure with a linear time 
assessment of complexity makes it possible to build a pro-
longed path in a bipartite graph relative to the current 
matching. The procedure greatly simplifies and, as a result, 

accelerates the derivation of a new matching, which has one 
edge more than the original.

3. Based on the iterative execution of the PATH proce-
dure, we have proposed and substantiated an algorithm for 
building the maximal matching, which has a quadratic tem-
poral complexity. Solving an MP by proposed algorithm as a 
relaxation within the branch and boundary method makes it 
possible to save computing resources of computers and serv-
ers used for computations and, as a result, to gain a win in the 
speed of building accurate solutions to certain NP-complete 
routing problems.
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