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Наведено алгоритм аналітичного розв’язку однієї 
з задач механіки пружних тіл, що пов’язана з вивчен-
ням власних коливань складеної двохступеневої 
пластинки, в якій увігнута частина плавно сполу-
чається з частиною постійної товщини. Окреслено 
особливості формулювання граничних і перехідних 
умов, які необхідно дотримуватись при розгляді 
власних коливань двохступеневої пластинки.

Отримано співвідношення, які дозволяють вивчи-
ти розподіл прогинів і визначити значення амплітуд 
згінних коливань пластинки. Зазначено, що форми 
коливань побудовано на основі положень розробле-
них та розвинутих раніше авторами методів симет
рії та факторизації. Зокрема знайдено, що прогини 
можна дослідити через вирази, які визначаються 
через суму відповідних розв’язків двох лінійних дифе-
ренціальних рівнянь другого порядку зі змінними кое-
фіцієнтами. 

На основі запропонованого підходу визначено  
систему з вісьмох однорідних алгебраїчних рівнянь, 
яка дозволила побудувати частотне рівняння для 
пластинки, що жорстко закріплена за внутріш-
нім контуром і є вільною на зовнішньому контурі. 
Знайдено значення власних частот пластинки для 
перших трьох форм власних коливань. Причому, 
задля апробації та для розширення набору плас-
тинок різної конфігурації розглянуто пластинки  
з двома видами ввігнутості у їх змінній частині. 

Нові підходи та отримані на їх основі співвід-
ношення можуть бути корисними для подальшого 
розвитку методів розв’язку подібних задач мате-
матичної фізики на власні значення. Практичним 
уособленням цього є задачі про коливання пластинок 
змінної товщини різної форми

Ключові слова: власні частоти, форми коливань, 
аналітичний розв’язок, кільцева пластинка, вільні 
коливання, метод симетрій
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1. Introduction

Multifaceted research into mechanical vibrations re-
mains a pressing challenge for many fields of technology 
and equipment. Particular attention has traditionally been 
drawn to the vibrations of elements in the structures used 
for various purposes. These elements include turbine rotors, 
turbine blades and disks, assemblies for vehicles and air-
craft [1]. Plates of different configurations are widely used in 
mechanical engineering as an important type of design ele-
ments. However, analyzing their vibrations is one of the most 
important and difficult particular tasks in mechanics [2]. It 
should be noted that the theory of elastic bodies vibrations 
is an integral part of such a scientific discipline as applied 
acoustics, so plate vibrations could be considered, specifical-
ly, as the acoustic vibrations [3]. Such vibrations, especially 
in the high-frequency range (ultrasonic and near-ultrasonic),  
form an important part of modern technologies created 
through their targeted use. The most well-known examples 
of the use of vibrations relate to the methods for determining 

strength under conditions of variable load on rods or plates 
at elevated frequencies, cleaning parts, making or machining 
components made from super-solid materials with increased 
precision. Such technologies and their varieties are becom-
ing increasingly widely used for medical purposes [4]. For 
example, active acoustic elements are used in the equipment 
for the treatment of hearing diseases, urological problems 
(contactless destruction of kidney stones), in dentistry when 
filling teeth [5]. Thus, it is still a relevant task to study the 
vibrations of elastic bodies.

2. Literature review and problem statement

When searching for and studying the literary sources 
related to the stated problem about vibrations of a composite  
plate, one must focus only on single plates of variable thick-
ness. Of additional interest are the works that address plates  
of different outlines, other than the annular ones, as well as 
the plate elements in the composition of structures. What is 
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common to such plates and the specified one is the need to 
consider the fourth-order equations with variable coefficients.

Paper [6] employed a series method to derive a solution 
about the vibrations of an annular plate of linear-variable 
thickness, the results of which relate only to the principal 
frequency and mode of vibrations. The reason for the limited 
single result is probably the cumbersomeness and complexity 
of the analytical expressions used. 

Study [7] considers a similar problem, but the solution 
was obtained by the Ritz method using Chebyshev’s polyno-
mials, which is an obvious drawback.

In [8, 9], the vibrations of a plate of variable thickness 
were studied by a numerical method, but the scheme for 
finding the natural frequencies for higher vibration modes 
was not considered. 

Paper [10] applied a finite difference method to investi-
gate the vibrations of a composite plate containing a variable 
thickness area in the form of a radius transition. The solution 
is approximate, neither frequencies nor modes of vibrations 
were given in an explicit (analytical) form.

Article [11] examines a problem about the vibrations 
of a fully clamped elastic elliptical panel. The solution was 
derived in Mathieu’s functions by a method of separating 
variables in elliptical coordinates. Five natural frequencies 
were found. The solution is accurate and well-studied.

In work [12], a problem on the vibrations of an annular 
plate of variable thickness is solved approximately, using the 
approximation of movements based on spline functions. 

Study [13] examined the movement of an annular com-
posite plate at free vibrations by the method of colloquia
lisms. The solution is approximate.

In article [14], the object of the research is the thin plates 
of various outlines (elliptical and rectangular; the authors use 
an energy approach in combination with the method of trans-
formations by Kolosov-Muskhelishvili. The solution and the 
results are approximate. 

Numerical methods are used for rectangular plates in 
studies [15, 16]. The results are approximate. 

The free vibrations of an annular plate on elastic support 
according to the Winkler-Pasternak hypothesis were con-
sidered in [17]. Natural frequencies were determined by the 
Galerkin method.

Work [18] addresses the vibrations of an annular plate 
with a ring edge. Displacements are sought through the 
Fourier series. The problem on finding the natural frequen-
cies was noted and its solution is given through the use of 
numerical methods.

Our review has revealed that, except for known ap-
proaches and methods, no new ones have been proposed, 
presumably because of the lack of them. This suggests that 
it is appropriate to conduct a study into the problem-solving 
about plate vibrations, whose mathematical model are the 
fourth-order equations with variable coefficients. A part of 
this issue is the problems about the vibrations of plates with 
variable thickness, including composite plates, in which the 
part with variable thickness is smoothly aligned to the part 
of a permanent thickness. Even though there is no scientific 
problem about composite plates in principle, resolving the 
stated technically laborious problem about the vibrations of 
composite plates has an important practical significance.

3. The aim and objectives of the study

The aim of this study is to build an algorithm to ana-
lytically solve a problem about the natural vibrations of  
a composite two-stage annular plate with steps of the vari-
able (concave) and constant thickness.

To accomplish the aim, the following tasks have been set:
– based on the symmetry method, build a common 

solution to the problem about the natural axisymmetric 
vibrations of a composite annular plate of the predefined 
configuration; 

– to establish the ratios for the boundary and transitional 
conditions for a composite annular plate, which is rigidly 
fixed along the inner contour and is free along the outer one; 

– to derive a frequency equation for the specified plate; 
– to calculate the natural frequencies and build the vibra-

tion modes for two types of a plate in a given configuration 
with varying degrees of concaveness in their variable part.

4. Building a common solution for a composite plate

An annular plate (Fig. 1) is considered, whose variable 
thickness changes according to the law h = h0H(ρ), where 
H = (1–µρ)2, and the conjugated region has a constant thick-
ness h* = const. Here, h0, µ are the constants, ρ = r/R is the 
dimensionless radius, r is the variable radius; R is the radius 
of the plate. The variable section of the plate is limited to 
the radii ρ = ρ1 ÷ ρ2; constant – radii ρ = ρ2 ÷ 1. If ρ = 0, then 
h = h0. When the sections of the plate are aligned, at ρ = ρ2, 
we obtain h* = h0(1–µρ2)2. This thickness remains unchanged 
at ρ = ρ2 ÷ 1. 

h* h0

R

ρ 

h

ρ =1

ρ1

ρ2

 
Fig. 1. Graphic representation of a composite plate
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Deflections W along a section of variable thickness are 
determined by the sum of the solutions W = W1+W2 to the 
following differential equations [19]:
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ω = 2πf is the annular frequency, f is the cyclical frequency;  
v is the Poisson coefficient; g is the acceleration of gravity;  
γ is the specific weight; E is an elasticity module. 

Equations (1) are converted to the following form after 
the variables are replaced:
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In this case, according to the symmetry method, the 
exact solutions to equations (3) will be determined from 
expressions:
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D0, C0 are the constants set according to (4); A, B, A1, B1 are 
the arbitrary constants.

Solutions (5) in the expanded form are recorded as:
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with designations:
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Deflections W0 for the region of constant thick-
ness (Fig. 1) are determined by the sum of the solutions 
W0 = W01+W02, where W01, W02 are the solutions to the fol-
lowing differential equations (here, derivatives for variable ρ)  
derived from (1) at H = const:
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Known solutions follow from (7):
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that is,

W aJ bY a I b K0 0 0 1 0 1 0= ( ) + ( ) + ( ) + ( )λρ λρ λρ λρ . 	 (11)

Thus, solutions (6) and (11) provide an opportunity, 
based on the boundary conditions, to derive a solution to the 
problem for solid or annular composite plates with different 
way of fixing them.

5. Boundary and transitional conditions for  
a composite annular plate, rigidly fixed along  

the inner contour

If the plate is rigidly fixed along the inner contour (ρ = ρ1) 
and is free along the outer one (ρ = 1), then it is necessary to 
satisfy the following boundary conditions: 

– in the first case (rigidly fixed):
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=ρ ρ1
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– in the second case (a free edge):
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In addition, it is also necessary to meet the conditions 
for the conjugation (transitional conditions) at ρ = ρ2, which 
ultimately take the form:
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Because W = W1+W2; W0 = W01+W02, the conditions (13), 
(14) containing higher derivatives from functions (W, W0) 
could be transformed so that they are expressed only through 
(W1, 2, ′W1 2, ) and (W01, 02, ′W01 02, ), which simplifies subsequent 
analytical considerations. 

We find from (1), given W = W1+W2:
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From (7), by assuming W0 = W01+W02, we similarly  
obtain:
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Considering (17), (18), the boundary conditions (13) at 
ν = 1/3 take the form, respectively:
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The last condition from (14) under the same precon-
ditions, and when taking into consideration the expres-
sion W
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The transformed boundary and transitional conditions, 
obtained for direct use, make it possible, by applying solu-
tions (6) and (10), to obtain a frequency equation.

6. Derivation of a frequency equation

After fitting expressions W, W ′, W0, ′W0  into (12), (19), 
(20) ÷ (22), at the corresponding boundary values ρ or x, 
we obtain eight homogeneous algebraic equations relative 
to the desired constants Ai, Bi, ai, bi. By equating the deter-
minator of this system to zero, we obtain a frequency equa-
tion. To solve the stated problem, we record the expressions 
for the required functions. Because W(ρ) = W1(ρ)+W2(ρ) =  
= y1(x)+y2(x), then from (6):
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By using known formulae for differentiating the Bessel 
functions [20], that is:
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	 (24)

we derive

′= − +( ) ′ ( ) + ( ) 
′ = − +( ) ′
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
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	 (25)
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We obtain from (10) and (11), in line with (24),

′ = − ( ) + ( ) 
′ = − − ( ) + ( ) 
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λ λρ λρ

λ λρ λρ

;
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	 (27)
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W
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Following the introduction of expressions (23) and (26) 
to (12), at ρ = ρ1, x = x1, we derive equations:

Aq Bp A a B p

Aq Bp A q B p

+ + + =
+ + + =





1 1 1 1

2 2 1 3 1 3

0

0
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,
	 (29)

where at x = x1 

q x C J x xJ x= +( ) ( ) − ( ) λ λ λ1
2

0 0 1 1 12 ;

p x C Y x xY x= +( ) ( ) − ( ) λ λ λ1
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q x C I x xI x1 2
2
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q J x2 1
2

1 1= ( )λ λ ;  p Y x2 1
2

1 1= ( )λ λ ;  

q I x3 2
2

1 2= ( )λ λ ;  p K x3 2
2

1 2= − ( )λ λ .

The two equations follow from (19) considering (10)  
and (27) at ρ = 1
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	 (30)

Similarly, from (20), considering (11), (23), (26), (28)  
at ρ = ρ2, x = x2, we derive two more equations:
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	 (31)

where at x = x2

Q x C J x xJ x= +( ) ( ) − ( ) λ λ λ1
2

0 0 1 1 12 ;
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From (21) and (22), by using (6), (10), (11), (25), (27), 
(28), we write down, believing ρ = ρ2, x = x2, the following two 
equations, respectively:
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+ + + + + =
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,
	 (32)

where at ρ = ρ2, x = x2
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The frequency equation follows from the system of equa-
tions (29) to (32):

The resulting frequency equa-
tion makes it possible to derive the 
natural frequencies of the compo
site plate of the predefined profile.

7. Calculating natural 
frequencies, building  

vibration modes

To illustrate the effectiveness 
of the devised procedure for solv-
ing the stated problem about natu
ral values, we selected two types 
of plates with varying degrees of 
concaveness in their variable part. 

Plate 1 has the following parameters: µ = 0.5985; ρ1 = 0.1; 
ρ2 = 0.5; x1 = 0.0617; x2 = 0.3556; k = λ·0.70075. 

Plate 2 is characterized by the following parameters: 
µ = 0.6725; ρ1 = 0.25; ρ2 = 0.5; x1 = 0.184064; x2 = 0.409827; 
k = λ·0.66375.

The results of calculating natural (frequency) numbers 
from equation (33) for the first three natural vibration modes 
of plates 1 and 2 are given in Table 1.

Table 1 
Frequency numbers of plates

Number of  
a vibration mode

Plate 1 Plate 2

I k = 1 62759. k = 1 71890.

II k = 4 15673. k = 4 47488.

III k = 6 61722. k = 7 48927.

To construct the vibration modes (deflections) from the 
system of equations (29) to (32), after substituting the de-
rived numbers kj (j = 1, 2, 3), we determine coefficients Ai, Bi, 
ai, bi included in (11) and (23). The graphic representation of 
deflections under the first mode of vibrations of plates 1 and 
2 is shown in Fig. 2, under the second mode – in Fig. 3, and 
under the third mode – in Fig. 4. Fig. 2–4 can be used to judge 
the differences in the distribution of nodes and antinodes of 
vibrations depending on the degree of concaveness (parame-
ter µ) and the values of radius ρ1 of the fixing contour. Note 
that based on the well-known features of plate deformations, 
the maximum radial stresses, which are the most dangerous, 
operate in the zone of maximum deflections. From Fig. 2–4 
one could establish those sections of the plate where such 

stresses occur. It is obvious that from 
this point of view the most favorable si- 
tuation is the one in which the maximum 
of stresses is shifted towards the thick-
ened part of the plate. In that sense, as 
shown in Fig. 2–4, plate 1 is preferable.

A quantitative assessment of the 
stressed-deformed state of the entire 
plate could be given by using, to calcu-
late the stresses, the formulae, known 
from theory, to which one should intro-
duce the natural frequencies and func-
tions of deflections derived in this pa-
per, following the example of work [21].
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Fig. 2. Graphic representation of deflections under the first mode of vibrations
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8. Discussion of results from solving a problem  
on the vibrations of a composite plate

A common solution, suitable for studying the vibrations 
of solid or annular composite plates of the predefined geo
metry under any boundary conditions, is based on common 
solutions for the two smoothly conjugated sections. For  
a section of variable thickness, the sum of solutions (6) deter-
mines its deflections. To build the deflections along a section 
of permanent thickness, solution (11) is applicable.

The principal issue in solving such problems for com-
posite plates is the construction of solutions for a section of 
variable thickness, as at present there is no general method 
for solving differential equations of the fourth-order with 
variable coefficients. In a given case, for the adopted parabo
lic law of change in thickness, the analytical solution was de-
rived through the application of the symmetry method, a new 
method for problems on natural values, which we construc
ted for this class of problems. Special features in the symme-
try method for vibration problems imply the possibility to 
obtain precise solutions to the second-order equations with 
variable coefficients, built so that the number of such solu-
tions is fundamentally unlimited. Solutions (6) were derived 

for two second-order equations (3) 
after they had replaced the origi-
nal fourth-order equation of vibra-
tions. The limitations of the me
thod stem from a solution scheme, 
according to which it is necessary 
to pre-reduce the order of a dif-
ferential equation to the order not 
higher than the second order. This 
requires the application of a facto
rization method, which, while not 
universal, has limited capabilities.

Overcoming the above limita-
tions and difficulties may only be 
possible in the search for new ap-
proaches or the advancement of the 
symmetry method towards its more 
effective application for problems 
involving higher-order equations. 

The transformed boundary and  
transitional conditions (12) to (14),  
expressed only through deflections, 
as well as their first derivatives, 
make it easier to calculate since the 
Bessel functions used here would 
be represented only by zero and 
first-order functions.

The equation system (29) to 
(32), obtained after the implemen-
tation of boundary and transitional 
conditions (12) to (14), leads to 
a frequency equation (33) in the 
form of a determinant of the eighth 
order equal to zero. The elements 
of this determinant are expressed 
in a complete, more compact form 
due to the above lower-order Bes-
sel functions. This makes it easier 
to calculate frequencies because it 
makes it much easier to program 
the frequency determinant.

The frequency numbers, calculated from equation (33) for 
a plate with two types of concaveness of a parabolic section 
and a different diameter of the fixing contour, have allowed 
us to build the modes of their natural vibrations that cor-
respond to these numbers. The vibration modes in the form 
of a graphic representation of deflections (Fig. 2–4) provide  
a clear picture of the nature of their change along the current 
radius of the plates. It is obvious that by following the above 
procedure it is possible to similarly study the vibrations of an 
annular plate of a given type with different geometric parame-
ters and with other boundary conditions, including vibrations 
of a solid composite plate.

9.  Conclusions

1. Based on the symmetry method, a general analytical 
solution has been derived to the problem on the natural axi
symmetric vibrations of an annular plate, composed of a part, 
concave in line with a parabolic law h = h0(1–µρ)2, conjuga
ted to the part of permanent thickness. The solution makes it 
possible to study vibrations of both solid and annular plates 
of a given type at different ways of fixing them.
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Fig. 3. Graphic representation of deflections under the second mode of vibrations

Fig. 4. Graphic representation of deflections under the third mode of vibrations
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2. We have established the transformed ratios for the 
boundary and transitional conditions for a composite annular 
plate of the predefined configuration, rigidly fixed along the 
inner contour and free along the outer contour. A special 
feature of the proposed ratios is their dependence only on 
the functions of deflections and their first derivatives, which 
significantly simplifies analytical calculations.

3. The frequency equation has been given in the form of  
a determinant of the eighth order equal to zero and the 
scheme of its derivation for a composite annular plate, rigidly 
fixed along the inner contour.

4. As an example of the feasibility of the algorithm crea
ted, we have computed the first three natural frequencies 
(numbers kj) for two types of a plate of the predefined 
configuration, but with varying degrees of concaveness, de-
termined by the µ parameter, and with different values for 
the radius of the fixing contour ρ1. For the case µ = 0.5985 
and ρ1 = 0.1 (plate 1), the frequency numbers (Table 1)  
kj (j = 1, 2, 3) are lower, respectively, by (5.3; 7.1; 11.6) %,  
than those for plate 2 (µ = 0.6725, ρ1 = 0.25). The difference in 

frequencies is due to the difference in curved rigidity, determi- 
ned by the thickness and the radial size of a plate (1–ρ1). If there 
is little difference in thickness throughout the entire length, 
the rigidity would be determined by the values 1–ρ1 = 0.9;  
0.75 for plates 1 and 2, respectively. The smaller (1–ρ1), the 
more rigid the rigidity, and the higher its frequency.

Based on the derived frequency numbers, the vibration 
modes have been constructed and their brief analysis has been 
carried out. In particular, it has been shown that plate 1 is 
more preferable from the point of view of a hypothetical ulti-
mate resource since the maximum of dangerous radial stresses 
acting in the zone of antinodes of displacements (ρI≈0.4; 
ρII≈0.25) is shifted towards the thickened part more than that 
of plate 2, where the antinodes (ρI≈0.55; ρII≈0.45) are close to 
a thinner transition section. The above analysis is indicative 
and more of a qualitative nature since the task of quantifying 
the expected results was not set. If one needs a complete 
analysis of the advantages or advantages of this type of plates 
from an operational standpoint, it is necessary to conduct 
a  targeted study using the algorithm described in this paper.
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