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Busnaueno ymosu nacmanus OuHamiunozo
asmobanancyeanns y eunadxy pomopa Ha 060X
NPYNHCHO-6’A3KUX Onopax, wo Oanancyemvcs
deoma i Ginvue nacusHumMu aemMobANANCUPOM
0yOv-aK020 muny.

3acmocosano MooepHiz06anull enepzemuitul
Memo0 8 npunyueni, w0 mMaca 6aAHMalicie aemo-
banancupie nabazamo menwe macu pomopa.
Memoo pospobaenuii 01 pomopie na izomponnux
NPYHCHO -6 AKUX ONOPAX, KOAU 00 POMOpa npueo-
Hawi mina, 610HOCHOMY PYXY AKUX NePeuKo0xica-
10mo npysicHi i 6 ’13xKi cuau onopy. Memoo 0036015€
3Haxo0umu cmavionapui pyxu pomopmoi cucme-
Mu, oyinrosamu ix cmiixicms. Ha cmayionapnux
pYyxax 6i0HOCHI PYXu NPUECOHAHUX MINL NPUNUHS-
omvcsa, i cucmema obepmaemvca Ax o0He uine
HABK0.J10 0Ci 00epmanis, ymeopenoi onopamu.

Onucana mexaniko-mamemamuuna mooesv
cucmemu. 3HatiOeHUll Y3azaavHeHuil NOmMeHuiaL
Ha cmayionapnux pyxax i OUCUnamueHa Pynruis,
wo 6idnogidae onopam. /Ins yzazansvneHux xKoop-
Junam pomopa cxaaoeni pieHAHHA CMAUIOHAPHUX
pyxie cucmemu. Ysazanvrenuii nomenyian 0ocui-
O0dicenuil Ha YMOBHULL eKCMpPeMyM 6 NpunyujeHni,
WO BUKOHYIOMBCS PIGHAHHS CIMAUIOHAPHUX PYXi6,
wo 6iodnogioaiomv ysazanvieHuMm KOOpOUHAMAM
pomopa.

Bcmanosneno, wo ounamiune Ganancyseanns
POmopa MojicAUGO Minvku 6 pasi 0062020 pomo-
pa, 06ox i Ginvwe asemoodanancupie 0yov-1K020
muny, 6CMAHOBIEHUX 6 PI3HUX NIOWUHAX KOPEKUTT
i minvku Ha 3aPe30HANCH020 WEUOKOCMAX 00ep-
manns pomopa. Bcmanogaeno, wo cunu onopy
6 0NOpax s6HO He 3MIHIOIOMb YMOBU HACMAHHS
asmodanNancyeants, 00HAK MOJNCYMo 3MIHIOBAMU
Ul YMOBU HEABHO — WAAXOM 3MIHU obnacmi ichy-
B8AHHS CMAUIOHAPHUX PYXi6.

Ompumanuii pe3yromam 30izacmocsi 3 pe3yiv-
mamom, ompumanum i3 3acMocyeéaHHaAM Yy3a-
2aIbHEH020 eMNIPUMHO20 KPUMEPI0 HACMAHHS
asmobanancyeanns npu Heepaxyeanns oemndi-
pyeanns 6 onopax. Iloxazano, wo modepnizosa-
Huil eHepeemuvnuil Memoo (K 1 Y3azaavHeHull
eMnipuuHull Kpumepiii HACMAHHs aémoodanNancy-
6anns) 003605€ 3HAXOOUMU Y3A2ATbHEH] YMOBU
Hacmannsa asmobéanancyeanns, npuoammui 0Ons
0yOv-axux munie asmoodanancupis. Tomy o6udea
Memoou npuoammi 015 nodyo0oeu 3a2aavHoi meo-
Ppii nacusnux aemobanancupie — 3acmocoenoi 0
asmobanancupie 0yov-saKxozo muny

Kntouosi cnosa: pomop, izomponna onopa,
asmobanancup, cmauionapHuii pyx, cmiiixicmo
PYXY, PIBHAHHS YCMATIEHO20 PYXY
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1. Introduction

with auto-balancers becomes steady state. At the so-called

Passive auto-balancers are used to balance the rapidly
rotating rotors [1-3]. Over time, the motion of a rotor

main (steady state) motions, loads balance the rotor, while at
the side ones they do not [3]. For auto-balancers to work, it is
required that the main motions should be stable [1—15] while



it would suffice that the side motions are unstable. The most
general information on the performance of auto-balancers is
provided by the results of analytical studies. In this regard,
there is a common problem of building the theory of passive
auto-balancing.

Passive auto-balancers can be classic (pendulum, roller,
ball, ring, etc.) [1-3] and non-classic [3, 9, 10]. A large va-
riety of both different types of auto-balancers and different
rotary machines makes it much more difficult to build an
analytical theory of passive auto-balancing by traditional
methods based on the search for steady state motions of the
rotary system and on studying their stability [2-10, 15].
Such analytical studies are much more difficult, or impossible
at all, for cases of auto-balancers with many loads, multi-row
auto-balancers, several auto-balancers, with an increase in
the number of degrees of freedom of the rotary system, etc.
Importantly, such cases are absolutely relevant to practice.

In order to construct a general theory of passive auto-
balancing, empirical criteria for auto-balancing occurrence
were developed [3, 12, 13]. The analytical results obtained
from their application are general in nature as they are appli-
cable for auto-balancers of any type [3, 11—-13]. The criteria
make it possible to answer the question under what condi-
tions and over which range of rotation speeds it becomes
feasible to balance a rigid or flexible rotor, fixed in a certain
way by one or more passive auto-balancers.

Energy methods [14, 15] were devised to find and assess
the stability of all stationary steady state motions (at which
loads rotate in sync with the rotor).

It is a relevant task to show that under certain additional
assumptions energy methods also make it possible to build
a general theory of passive auto-balancing. At the same time,
it is important to find analytical conditions for the occur-
rence of dynamic auto-balancing for a rotor on two isotropic
supports, formed both by elastic bodies (springs) and viscous
bodies (dampers). The specified mechanical system can simu-
late balancing, by passive auto-balancers, of washing machine
drums, centrifuges, extractors, separators, rotating parts in
the assemblies of axial and centrifugal fans, etc.

The existence of two different approaches (empirical and
energy) makes it possible, at the lowest labor cost, to build
a general theory of passive auto-balancing, to test correctness
of the results obtained by solving a single problem by diffe-
rent methods.

2. Literature review and problem statement

We shall take a closer look at the results obtained for the
case of dynamic balancing of a two-support rotor by two passive
auto-balancers with two identical loads (pendulums, balls, etc.).

It was assumed in [4] that the mass of auto-balancers was
much smaller than the mass of the rotor, that there were no re-
sistance forces in the supports of the rotor; the rotational motion
of balls rolling along running tracks was not taken into consider-
ation (the balls were modeled by mathematical pendulums). It
was established that balancing was possible only for the case of
along rotor at over-the-resonance speeds of rotation.

Similarly to[4], the conditions for auto-balancing oc-
currence were obtained in [5], but the authors considered
the rotation of balls during rolling without sliding along the
running track.

A mathematical model, similar to the model from work [4],
was built in paper [6]; it, however, took into consideration

viscous resistance in the rotor supports. The numerical me-
thods established that auto-balancing sets in at speeds slight-
ly above the largest resonance speed of rotor rotation, provi-
ded that the rotor is long. The result is specific in nature as it
was obtained at certain values for the system parameters. The
authors did not examine a pattern of the effect of damping in
supports on the conditions for auto-balancing occurrence.

Paper [7] reports a mathematical model under whose
framework balls are considered to be particles (mathematical
pendulums). The model takes into consideration the forces
of dry and viscous friction, which prevent the motion of balls
relative to the rotor, the forces of damping in the supports and
the forces of gravity. Computational experiments found that
the dynamic auto-balancing occurs for the case of a long rotor
at the over-the-resonance speeds of rotor rotation. The result
is specific in character. The authors did not study the patterns
of influence exerted by damping in supports, forces of gravity,
dry friction on the conditions for auto-balancing occurrence.

Article [8] describes a study, similar to that reported
in [6,] the difference being the consideration of supports
anisotropy. Numerical methods established that the dynamic
auto-balancing was possible only for the case of a long rotor
at the over-the-resonance speeds of rotation. The authors
did not investigate the pattern of the effect of damping in
supports on the conditions for auto-balancing occurrence.

The balancing of the rotor by a new type of the passive
auto-balancer, ball-rod-spring-type, was explored in [9], and
the ball-spring-type was explored in [10]. The research was
conducted mainly by numerical methods. Each auto-balancer
had two identical loads. At certain parameters of the system
it was found that the new auto-balancers had parameter
spaces, within which auto-balancing occurs, that were no less
than those in a conventional ball-type auto-balancer.

The approaches applied in papers [4-10] are labor-
intensive because they are implemented for a particular type
of an auto-balancer and are based on finding the system’s
steady state motions and studying their stability. Analytical
results were obtained only if the forces of viscous resistance
in supports were not taken into consideration and only for
auto-balancers with two loads.

Let us consider those approaches that make it possible
to build a general theory of passive auto-balancers. Such
approaches provide analytical results suitable for any type of
auto-balancers.

An engineering (empirical) criterion for auto-balancing
occurrence was proposed in [3] when balancing the rotor with
a single auto-balancer of any type in a single plane of correc-
tion. The authors established conditions for auto-balancing
occurrence when balancing the rotor with one auto-balancer
of any type at the different kinematics of rotor motion.

In [11], the engineering (empirical) criterion was used to
determine the conditions for auto-balancing occurrence when
balancing the rotor on two isotropic elastic supports with by
a single auto-balancer of any type. The authors demonstrated
applicability of the criterion at the mass of auto-balancers’
loads and rotor imbalance comparable to the mass of the rotor.

The engineering (empirical) criterion for auto-balanc-
ing occurrence was modernized in [12] to obtain the auto-
balancing occurrence conditions when balancing the rotor by
any number of auto-balancers of any type. The application of
the new criterion and its effectiveness were illustrated by the
problem on balancing, by several auto-balancers (excessive
quantity), a solid axisymmetric rotor with a fixed point and
an isotropic elastic support.



In [13], the modernized empirical criterion for the oc-
currence of auto-balancing was applied to the axisymmetric
rotor on two isotropic elastic supports. As a result, it was
found that it was possible to dynamically balance only a long
rotor, by two or more passive auto-balancers of any type
and only at the over-the-resonance speeds of rotation. The
results obtained in [13] are the most general, as they cover
the results reported in studies [4—10]. However, the influ-
ence of resistance forces in the supports on the conditions for
auto-balancing occurrence was not studied.

It should be noted that the application of empirical crite-
ria is complicated when the forces of viscous resistance in the
supports are taken into consideration [3, 11—13]. The criteria
themselves require a validation of their operation correct-
ness. Therefore, it is advisable to obtain conditions for the
occurrence of auto-balancing through an alternative method.
An alternative method that mighty be used is the generalized
energy method for studying the stationary motions of rotors
with passive auto-balancers, outlined in [14]. This method
is a generalization of the approach used in [15] in order to
search for all stationary motions and to assess their stability
within a flat rotor model on isotropic elastic supports, ba-
lanced by a two-ball auto-balancer.

The generalized energy method is applicable for rotors on
isotropic elastic-viscous supports, for cases when the rotor
carries attached bodies, on which viscous and elastic forces
act when moving relative to the rotor. The method makes
it possible to find conditions for the emergence, existence,
and disappearance of all stationary motions of the rotor sys-
tem, as well as to assess the stability of these motions. The
results reported in [14] suggest that the generalized energy
method is applicable in order to obtain conditions for the
occurrence of auto-balancing suitable for any type of passive
auto-balancers.

3. The aim and objectives of the study

The aim of this study is to find analytical conditions for
the occurrence of dynamic auto-balancing for a rotor on
two isotropic elastic-viscous supports and to assess at the
same time: the effect of damping in supports on the stability
of stationary motions of the system; applicability of the
modernized energy method for building a general theory of
passive auto-balancing.

To accomplish the aim, the following tasks have been set:

— to find, by using the modernized energy method, condi-
tions for the occurrence of auto-balancing for the examined
rotor system,;

— to assess the impact of damping in support on the sta-
bility of stationary motions of the system;

— to verify suitability of the method to build a general
theory of passive auto-balancers (applicable to auto-balan-
cers of any type).

4. Method of determining conditions for the occurrence
of auto-balancing

We shall use a generalized energy method [14]. The rotor
is mounted on isotropic elastic-viscous supports and rotates
at a constant angular velocity w. The auto-balancers’ loads
move relative to the rotor. The relative motion of loads is
hindered by the Newton’s viscous resistance forces.

The generalized coordinates of the rotor are denoted as z;,
/i=1,n,/, where n_is the number of the rotor’s degrees of
freedom. The generalized coordinates of the attached bodies
are denoted as y;, /j=1,n,/, where n, is the number of
degrees of freedom of the attached bodies. At stationary mo-
tions, the generalized coordinates are constant:

z; =const,, /izﬁ/;\uj=c0nstj+”’,/j=m/. ¢))

Equations of stationary motions are divided into two
groups:

M i, yj=tm, s 2L O
dz; 0z dy; Iy,

=0,/j=1n,/, (2)

where II is the generalized potential, Dy is the linear part
of the dissipative function, constructed for the generalized
coordinates of the rotor.

In accordance with the generalized energy method, the
following constraints are imposed on rotor motions:

M Do yi=im . 3)
az/ az].

In accordance with them, the rotor instantly enters a po-
sition corresponding to the total imbalance. After that, the
loads tend to some equilibrium position.

For the stability of some stationary motion (1) of the ro-
tor system, it is required that the generalized potential T on
it should have at least an uninsulated conditional minimum.
In this case, the conditions are equations (3).

To obtain the generalized conditions for auto-balancing
occurrence, suitable for any type of auto-balancers, we intend
neither specify nor use the second group of equations in (2).
Special features related to the implementation of this idea are
outlined below using a rotor on two isotropic elastic-viscous
supports as an example.

3. Results of determining the generalized conditions
for the occurrence of dynamic auto-balancing

5. 1. Description of the system model

Fig. 1 shows a diagram of the rotor on two supports,
Fig. 2 demonstrates its motion pattern. The rotor is balanced,
rotating at a constant angular velocity w around the axis,
passing through the longitudinal axis of the rotor shaft at
undeformed supports. The masses that create imbalances
are rigidly connected to it. The rotor is equipped with pas-
sive auto-balancers in order to balance the imbalance. The
auto-balancers’ bodies are rigidly connected to the rotor.
Therefore, let us relate them to the rotor. Unbalanced masses
are considered separately from the rotor.

The rotor is held by isotropic elastic-viscous supports,
with the coefficients of rigidity and viscosity &, b, and k,, b,
respectively. The action of gravity forces is not taken into
consideration.

We shall set the motion of the rotor with the help of two
threes of the OXYZ and PEHZ axes. The PEHZ axes are the
main central axes of rotor inertia. In the static equilibrium
position of the stationary rotor, the two axis systems are the
same, with the Z, Z axes directed along the axis of the rotor
shaft. In the process of moving, the PEHZ axes move in the
following way. First, the PEHZ axes move progressively



along x, y relative to the OXYZ axes, and, therefore, move
into an intermediate position PX,Y,Z, — Fig. 2, a. Then, the
PX,Y,Z, axes are rotated at angles a, b, as shown in Fig. 2, b,
then they coalesce to the PEHZ axes. Then the PEHZ axes and
the OXYZ axes turn around the Z axis an angular velocity w.

Fig. 1. Schematic of a rotor
on two elastic-viscous supports

a b

Fig. 2. Schematic of a rotor motion

Note that at the steady motion the system rotates like a ri-
gid whole around the Z axis at a constant angular velocity w.

5. 2. Generalized potential, dissipative function, and
equations of stationary motions

The kinetic energy of the system at steady state motion. Re-
lative to the PEHZ axes, the inertia momentum of the system
is formed by two components — a rotor and an unbalance with
loads in auto-balancers. Denote the tensor of rotor inertia
through J¢”, the imbalances with loads — through J$”:

A 0 0
M=10 B 0}
0 0 C
Jo —Jo —Jx
=T e Juc | 4)
_-]éc _Jné JC

The system’s inertia tensor with respect to the PEHZ axes
is I, =]+ J5, hence:

I§=A+jg, In=B+]n, IC:C+]€,
Ig=Jea le=Jeo L= Jo )

For passive auto-balancers with solid loads J. = const [3].
Therefore:

I.=C+ ], =const. (6)

Let the system have coordinates of the center of mass
(point G, not shown in the diagram) &, n,, {, relative to
the PZHZ axes. Then the system’s inertia tensor relative to
the central axes of the system GE_H,Z, (not shown in the
diagram), parallel to the PEHZ axes:

I, =
L=My(G+85) —ly+MEong  —ly +MiEL,
= L+ MEM LM (EG+CE) T+ Mg |
—I§;+MZ§GCG —fng+Mznch I;_Mz(§é+né)
hence

I =T, -M, (W +8), I, =Ty~ MEM,,

I, =T = MEL,

Ly, =1, =My (86 +85), Ly, =l = MingCe,

I, =1, - M, (& +n?). 7

Here, M, is the mass of the entire system.

Note that the products of inertia I, I and coordinates
of the center of mass &, 1, are the parameters that charac-
terize the rotor unbalance.

We shall assume that the masses of imbalance and loads
are much less than the mass of the rotor. Given this, we shall
consider the following to be the magnitudes of the first order
of smallness:

— coordinates of the center of masses &, n, . and com-
ponents of the inertia tensor J§* of imbalance with loads;

— coordinates a, b, x, y of the rotor.

We shall search for the reduced potential with an accuracy
to the magnitudes of the second order of smallness inclusive.

According to the Kénig’s theorem (kinetics) [15], the ki-
netic energy of a system at steady state motion is the sum of
two components of kinetic energy: T, — translational motion of
the system together with the center of masses; T, — rotational
motion of the system around the center of masses. In this case,

T=T,+T,

T = ! M 20?, T = L2 1, 8

r = E 27(;(0 T Ew(;éa"lc;g(; Gm("é{;*\(;gc’ ( )

where 7, is the distance from the center of mass of the sys-
tem to the rotation axis Z; O n e, is the vector column of the
angular velocity of system rotation, found in projections onto
the GE_H_Z axes.

With an accuracy to the magnitudes of the first order of

smallness inclusive, the displacement of the center of rotor
mass relative to the OXYZ axes:

X :x+§G+§GB:x+§6,
Yo=y+n,-C,o=y+n,, z,=0. 9)

Then, with an accuracy to the magnitudes of the second
order of smallness inclusive:

T, :%Mz[(x+§c)z+(y+nc)2]mz =

1 o Y o7
:EMz[xz+?/2+2(XE_»(;+2yn(;)+§(z}+né]mz'



Projections of the system rotation angular velocity onto
the GE,H_Z,; axes (Fig. 2, b):

o, =-wcososinf= —(DB+O(BS)7

o, =osino= oaoc+0(oc3),

o, =ocosocosp=o[ 1-(a’+B’)/2]+0(a' B',a’B?). (11)
In turn,
T —1(1 of +1, o +I, o} )-
r P & & e Mg [P
- Ié(;no wi(;m“<; _I§G§<; 0);;(; 0\)@() - [“GCG w“u w@(; :
Then, with an accuracy to the magnitudes of the second
order of smallness inclusive:

2((B-C)o’ +(A-C)p’*
g |(B=Clot(a-C)p o (12)
2 [ #2( 1B L)+ I = (85 + 2 ) M,

Kinetic energy of the system with an accuracy to the

magnitudes of the second order of smallness inclusive:

(B-C)o*+(A-C)B* +

T="-1+2(LB —1,.0)+ +I0' /2. (13)
+M, [x2 +y’ +2(xE; +yn(;):|

The system’s potential energy:

V = (kAL +k,ALY) 2+ const,, (14)

where Al, Al, is the module of deformation of supports’
springs, consty is the undefined constant. In projections onto
the Kxyz axes:

Al =x+1B. (15)

With an accuracy to the magnitudes of the second order of
smallness inclusive:

k(22 + %)+ 2k, (Bx —oy)+
V= 11( ) M( ) 2+ const, (16)
+ ksg(a2+B2)

where
ky =k +ky, b=kl —kl,, ky=kIE+kI. 7

The generalized potential at the steady motion [T=V —T.
Assume:

const, =—I,0” /2.

Then, with an accuracy to the magnitudes of the second
order of smallness inclusive:

1 |[fs - (B=C)o* |o* +[ kyy —(A-C)* |B* +

P + (k= My )(x +* )+ 2k, (Bx — o) :

+ [Inta_IECB_MZ (x€ +ync):|w2'

Introduce designations:

Yy :(B_C)(”Z —ky Uy :(A_C)(D2 — ks,

0332044:Mz(02_k11~ (19)
Introduce vectors and matrices:
o -1 ng
q(") _ B , S= ]il ,
X MZ&G
y Mn,
v, O 0k,
0 o, -k 0
M= 22 14 (20)
0 -k, v, O
k, 0 0 o,

Then the generalized potential in the vector-matrix form:
M=05(¢") Mg” -w?(¢")'s. 21)

A dissipative function that corresponds to the rotor
supports:

b [3’6+Z1B—w(y—l1oc)] + .

I)(’)zi1 ‘
2 +[y'—l1dc+m(x+l1[3)]2
. . 2
+ﬁ I:X—ZZB_(D(y"‘ZQOL)] t =D(()")+D1(r)+Dér). (22)
2 +[y'+lz('x+w(x—lz[3)]
In (22):
DY =05 by (&7 +5°)+ 2b,, (B - 57)+ by (6 + )]
o b11(x2—yi)+b14(oci—xéc+By'—By)+ N
+by, (Boi—Bo)
DO =05 by (” +y”)+2b,, (B — o) + o 23

+ by, (oc2 +|32)

— quadratic, linear and constituents independent on the ge-
neralized velocities, and in (23):

b, =b+b,, b,=bl —bl, b,=bl’+b,l:. (24)
Introduce a skew-symmetric matrix:
0 -b, -b, 0
B = Z‘” 8 (O) :2“ (25)
b, b, 0
Then, in the vector-matrix form:
D" =0.504"B"q. (26)



Equations of stationary motions of the system, construc-
ted for generalized coordinates of the rotor:

oIl an')_
aq(” 8&1(”_

Mg -0’ + 0B ¢ = 0. 7

Hereafter, we consider equalities (27) as conditions
whose satisfaction implies investigating the generalized po-
tential for an extremum (21).

5. 3. Investigating the generalized potential for a con-
ditional extremum

5. 3. 1. Transforming the generalized potential

We shall investigate IT for a conditional extremum.
From (27) we find:

§=(Mg” + @B ") Jo*; (28)

¢" =0} (M+0B") 'S, (29)
1. Exclude imbalances S from II. Substituting S in TII,
we obtain:

M= O,S(q“))T g — w’ (q"))T S=
= O.S(q("))r Vg™ - w* (q("))r (Hq(’) + u)Bf")q"'))/m2 =

=-0.5(¢") 11g. (30)

The transforms take into consideration that the
skew-symmetric matrix B{” generates a zero quadratic
form ((¢)" B{"q""’ =0).

The transformed reduced potential does not implicitly
depend on the forces of viscous resistance in the supports.

2. Exclude the generalized coordinates of rotor q
from II.

Substitute the generalized coordinates of the rotor
from (29) in (30), we obtain:

M=-05(¢") 11" =

—1

= —0,5[0)2(11+me")) S]T 1'[(;)2(H+(1)Bf"))71 S=
:—0.50)4ST{[(H+me"))_1]T1'[(1'[+wa"))_1}5. 31)

According to the property of linear transformations of
quadratic forms, quadratic forms (30) and (31) simulta-
neously accept extreme values, under the same conditions
they are sign-defined, etc. [17]. Therefore, hereafter we shall
investigate stability of the main motion in quadratic form (30).

3. 3. 2. Conditions for the occurrence of dynamic auto-
balancing

We assume that the rotor is dynamically unbalanced.
Therefore, it is balanced by two or more auto-balancers in
two or more different planes of correction. Therefore, the pa-
rameters of imbalance I, I, &, M are independent of each
other and expressed at least through four independent coor-
dinates, setting the positions of loads relative to the rotor.

Let us evaluate stability of the main motions. According
to Sylvester’s criterion [17], the necessary and sufficient

conditions for a minimum of function of IT from (30) at the
main motion:

0, >0, /i=14/;
A, = o =005 >0;
0 o,
v, O 0
Ay =0 v, k=1, (022033 _k124) >0;
0 _k14 Uz
o, 0 0 &k,
0 v, —k, ; ;
A= 2= (0,0, — R ) (005 — K2 ) > 0. (32)
0 —ky, v
kM O 0 Uiif}

The first four conditions in (32) can be satisfied under the
following condition:

A>C, B>C (33)
at speeds that exceed:
o =max(\Jo,, /My, \Jor, [(A=C), e, [(B=C)}.  (34)

In accordance with condition (33), it is possible to dy-
namically balance only a long rotor.

Assume v, >0, /i=1,4 /. The condition A, > 0 is then met
automatically. Conditions A, >0 and A, >0 are met when the
following conditions are satisfied:

Ay =y =/ >0, Ay = a0, —cf, > 0. (35)

Equation A4=0 is an equation for finding the resonance
frequencies of rotor vibrations in the absence of resistance
forces [3]. Equation A4=0 is split into two equations Az;=0,
A4»=0. Conditions (35) are met only at the over-the-res-
onance speeds of rotor rotation. Thus, dynamic balancing
is only possible for a long rotor at the over-the-resonance
rotation speeds.

Let the rotor be mounted on supports so that £, =0.
Then conditions (35) take the form:

a,,055,>0, a,,a,,>0. (36)

In this case, auto-balancing can occur at speeds exceed-
ing @ rom (34). For actual rotor systems [3]:

\/%/M < \/633/(B_C) S\/Css/(A_C)’

which is why the necessary conditions for the occurrence of
auto-balancing:

0> e, /(A-C), A>C.

The resulting conditions for the occurrence of auto-
balancing summarize the results obtained earlier in [13] by
applying the results for the case of viscous resistance forces
in the supports.

(37)



6. Discussion of the derived conditions for the occurrence
of dynamic auto-balancing

It follows from the analysis of conditions (32) that the
rotor that executes a spatial motion and which is mounted
on two isotropic elastic-viscous supports can be dynami-
cally balanced by two or more auto-balancers only for
the case of a long rotor (33) at the over-the-resonance
speeds of rotation.

The result obtained coincides with the result derived
in [13] with the application of a generalized empirical crite-
rion of auto-balancing occurrence, while not accounting for
damping in supports. This confirms correctness of the results
obtained by using energy and empirical methods.

Damping in supports does not affect the existence and
the domain of stability of the main motions. Note that damp-
ing can affect both the side motions themselves and their
domains of existence. However, this influence can only be
investigated for specific types of auto-balancers using the
second group of stationary motion equations in (2).

The modernized energy method makes it possible to find
the necessary conditions for the occurrence of auto-balancing
without:

— searching for and assessing the stability of side statio-
nary motions;

— constructing differential equations of system motion.

The type and number of auto-balancers are not taken
into consideration in such studies. Therefore, the resulting
conditions are suitable for auto-balancers of any type, and the
method itself is suitable for building a general theory of passive
auto-balancing (applicable for auto-balancers of any type).

The method has flaws inherent in the approximate me-
thods for investigating motion stability by Lyapunov. The

method yields approximated boundaries of the regions where
auto-balancing sets in. In addition, the method does not make
it possible to study the non-stationary steady state motions of
the system and transitional processes.

In the future, it is planned to obtain, with the help of the
modernized energy method, conditions for the occurrence
of single-plane auto-balancing for a rotor on isotropic elas-
tic-viscous supports.

7. Conclusions

1. A rotor that executes a spatial motion and which is
mounted on two isotropic elastic-viscous supports can be
dynamically balanced by two or more auto-balancers of any
type only for the case of a long rotor at the over-the-reso-
nance speeds of rotation.

2. Damping in supports:

— does not affect the existence and the region of stability
of the main motions;

— can affect both the side motions themselves and the
regions of their existence.

3. The modernized energy method makes it possible to
find the necessary conditions for the occurrence of auto-
balancing without:

— searching for and assessing the stability of side statio-
nary motions;

— constructing differential equations of system motion.

The type and number of auto-balancers are not taken
into consideration in such studies. Therefore, the resulting
conditions are suitable for auto-balancers of any type, and the
method itself is suitable for building a general theory of passive
auto-balancing (applicable for auto-balancers of any type).
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B menepiwmniii uac o0na 3 0cCHO8HUX NPOOIEM, WO BUHUKAE NI HaAC
mpusanoi excniayamayii 00HOCeKUIUHUX eNleKmpPo603is, noe’a3ana i3
HeoOxiOHicmIo niompumanns ix cnpasenozo mexuivnozo cmany. Ipu
UbOMY HEPIOKO 6UHAUATLHUM ACNEKMOM € ONEPAMUHE GUSIIEHHS
Has6HUX depexmie i nowK00X#ceHb 0CHOBHUX HECYUUX KOHCMPYKMUB-
HUX eJleMeHmMi6 KY30616 MAWUH, A MAKOHC HeOONYU,eHHS IX PO36UMKY
8 Oibu Cepio3ni KOHCMPYKMUBHT 610XUNIEHHS.

Memoto npoeedenux docaioxicenv € po3podKa cneyianizoeamnozo
Memody, wo 0036015€ BUABUMU BUHUKAIOYUL 8 NPOUECT eKCnyamauii
00HOCEKUIUHUX eNleKmP0603ie depekmu ix 0CHOBHUX HECYUUX KOH-
CMPYKMUSHUX elleMEeHMI8 KY306i6 HA PAHHIX CMAOIAX GUHUKHEHHS
i pozeumxy. lanuii memoo ounamiunoi inmezpanvrol ouinKu 0CHO-
6anull Ha anaai3i napuitinozo OUHAMIMHOZ20 CneKmpy KoHCMpYyKuii
enlekmpo6o3y. 3a 6eaUMUHOI 610XUNEHb 6i0 CNEKMPY NO BIOHOUEH-
HI0 00 MmeopemuuH020, OMPUMAHO20 HA OCHOBI MOOENI0BAHHI MEMO-
00M CKIHUEHUX eJleMeHMiB, € MONCAUBUM 6CMAHOBUMU NPUOIUIHULL
xapaxmep i Micye po3mauiy8anHs HAsL6HO20 NOWKOOHCEHHS, 0COOIU-
60 cKpumozo muny.

Ompumanuii 6 x00i 00CAi0ICEHb YACMOMHUNL CREKMP OCHOBGHUX
HeCYuux KOHCMPYKMUGHUX eJIeMEHMIB KY30616 00HOCEKUIUHUX eJleK -
mpoe6o3ie € 00cumod WiLbHUM i 3HAX00UMBCA 6 diana3oni wacmom 00
20 Iy. Hasenicmov nowko0y#ceHb 3HUNCYE 1020 3HAUEHHS, NPUUOMY
0 Halbibw PO3N0BCIO0ICEHUX 6 NPAKMUYL eKxcnayamauii munie
depexmis noodione 3nusicenns cmanosumv 25-30 %.

Egexmuenicmo npaxmuunozo 3acmocysanns memooa OurHamiu-
HOT iHmezpanvHoi oyiHKu npointocmposana Ha npuxkiadi Mawunu
AC3-008. Memoo 0036071u6 euseumu ckpume noOwK00MCeHHs 00HO-
20 i3 eJleMenmié HeCYy4u020 KapKacy nepednvoi noeepxui Kaoinu, me
ecmanosiiene npu CmManoapmuii npouedypi mexniunozo 00CaYy208y-
8anmnsa Mawunu. 3acmocyeéanns memooy OuHamiunoi inmezpanvioi
OUIHKU MeXHIMH020 Cmany 0Ja eJeKmpoeo3ie € 00680 YyHisepcab-
HUM Mma Mmoice dymu pexomendo6ano maxoic i 0N tHUMUX 00UHUYD
3ani3HUMH020 PYxXOMO20 cKaady. B npaxmuui enpoeadcenns nooio-
H020 ni0x00dy 003607UMb ePexmueno nonepeodicysamu po3eUMoK
asapitinux cumyauyii

Kmouoei croea: oonocexuyiitnuii enexmpoeos, mexuiune o0cayzo-
8YBAHHS, MenO0O Ounamiunoi itmezpanvioi OUiHKU, MeXHIMHUL cman
u| m,
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used on railways. They were produced in bulk in the 20th

century and therefore have a fairly significant life. Most

At present, a whole fleet of one-section electric lo-
comotives of various types and manufacturers is widely

machines of this type are designed for standard-gauge rail-
ways (1,524/1,520 mm). The most structurally successful





