u] =,

Haeseoeno anzopumm ananimuunozo po3e’a3xy ooniei
3 3a0a1 MEXAHIKU NPYHCHUX MINL, W0 NOG A3AHA 3 BUGHEH -
HAM GJACHUX KOMUSAHbL CKaAdeHoi 06oxcmynenesoi
naacmumnku, 6 AKiU YeieHYyma 4ACmMuUHa NiaeHo CHOY-
YAEMBLCA 3 YACMUHOI0 nocmitnoi mosuunu. Oxpecaeno
0codusoCmi PoOpMYNI0BAHHA ePAHUMHUX | NEPeXIOHUX
YM08, AKi He0OXiOHO Jompumyeamuco npu po3ensdi
8JLACHUX KOJUBAHD 080XCMYNEHEBOT NILACMUHKU.

Ompumano cnissioHouwen s, AKi 0036010 Mb GUCHU-
mu Po3noodin nPounie i 6UIHAUUMU 3HAUEHHS AMNAIMYO
32IHHUX KOUBAHL NAACMUHKU. 3a3HaueHo, wo dopmu
KOUGans no0Y0o6aHo HaA OCHOBI NOJONCEHL PO3pode-
HUX MA PO36UHYMUX PaHiue ABMOPAMU Memoodie cumem-
pii ma paxmopusauii. 3oxkpema 3naiideHo, wo NPoLUHU
MosicHa docaioumu uepe3 6upazu, AKi UHAMAIOMLCS
uepes cymy 6i0N06IOHUX PO36°A3Ki6 060X JIHIUHUX Oude-
PpeHuianbHUX PieHAHb 0pY2020 NOPAOKY 31 SMIHHUMU KOe-
Qiyienmamu.

Ha ocnosi 3anpononosanozo nioxody eusnaueno
cucmemy 3 6iCoMOX 00OHOPIOHUX aANeedPaATMHUX PIBHAHD,
saKa dozeonuna nodyoyeamu 4acmomme PiBHAHHA Ol
NAACMUHKU, WO JHCOPCMKO 3aKpiniiena 3a eHympiui-
HIM KOHMYPOM i € GiNbHOI0 HA 308HIUHLOMY KOHMYPI.
3Haii0eno 3HaAMeHHS BIACHUX UACHMOM NAACMUHKU OJIs1
nepwiux mpvox Qopm enacnux xoaueamns. Ilpunomy,
3a0an anpobauii ma 0as pozwupenHs Hadopy naac-
MUHOK Pi3HOi KOHieypauii po3zenanymo nAACMUHKU
3 06oMa sudamu 66izHYymMocmi y ix IMIHHIU YACMUHI.

Hogi nioxoou ma ompumani na ix ocHosi cniesio-
HOWEHHS MOJMCYMb OYymu KOPUCHUMU O NOOAIbULOZO
po3eumxy memooié po3e’s3Ky nodioHux 3adau mame-
Mamuunoi Qisuxu na enacui 3nauenns. Ilpaxmuunum
YOCOONIEHHAM U020 € 3a0aHi NPo KONUBAHHS NAACMUHOK
3MinHOT mosuiunu Pi3Hoi popmu

Kmouosi cnosa: eaacui wacmomu, popmu xoaueams,
ananimuunuil po3e’sa30K, Kilvueea NIACMUHKA, BLTbHI
KONUBAHHS, MeMOO CUMemPiii
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1. Introduction

Multifaceted research into mechanical vibrations re-
mains a pressing challenge for many fields of technology
and equipment. Particular attention has traditionally been
drawn to the vibrations of elements in the structures used
for various purposes. These elements include turbine rotors,
turbine blades and disks, assemblies for vehicles and air-
craft [1]. Plates of different configurations are widely used in
mechanical engineering as an important type of design ele-
ments. However, analyzing their vibrations is one of the most
important and difficult particular tasks in mechanics [2]. It
should be noted that the theory of elastic bodies vibrations
is an integral part of such a scientific discipline as applied
acoustics, so plate vibrations could be considered, specifical-
ly, as the acoustic vibrations [3]. Such vibrations, especially
in the high-frequency range (ultrasonic and near-ultrasonic),
form an important part of modern technologies created
through their targeted use. The most well-known examples
of the use of vibrations relate to the methods for determining
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strength under conditions of variable load on rods or plates
at elevated frequencies, cleaning parts, making or machining
components made from super-solid materials with increased
precision. Such technologies and their varieties are becom-
ing increasingly widely used for medical purposes [4]. For
example, active acoustic elements are used in the equipment
for the treatment of hearing diseases, urological problems
(contactless destruction of kidney stones), in dentistry when
filling teeth [5]. Thus, it is still a relevant task to study the
vibrations of elastic bodies.

2. Literature review and problem statement

When searching for and studying the literary sources
related to the stated problem about vibrations of a composite
plate, one must focus only on single plates of variable thick-
ness. Of additional interest are the works that address plates
of different outlines, other than the annular ones, as well as
the plate elements in the composition of structures. What is



common to such plates and the specified one is the need to
consider the fourth-order equations with variable coefficients.

Paper [6] employed a series method to derive a solution
about the vibrations of an annular plate of linear-variable
thickness, the results of which relate only to the principal
frequency and mode of vibrations. The reason for the limited
single result is probably the cumbersomeness and complexity
of the analytical expressions used.

Study [7] considers a similar problem, but the solution
was obtained by the Ritz method using Chebyshev’s polyno-
mials, which is an obvious drawback.

In [8, 9], the vibrations of a plate of variable thickness
were studied by a numerical method, but the scheme for
finding the natural frequencies for higher vibration modes
was not considered.

Paper [10] applied a finite difference method to investi-
gate the vibrations of a composite plate containing a variable
thickness area in the form of a radius transition. The solution
is approximate, neither frequencies nor modes of vibrations
were given in an explicit (analytical) form.

Article [11] examines a problem about the vibrations
of a fully clamped elastic elliptical panel. The solution was
derived in Mathieu’s functions by a method of separating
variables in elliptical coordinates. Five natural frequencies
were found. The solution is accurate and well-studied.

In work [12], a problem on the vibrations of an annular
plate of variable thickness is solved approximately, using the
approximation of movements based on spline functions.

Study [13] examined the movement of an annular com-
posite plate at free vibrations by the method of colloquia-
lisms. The solution is approximate.

In article [14], the object of the research is the thin plates
of various outlines (elliptical and rectangular; the authors use
an energy approach in combination with the method of trans-
formations by Kolosov-Muskhelishvili. The solution and the
results are approximate.

Numerical methods are used for rectangular plates in
studies [15, 16]. The results are approximate.

The free vibrations of an annular plate on elastic support
according to the Winkler-Pasternak hypothesis were con-
sidered in [17]. Natural frequencies were determined by the
Galerkin method.

Work [18] addresses the vibrations of an annular plate
with a ring edge. Displacements are sought through the
Fourier series. The problem on finding the natural frequen-
cies was noted and its solution is given through the use of
numerical methods.

Our review has revealed that, except for known ap-
proaches and methods, no new ones have been proposed,
presumably because of the lack of them. This suggests that
it is appropriate to conduct a study into the problem-solving
about plate vibrations, whose mathematical model are the
fourth-order equations with variable coefficients. A part of
this issue is the problems about the vibrations of plates with
variable thickness, including composite plates, in which the
part with variable thickness is smoothly aligned to the part
of a permanent thickness. Even though there is no scientific
problem about composite plates in principle, resolving the
stated technically laborious problem about the vibrations of
composite plates has an important practical significance.

3. The aim and objectives of the study

The aim of this study is to build an algorithm to ana-
lytically solve a problem about the natural vibrations of
a composite two-stage annular plate with steps of the vari-
able (concave) and constant thickness.

To accomplish the aim, the following tasks have been set:

—based on the symmetry method, build a common
solution to the problem about the natural axisymmetric
vibrations of a composite annular plate of the predefined
configuration;

— to establish the ratios for the boundary and transitional
conditions for a composite annular plate, which is rigidly
fixed along the inner contour and is free along the outer one;

— to derive a frequency equation for the specified plate;

— to calculate the natural frequencies and build the vibra-
tion modes for two types of a plate in a given configuration
with varying degrees of concaveness in their variable part.

4. Building a common solution for a composite plate

An annular plate (Fig. 1) is considered, whose variable
thickness changes according to the law hA=hyH(p), where
H=(1-up)?, and the conjugated region has a constant thick-
ness i’ =const. Here, Ao, u are the constants, p=7/R is the
dimensionless radius, 7 is the variable radius; R is the radius
of the plate. The variable section of the plate is limited to
the radii p=p+py; constant — radii p=py+1. If p=0, then
h=hy. When the sections of the plate are aligned, at p=p»,
we obtain /" =ho(1-up»)?. This thickness remains unchanged
at p=po+1.

.

R

P2

Fig. 1. Graphic representation of a composite plate



Deflections W along a section of variable thickness are
determined by the sum of the solutions W=W;+W, to the
following differential equations [19]:

s’ WS
Wt Wit W, =0,
S H )
b S WA
Wz+?"Vz—T"Vz=Oy
where
S=pH?

AM=JR Wt +4 -2 M= Jk/ut +4+2

R? [12(1-v?

®=27/ is the annular frequency, f is the cyclical frequency;
v is the Poisson coefficient; g is the acceleration of gravity;
v is the specific weight; E is an elasticity module.
Equations (1) are converted to the following form after
the variables are replaced:
D,
Y+ 2—yi+ Ay =0;

b 3)

” D ’ 2
Y +2ny2 - A3y, =0,
where

Wi (p)= 1o (x); x=—In(1-pp);

e*—1
D=+Je? —er =g \Jer 1= ———

ez,r

Based on the approximation, we derived:

Jx
D — /e—Sx _6—4.1' ~ D0 ——
x2+C,
D,=0.21, C,=0.2483. 4)
In this case, according to the symmetry method, the

exact solutions to equations (3) will be determined from
expressions:

Yy =2xyh + A} (x2 +Co)!/01§}

ol 4 5
y2=2xy62—7\-§(3€2+co)y02y ©)

where
Yor = Afo (Mx)+ BYy (Ax);
Yo =M [A]1 (Mx)+BY, (Xix)];
Yoo = Ay (hox)+ BiKy (Aox);

Yoo =N [—A1I1 (7\235)*' BK, (7»235)]?

Dy, Cy are the constants set according to (4); A, B, Ay, By are
the arbitrary constants.

Solutions (5) in the expanded form are recorded as:

Y :Al:k1 (x2+Co) Jo —2x]1:|+
+ B[ Ay (22 +Co )Yy - 2xY, |;

Yo =—A Ao (22 +Co) Iy - 21, |-
= B[ Mo (a?+Cy) K, + 22K, ],

(6)

with designations:
(JO']17Y()7Y1) = [JO (?\.13(),‘]1 (7\'1x)vYO (7\'1x)7y1 (7\-13()],
(Io. 11, Ko, Ky) =[ Iy (o), I (Rox), Ky (M), Ky (Rox) |-

Deflections W, for the region of constant thick-
ness (Fig. 1) are determined by the sum of the solutions
Wo= Wy1+Wpa, where Wyy, W9 are the solutions to the fol-
lowing differential equations (here, derivatives for variable p)
derived from (1) at H=const:

1
u’o/f'*'guloq + AWy, =0;

1 @
We, +EW0/2 - AW, =0,

where

2

®R* [12(1-v?)y
_ ok 12(1-vy. ®)
hy gk
Here, h; :ho(i—upz)z, hence, considering (2) and (8),
we obtain:

k u

(1—sz) 1—up,

Ay = — 2, JRZH 4. (9)
1—up,

Known solutions follow from (7):

Woi =afo(Ap)+bY, (Ap); (10)
I/{/OZ = a110 (7\.]:))"‘ b1K0 ()bp),

that is,
Wy =afy (Ap)+bY, (Ap)+ay (Ap)+ b Ky (Ap). (11)

Thus, solutions (6) and (11) provide an opportunity,
based on the boundary conditions, to derive a solution to the
problem for solid or annular composite plates with different
way of fixing them.

5. Boundary and transitional conditions for
a composite annular plate, rigidly fixed along
the inner contour

If the plate is rigidly fixed along the inner contour (p=p;)
and is free along the outer one (p=1), then it is necessary to
satisfy the following boundary conditions:

— in the first case (rigidly fixed):

dw
W), =0 [dp] =0; (12)



— in the second case (a free edge):

d2m+vd% o

dp* pdp )

, (13)
AW, LW, 1AW

dp* “pdp* ptdp )

In addition, it is also necessary to meet the conditions
for the conjugation (transitional conditions) at p=p,, which
ultimately take the form:

AW dW,

W=W; sz dpy

W W, DWW,
dp> ~ dp’’ dp®  dp?’

(14)

Because W= W;+Wy; Wy= W+ Wy, the conditions (13),
(14) containing higher derivatives from functions (W, W)
could be transformed so that they are expressed only through
(W1, 9, W) and (Woy, 02, oy 02), which simplifies subsequent
analytical considerations.

We find from (1), given W=W;+Wy:

” S, ’ u2 2 2
W +§W +ﬁ(7‘1W1 —7\-2“/2): 0;

’

” S’ ’ Mz 2 2
w +?W +ﬁ(7\.fu/1—}\.zulz) =0,

hence:
s ¥ 23
W =W W= (15)
W = S” s , “27\'12 Wy
Sl e T
§7(SY wg |
el st Wy+K, (16)
where
02 (SH) 03 (SH)
kWM (SH) o wn (SH)

H SH H SH

From (7), by assuming Wy=Wyi+Wp,, we similarly
obtain:

1 1
Wy'= —B"V(ﬁ —B"V()/z = MWy + AWy a7
" 2-A%p? ) 2+\%p? )
(‘/{/0 ) = p2 ‘/‘/01 + p2 ‘/{/02 +
A2 A2
+ FWM—FWM (18)

Considering (17), (18), the boundary conditions (13) at
v=1/3 take the form, respectively:

4
[wu/(ﬁ*‘“/m—u/w} =0; (u/o'1—u/(f2)p:1 =0. (19)
p=1
The third conditions from (14) considering:
(W=, (W=W) (20)
and given (15) to (18) at S=pH? takes the form:
H’ w3
27 Wi W+
=0. (21)
W (A +23)

2 _
+ A (u/oz “101)"' 1] 1 o

The last condition from (14) under the same precon-
ditions, and when taking into consideration the expres-
sion (W) )psp, init, derived from (21), is recorded as:

(L)Wy+ A2 (W, — Wi )+

H w2(A2+A3 =0, (22)
o o |
where
4 27\'2
= B
pH H

The transformed boundary and transitional conditions,
obtained for direct use, make it possible, by applying solu-
tions (6) and (10), to obtain a frequency equation.

6. Derivation of a frequency equation

After fitting expressions W, W’, Wy, Wy into (12), (19),
(20)+(22), at the corresponding boundary values p or x,
we obtain eight homogeneous algebraic equations relative
to the desired constants A;, B;, a;, b;. By equating the deter-
minator of this system to zero, we obtain a frequency equa-
tion. To solve the stated problem, we record the expressions
for the required functions. Because W(p)=Wi(p)+Ws(p)=
=y1(x)+ys(x), then from (6):

W:{A[M (x2+Co) Jo (Mx) -2, (MX)]JF}—M, %)
+B[ Ay (22 +Cy )Yy (Mix) - 22, (M) |

where

e {/h [ (32 + Gy ) Iy (Rorc) 221, (M) ]+ }

+B, [7»2 (22 +Co) Ko (Ao) + 22K, (kzx)]

and hence

g W _ AW (AW AWy, dy,
R R N A



By using known formulae for differentiating the Bessel
functions [20], that is:

Jo(Mx) ==k Ji(Mx);
Y(,’(Mx) =-AY (k1x);
Ié(?»zx) =\ (kzx);

Ky (hpxx) = =hoK; (Aox);

]1(7\135)

Ji(hx) =1, []o (M) - o

}

The two equations follow from (19) considering (10)

and (27) at p=1

. a{—]o (x)+£11(x)]+

b [_KO ()= K, (x)) ~0,

o 2009 00

(30)

(24) »aj1(7u)+bY1(k)+a111(k)—b1K1(k)=0.
V1) = | Yo () - L) |
o oo x| Similarly, from (20), considering (11), (23), (26), (28)
at p=poy, x=x9, we derive two more equations:
11(0) = | 1y (o)~ 2222
A2 F 0N Ao (AQ+BG+ AQ, +BG, —
K (A [ao(Aps)+bY, (Aps)+ ]
Kf(xzx)=—x2[1<o(x2x)+ 175 ;x)} |Gt Bh ()
2 >+a110 (Kp2)+b1K0(7up2)g 31)
we derive AQ,+BG,+ AQs+ BGs —
a]1(7bp2)+by1(7hpz)— 0
Wy=-A3 (% +Co) ' [ Afy (Mix) + BY; (M) ]; 25) |ty (0p2) +BiK, (XpQ)__ }
Wy =23 (x? +Cy )’ [ AL (hoxx) - BIK, (Rox) J; )

where at x=x»

(26) Qz[}‘q (XQ+Co).]o(}V1x)—2x]1(7¥1x)]§

R +Co)x’{k12[AJ1(X1x)+B)q(x1x)]+ }

+4:" [ AL (hox) = BIK, (Ao) ]|
G= [M (x2 +CO)YO (h1x)— 2xY, (%1x)];

We obtain from (10) and (11), in line with (24),

Q= —[kz (22 +Co) Lo (hox)— 221, (kzx)];

Wo’1=—7»|:af1(7np)+bY](7»P)]§ } @7 G1=—[x2(x2+C0)K0(7»2x)+2x1<1(7»2x)];

Wi, = —X[—a111 (XP) +bK, (7\9)],

Q, =%(X2 +C0)x.’]1 (7\«135);

Ap)+ DY (Ap)—
Wy V(001G (28)
- a1.[1 (}\.p)+b1K1 (}bp) 7\.f

G, = T(xz + Co)x'Y1 (7»195);

Following the introduction of expressions (23) and (26) 22

to (12), at p=py, x=2x4, we derive equations: 0, = Tz(xz +C0)x'l1(k2x);
Aq+Bp+ Aa,+Bp, =0;
BT
G>+Bp, + Aigs + Bip; =0, G3=—T(x2+Co)xK1(?u2x).
where at x=x4

From (21) and (22), by using (6), (10), (11), (25), (27),

q= [M (x2+Cy) Jo(Mx)—2x/, (Mx)]; (28), we write down, believing p=ps, x=x5, the following two

equations, respectively:
p=[M (a2 +Co) Yo (M) =22, (M) AL+ BR+aM +bN +a,M, + bN, =0; 2
AL +BR,+aM,+bN,+a,M;+DbN, =0,
G ==[ Mo (2 +Co) Iy (ox) = 24T, (M) |;
where at p=ps, x=19

= —[Xz (22 +Cy) Ky (hox) + 22K, (kzx)]; w2 (3 +33)
L= %[M (x2+Co) Jo (Mx)— 2], (kix)];

@ =M Ji(Mx); po =AY (Mx);

) 2 7\12 + }\‘2
@3 =ML (hox); py=—M3K; (Aorx). R= %[kl (x2+Cy )Y, (Mx) - 22, (klx)];



= o)=L oo
N=—2kgﬁ(hp)—[u2§ +k2JK)(7Lp);
M, = 2%%[1 (kp)—(uzrLg —xzjlo(kp);
N, =—2AZK1(Ap)—[”Z”% —M]K‘)(kp);
Li=p? (A +A3)A2 @ﬁ (Mx);

R =p2(A +213)A2 (XZJFHﬂK (Mx);

4p pA;
M, —HPH‘ 7]

4 A3
Nz:[x(pH_H =A% |Yi(Ap)
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M3:—|:7b(u—u 2

"
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’
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+3A ﬁY()(}VP);

’
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)+x3]11(xp)

pH H
VATRNTRYY; ,H
Ngz{x[pH— 7 |t K1(Xp)—3kzﬁKo(kp).

The frequency equation follows from the system of equa-
tions (29) to (32):

Plate 1 has the following parameters: u=0.5985; p;=0.1;
p2=0.5; x1=0.0617; x,=0.3556; k=2-0.70075.

Plate 2 is characterized by the following parameters:
u=0.6725; p;=0.25; py=0.5; x1=0.184064; x»=0.409827;
k=)1-0.66375.

The results of calculating natural (frequency) numbers
from equation (33) for the first three natural vibration modes
of plates 1 and 2 are given in Table 1.

Table 1
Frequency numbers of plates
_Num.ber of Plate 1 Plate 2
a vibration mode
I k=1.62759 k=1.71890
11 k=4.15673 k=4.47488
111 k=6.61722 k=7.48927

To construct the vibration modes (deflections) from the
system of equations (29) to (32), after substituting the de-
rived numbers k; (j=1, 2, 3), we determine coefficients A;, B;,
a;, bi included in (11) and (23). The graphic representation of
deflections under the first mode of vibrations of plates 1 and
2 is shown in Fig. 2, under the second mode — in Fig. 3, and
under the third mode — in Fig. 4. Fig. 2—4 can be used to judge
the differences in the distribution of nodes and antinodes of
vibrations depending on the degree of concaveness (parame-
ter w) and the values of radius p; of the fixing contour. Note
that based on the well-known features of plate deformations,
the maximum radial stresses, which are the most dangerous,
operate in the zone of maximum deflections. From Fig. 2—4
one could establish those sections of the plate where such
stresses occur. It is obvious that from
this point of view the most favorable si-

¢ P h 0 0 0 0 tuation is the one in which the maximum
4> P> 43 Ps 0 0 0 0 of stresses is shifted towards the thick-
Jo(A)- Jo(A)- -Li(M)+  —Ky(A)- ened part of the plate. In that sense, as
0 0 0 0 2 9 2 9 shown in Fig. 2—4, plate 1 is preferable.
‘ﬁﬁ(}‘) —ﬁji(K) +ﬁ]1(}”) —ﬁK](k) 0 63 A gujnftitati:fie ?szeSSIllcle&t of t:c.he
=0. stressed-deformed state of the entire
00 00 Ji(%) Yi(A) L) —Ki(2) plate could be given by using, to calcu-
Q G Q G —]0(7&92) Y (7432) —10(7&%) —Ko(km) late the stresses, the formulae, known
Q G Q Gy —Ji(Aps)  -Yi(Apy)  Li(Aps)  —Ki(Ap:) from theory, to which one should intro-
L R 0 0 M N M, N, duce the natural frequencies and func-
I R 0 0 M N M N tions of deflections derived in this pa-
o 2 2 3 3 per, following the example of work [21].
The resulting frequency equa- W)
tion makes it possible to derive the 6l
natural frequencies of the compo-
site plate of the predefined profile. sl =
—=
41 —
7. Calculating natural -
frequencies, building 31 -
vibration modes Plate 1 - - Plate 2
21 ~
To illustrate the effectiveness -
of the devised procedure for solv- 1+ _ -
ing the stated problem about natu- -
ral values, we selected two types 01 018 026 034 042 05 06 07 08 09 7

of plates with varying degrees of
concaveness in their variable part.

Fig. 2. Graphic representation of deflections under the first mode of vibrations



Wp) for two second-order equations (3)
34 after they had replaced the origi-
nal fourth-order equation of vibra-
/ | fourth-order equation of vib
2l / tions. The limitations of the me-
Y thod stem from a solution scheme,
. Plate 1 according to which it is necessary
/ to pre-reduce the order of a dif-
/ ferential equation to the order not
¢T~0.18 02%_ 034 042 05 06 07 08/ 09 1 p higher than the second order. This
N / requires the application of a facto-
-1 N / rization method, which, while not
N < Y universal, has limited capabilities.
-2 " Plate2 Overcoming the above limita-
N Y tions and difficulties may only be
-3+ . - possible in the search for new ap-
~ proaches or the advancement of the
4] symmetry method towards its more
Fig. 3. Graphic representation of deflections under the second mode of vibrations gffectlye apphcatlon for prqblems
involving higher-order equations.
W(p) The transformed boundary and
5] y N transitional conditions (12) to (14),
\ expressed only through deflections,
41 / Plate 2 as well as their first derivatives,
/ \ make it easier to calculate since the
3+ / \ Bessel functions used here would
be represented only by zero and
27 Plate 1 first-order functions.
/ The equation system (29) to
17 / (32), obtained after the implemen-
/ tation of boundary and transitional
ol 018 026 034 042 i p conditions (12) to (14), leads to
a frequency equation (33) in the
S . . .
form of a determinant of the eighth
5l order equal to zero. The elements
i of this determinant are expressed
Al in a complete, more compact form
due to the above lower-order Bes-
] sel functions. This makes it easier

Fig. 4. Graphic representation of deflections under the third mode of vibrations

8. Discussion of results from solving a problem
on the vibrations of a composite plate

A common solution, suitable for studying the vibrations
of solid or annular composite plates of the predefined geo-
metry under any boundary conditions, is based on common
solutions for the two smoothly conjugated sections. For
a section of variable thickness, the sum of solutions (6) deter-
mines its deflections. To build the deflections along a section
of permanent thickness, solution (11) is applicable.

The principal issue in solving such problems for com-
posite plates is the construction of solutions for a section of
variable thickness, as at present there is no general method
for solving differential equations of the fourth-order with
variable coefficients. In a given case, for the adopted parabo-
lic law of change in thickness, the analytical solution was de-
rived through the application of the symmetry method, a new
method for problems on natural values, which we construc-
ted for this class of problems. Special features in the symme-
try method for vibration problems imply the possibility to
obtain precise solutions to the second-order equations with
variable coefficients, built so that the number of such solu-
tions is fundamentally unlimited. Solutions (6) were derived

to calculate frequencies because it
makes it much easier to program
the frequency determinant.

The frequency numbers, calculated from equation (33) for
a plate with two types of concaveness of a parabolic section
and a different diameter of the fixing contour, have allowed
us to build the modes of their natural vibrations that cor-
respond to these numbers. The vibration modes in the form
of a graphic representation of deflections (Fig. 2—4) provide
a clear picture of the nature of their change along the current
radius of the plates. It is obvious that by following the above
procedure it is possible to similarly study the vibrations of an
annular plate of a given type with different geometric parame-
ters and with other boundary conditions, including vibrations
of a solid composite plate.

9. Conclusions

1. Based on the symmetry method, a general analytical
solution has been derived to the problem on the natural axi-
symmetric vibrations of an annular plate, composed of a part,
concave in line with a parabolic law h=hy(1-pp)?, conjuga-
ted to the part of permanent thickness. The solution makes it
possible to study vibrations of both solid and annular plates
of a given type at different ways of fixing them.



2. We have established the transformed ratios for the
boundary and transitional conditions for a composite annular
plate of the predefined configuration, rigidly fixed along the
inner contour and free along the outer contour. A special
feature of the proposed ratios is their dependence only on
the functions of deflections and their first derivatives, which
significantly simplifies analytical calculations.

3. The frequency equation has been given in the form of
a determinant of the eighth order equal to zero and the
scheme of its derivation for a composite annular plate, rigidly
fixed along the inner contour.

4. As an example of the feasibility of the algorithm crea-
ted, we have computed the first three natural frequencies
(numbers &;) for two types of a plate of the predefined
configuration, but with varying degrees of concaveness, de-
termined by the u parameter, and with different values for
the radius of the fixing contour py. For the case u=0.5985
and p;=0.1 (plate 1), the frequency numbers (Table 1)
ki (j=1,2,3) are lower, respectively, by (5.3; 7.1; 11.6) %,
than those for plate 2 (u=0.6725, p1=0.25). The difference in

frequencies is due to the difference in curved rigidity, determi-
ned by the thickness and the radial size of a plate (1—py). If there
is little difference in thickness throughout the entire length,
the rigidity would be determined by the values 1-p;=0.9;
0.75 for plates 1 and 2, respectively. The smaller (1-py), the
more rigid the rigidity, and the higher its frequency.

Based on the derived frequency numbers, the vibration
modes have been constructed and their brief analysis has been
carried out. In particular, it has been shown that plate 1 is
more preferable from the point of view of a hypothetical ulti-
mate resource since the maximum of dangerous radial stresses
acting in the zone of antinodes of displacements (p=0.4;
p1=0.25) is shifted towards the thickened part more than that
of plate 2, where the antinodes (p=0.55; py1=0.45) are close to
a thinner transition section. The above analysis is indicative
and more of a qualitative nature since the task of quantifying
the expected results was not set. If one needs a complete
analysis of the advantages or advantages of this type of plates
from an operational standpoint, it is necessary to conduct
a targeted study using the algorithm described in this paper.

References

Panovko, Ya. G. (1967). Osnovy prikladnoy teorii uprugih kolebaniy. Moscow: Mashinostroenie, 316.

Bitseno, K. B., Grammel’, R. (1952). Tehnicheskaya dinamika. Vol. IT. Moscow: GITTL, 638.

Hrinchenko, V. T,, Didkovskyi, V. S., Matsypura, V. T. (1998). Teoretychni osnovy akustyky. Kyiv: IZMN, 376.

Naida, S., Didkovskyi, V., Pavlenko, O., Naida, N. (2019). Objective Audiometry Based on the Formula of the Middle Ear Parameter:

A New Technique for Researches and Differential Diagnosis of Hearing. 2019 IEEE 39th International Conference on Electronics

and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2019.8783502

5. Kvashnin, S. E. (1990). Proektirovanie ul'trazvukovyh stomatologicheskih volnovodov-instrumentov. Ul'trazvuk v stomatologii.
Kuybyshev, 32-36.

6. Kovalenko, A. D. (1959). Kruglye plastinki peremennoy tolshchiny. Moscow: Fizmatgiz, 294.

Ll

7. Zhou, D, Lo, S. H. (2011). Three-dimensional vibrations of annular thick plates with linearly varying thickness. Archive of Applied
Mechanics, 82 (1), 111-135. doi: https://doi.org/10.1007 /s00419-011-0543-y
8. Semnani, S. J., Attarnejad, R., Firouzjaei, R. K. (2013). Free vibration analysis of variable thickness thin plates by two-dimensional
differential transform method. Acta Mechanica, 224 (8), 1643—1658. doi: https://doi.org/10.1007 /s00707-013-0833-2
9. Yalcin, H. S., Arikoglu, A., Ozkol, I. (2009). Free vibration analysis of circular plates by differential transformation method. Applied
Mathematics and Computation, 212 (2), 377—386. doi: https://doi.org/10.1016/j.amc.2009.02.032
10.  Korniloy, A. A. (1968). Kolebaniya kol'tsevoy plastiny peremennoy tolshchiny proizvol'nogo profilya s uchetom inertsii vrashcheniya
i deformatsii sdviga. Vestnik KPI. Seriya: Mashinostroenie, 8, 62—68.
11. Hasheminejad, S. M., Ghaheri, A. (2013). Exact solution for free vibration analysis of an eccentric elliptical plate. Archive of Applied
Mechanics, 84 (4), 543—552. doi: https://doi.org/10.1007 /s00419-013-0816-8
12.  Viswanathan, K. K, Javed, S., Aziz, Z. A., Prabakar, K. (2015). Free vibration of symmetric angle-ply laminated annular circular plate of
variable thickness under shear deformation theory. Meccanica, 50 (12), 3013-3027. doi: https://doi.org/10.1007 /s11012-015-0175-3
13.  Powmya, A., Narasimhan, M. C. (2015). Free vibration analysis of axisymmetric laminated composite circular and annular plates using Cheby-
shev collocation. International Journal of Advanced Structural Engineering, 7 (2), 129—141. doi: https://doi.org/10.1007 /s40091-015-0087-4
14.  Sabir, K. (2018). A variant of the polygonal plate oscillation problem solution. Journal of Mechanical Science and Technology, 32 (4),
1563-1567. doi: https://doi.org/10.1007 /s12206-018-0310-x
15. Chen, L., Cheng, Y. M. (2017). The complex variable reproducing kernel particle method for bending problems of thin plates on
elastic foundations. Computational Mechanics, 62 (1), 67—80. doi: https://doi.org/10.1007 /s00466-017-1484-2
16. Panda, S., Barik, M. (2017). Large amplitude free flexural vibration of arbitrary thin plates using superparametric element. Interna-
tional Journal of Dynamics and Control, 5 (4), 982-998. doi: https://doi.org/10.1007 /s40435-016-0275-5
17. Salawu, S. A., Sobamowo, G. M., Sadiq, O. M. (2019). Investigation of dynamic behaviour of circular plates resting on Winkler and
Pasternak foundations. SN Applied Sciences, 1 (12). doi: https://doi.org/10.1007 /s42452-019-1588-8
18.  Burmeister, D. (2017). Asymmetric buckling of shell-stiffened annular plates. International Journal of Mechanics and Materials in
Design, 14 (4), 565—575. doi: https://doi.org/10.1007 /s10999-017-9390-5
19.  Trapezon, K. O. (2014). The decision of task about the axisymmetric natural vibrations of cir-cular plate with a thickness decreasing from a
center on a concave parabola. Electronics and Communications, 19 (5), 98—106. doi: https://doi.org/10.20535,/2312-1807.2014.19.5.38881
20. Abramowitz, M., Stegun, 1. (Eds.) (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables.
Applied mathematics series 55, USA.
21. Trapezon, K. A. (2012). Method of symmetries at the vibrations of circular plates of variable thickness. Elektronika i svyaz’, 6, 66—77.





