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Dynxuin Ipina 3naxooums wupoxe sacmo-
CYBaHHs nMpu po36’a3Ky Kpanosux 3adau Ons
Juepenyianvnux pieHaHb, 00 AKUX 360-
osmbes Oazamo mamemamuvnux i Qizumnux
3adau. 3oxpema, po3e’asxu oudepenuianvnux
PIBHAND 3 YACMUHHUMU NOXIOHUMU MEMOOOM
Dyp’e 3600amvces 00 Kpatiosux 3a0an Ons 36u-
yaiinux oudepenuianvnux pienans. 3a dono-
Moz20t0 Pynxuii Ipina oas o0nopionoi 3adaui
MoJCHa 3Halmu Po36’130K He0OHOPIOH020
Jucpepenuianviozo pienanns. 3nanns Qynruii
Ipina dae moxcausicmo posze’azyeamu uinui
KJAC 3a0a4 3 3HAX00HCEHHS 6JLACHUX 3HAMEHD 6
K68aHmMosi meopii nons.

Onucana pospobaena nodyoosa Qynruii
I'pina kpaiiosux 3adau oasn 3eunarinux ainiu-
Hux Judepenuianvrux pieusans. Ilpedcmaeneni
anzopumm i npozpama 6 cucmemi Maple ons
oouucaenns Qynxuii Ipina xpaiiogux zadau
ona Oupepenuianvnux pieHanv 0py2020 ma
mpemvozo NOpAOKie 6 AGHOMY AHANIMUMHO-
My euensnodi. Hasedeni npuxaadu oéuucaen-
Ha Qynxuii Ipina 0ns KoHKpemHux xkpaiio-
eux 3adau. Heobxiona ons nooyooeu pynxuii
Ipina pynoamenmanvna cucmema po3e’sasxie
36unalinux oudepenuianbHux pieHAHb 3 0CO-
ONUBUMU MOUKAMU 0GUUCTIOEMBCA 6 GU2AA0L
y3azanrvHeHUx cmenexeeux psdié 3a 0ono-
M02010 pO3pobaenux npozpam 6 cepedosu-
wi Maple. Po3pobaeno anzopumm noodyoosu
Qynxuii Tpina 6 euensdi cmenenesux paoie
ona duepenuyianvrozo pisnanns opyzozo ma
mpemvo20 nopsaokie 3 3a0aHuMu Kpauoeu-
Mu ymosamu. Cxaadeno poboui npozpamu 6
cepedosuui Maple 0ns obuucaenns Qymxuii
I'pina dosinvnux xpaiiosux 3aday ons ouge-
PeHUianvHUX PieHAHbL 0pY2020 mMa mpemvo-
20 nopsoxie. Hasedeno pospaxynxu Qynx-
uii Ipina 0na xonkpemnux xpaiiosux 3adau
mpemvo20 nopsaoky 3a 00NoM02010 po3poodie-
Hoi npoepamu. Ilposedeno nopiensamnns ompu-
Mmanoi nadauxcenoi pynxuii Ipina 3 eidomumu
supazamu mounoi ¢yuxuii I'pina i ompumana
Oyoice eapna 3200a

Kanrouogi cnosa: yuxuia I'pina, 3euuaii-
Hi Qugpepenyianvii pieHANHA, cmenenesi paou,
Y3azanvHeni cmenenesi paou, Kpaiiosi zadayi
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1. Introduction

The Green’s function is widely used in solving boundary
value problems for differential equations, to which many
mathematical and physical problems are reduced. In partic-
ular, solutions of partial differential equations by the Fourier
method are reduced to boundary value problems for ordinary
differential equations. Let’s note that using the Green’s func-
tion for a homogeneous problem, it is possible to calculate the
solution of an inhomogeneous differential equation. Also, us-
ing the Green’s function, one can solve the problem of finding
eigenvalues, which are very relevant in quantum field theory.
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Actual and important in mathematical research are the
problems of integrating linear ordinary differential equa-
tions of the third order, as well as constructing on their basis
the Green’s function of the boundary value problem for an
ordinary differential equation of the third order.

2. Literature review and problem statement

The Green’s function in one variable must satisfy the
original differential equation of any boundary value prob-
lem. Therefore, the Green’s function itself can be represented



as a linear combination of linearly independent solutions
(fundamental system of solutions) of the original differen-
tial equation. The problem of finding linearly independent
solutions of the original differential equation is considered
in detail in [1]. The problem of solving the initial differen-
tial equation when studying the properties of a harmonic
oscillator in an electromagnetic field is considered in [2].
The problem of finding solutions to the differential equation
in quantum mechanics is considered in [3, 4] when finding
the field potential in the Schrédinger equation. Finding
solutions of inhomogeneous differential equations with a
power law dependence of heterogeneity is considered in
detail in [5]. The problem of finding the integrability con-
ditions for second-order differential equations is considered
in [6]. However, finding a fundamental system of solutions is
a rather complicated, practically unexplored mathematical
problem. Thus, researchers in this field have come to the
conclusion that it is necessary to use the Green’s function to
find solutions of differential equations. This problem is con-
sidered in detail in [7-9], but it is not solved due to the non-
linearity of systems of differential equations. The authors of
this article managed to partially solve this problem using the
MAPLE computer system in calculating the eigenvalues and
eigenfunctions of the Mathieu equation [10]. The authors
of this article also used the MAPLE computer system to
study the nonlinear Hamiltonian system by the Birkhoff —
Gustavson method [11]. The need to obtain the Green’s func-
tion for solving differential equations in an analytical form is
shown in [12—14]. In [15], the problem of the nonlinearity of
a system of solutions of differential equations is considered,
which makes it impossible to obtain the Green’s function in
an analytical form. In addition, the search for a fundamental
system of solutions is even more complicated if the differen-
tial equation has singular points.

This difficulty can be overcome if solutions of differen-
tial equations are sought in the form of power series, and if
there are singular points, they are searched in the form of
generalized power series, for example, according to the Frobe-
nius method. However, this entails laborious tasks, such as
substituting series in series, their differentiation, comparing
coefficients at the same powers. In addition, when construct-
ing the Green’s function, problems arise for solving systems of
high-order algebraic equations. Therefore, for the successful
and accurate solution of such problems, the well-known com-
puter system of symbolic-numerical transformations Maple is
used, which allows to perform such necessary transformations
in an analytical form with sufficient accuracy and speed.

Therefore, the development of algorithms and compi-
lation of programs in the Maple system for explicitly cal-
culating Green’s functions and verifying the operation of
these programs for specific boundary value problems is quite
reasonable. The main properties and methods of construct-
ing the Green’s function, which we denote by G(x, &), as well
as a wide range of different classes of applied problems that
can be used to solve the Green’s function, are described in
many classical textbooks on differential equations, as well
as in special manuals [16] and monographs [17] on Green’s
functions.

3. The aim and objectives of research

The aim of this research is calculation of the Green’s
function of boundary value problems of ordinary differential

equations, linearly independent solutions of which, even if
there are singular points, can be effectively calculated using
programs using Maple computer-aided symbolic-numerical
computing systems.

To achieve the aim, the following objectives are set:

— to develop an algorithm for constructing the Green’s
function of boundary value problems for ordinary differen-
tial equations of the second and third orders;

—to develop an algorithm for finding the fundamental
system of solutions of ordinary differential equations of the
second and third orders;

—to carry out calculations of the Green’s function for
specific boundary value problems.

4. Green’s function calculation method

Let’s introduce the differential operator

N dn n—1
L= Po(x)wﬂL Pi(x)W”L
dn—Z
t0,(x) et (2). Q)

In the interval xe[a, D], let’s consider the boundary-value
problem for the ordinary differential equation

i { Y (x)} =0 2
with homogeneous boundary conditions:
n—1

U,(v)=

k=0

n—1
+> By (0)=0,
=0

Oy 'y(k) (a)+

n=1234. 3

Here y®(x) is the k-th derivative of the function y(x),
and yO(x)=y(x), o;;, and B, are numerical coefficients that
are not equal to zero at the same time, i.e. o +pj, #0,
i,k=0,1,2,3.

For convenience, the boundary conditions (3) are briefly
written in the form

U,(9)=U,,(y)+U,(y)=0. “)

Let’s give the main properties of the Green’s function
G(x, ).

1) the function is continuous and has continuous deriva-
tives with respect to x up to the (n—2) order, inclusive, for all
values of x and & from the interval [q, b];

2) the derivative of the (n—1) -order for x=¢ has a jump

equal to 1/py(E), i.e.

40 40 1
T C(E+08) - 55 G(E-08) ")

3) in each of the intervals [a, &) and (&, b], the function
G(x, &) in the variable x satisfies the differential equation
and the boundary conditions U,(G)=0, pu=1,2,3,4. The
function G(x, &) is called the Green’s function or the influ-
ence function for a given boundary value problem.




The following theorem is proved in the theory of differ-
ential equations: “If the boundary value problem has only
the trivial solution y(x)=0, then the operator L, that is,
the boundary value problem has one and only one Green’s
function. It is also equivalent that the number A=0 is an
eigenvalue of the operator L”.

Using the properties of the Green’s function, let’s present
general formulas for its calculation. For the application of
computer calculations, the Green’s function is conveniently
sought in the form [15]:

G- {ore 1 ®
where

G,(08)= . [4,(6)+ B, &)] 1 (x),

GR(x,a>=§[Ak<a)—Bk(é>] u(), ®)

and yx(x) are linearly independent solutions of differential
equation (2).

The conditions for the continuity of the Green’s function
(property 1) are written in the form of two equations

(N

and property 3) — the jump of the (n—1)-th derivative at the
point ¥=¢ is written in the form of the following equation

zB &)y () =——

Py (é) ’

As aresult, let’s obtain a linear system of algebraic equa-
tions with respect to the functions Bj():

>B1-y1(§)+B2~y2 (§)+B3-y3(§)+
+B,-y,(€)++B,-y,(§)=0,

By &)+ By (&) + By ()

#B-yP (e o+ B, (6)=0.
By (6)+ B,y (€)+ B,y )+ @
+B, - (8)+-+-+ B3 (6)=0.

By (8)+ B,y (8)+ By (8)+

+B, -y (E)+..+ B,y " (€)= _#@).

Since the determinant of this system is equal to the Wron-
skian of linearly independent solutions y,(&), k=1, 2, 3, 4,
which is not equal to zero, system (9) is defined and has
a unique solution Ag(&), k=1, 2,3, 4. To find the functions
Ar(&), k=1, 2, 3, 4, let’s use the boundary conditions (3):

n—1 n—1
> oy (a)+ X By (0)=0, (n=1...n).

k=0 k=0

(®)

(10)

From this system, for known Bg(§), let’s find the solu-
tions Ax(€), knowing which let’s calculate the Green’s func-
tion according to expressions (5), (6).

If the determinant of system (10) is equal to zero, then
the obtained equation for this determinant

det(Ull (yl. (x,?»))): 0

will determine the eigenvalues A when solving the problem
on the eigenvalues of operator (1).

As follows from the general scheme of constructing
the Green’s function described above, it is necessary to
calculate the fundamental system of solutions for dif-
ferential equation (2). Algorithms are developed and
programs developed in the MAPLE environment for cal-
culating all linearly independent solutions of differential
equations of type (2) in the form of generalized power
series [18, 19].

According to the general scheme for computing the
Green’s function, an algorithm has also been developed,
the main steps of which are presented below, and the cor-
responding programs are compiled using the MAPLE pro-
gramming system to construct the Green’s function of some
boundary value problems [20, 21].

3. The algorithm for constructing the Green’s function for
ordinary differential equations of the second and
third order

Algorithm description [20]:

Input:

Py(x), k=0,1,... are the coefficient-functions of a given dif-
ferential equation; 7z is the maximum exponent of the power
series used; xg is the singular point of equation (2), if any;
a;; and By are the coefficients of the boundary conditions (3);
a, b are the boundary points of the segment [a, b];

Output:

yr(x) is the fundamental system of solutions of a given
differential equation (2); G left(x, &) is the Green’s function
on the interval a<x<&<b; G right(x, £) is the Green’s func-
tion on the interval a<&<x<b.

Description of algorithm steps:

1) calculation of linearly independent solutions y;(x) in
the form of power series for differential equation (2);

2) verification of the solutions found by substitution;

3) calculation of the coefficients By(E) from the system
of equations (9);

4) verification of the found solutions of this system;

5) drawing up a system of equations (10), finding its
solutions A,(&) and checking these solutions;

6) construction of the functions Gz(x, §), Gr(x, &), G(x, &)
according to expressions (5), (6);

7) verification of the main properties of the Green’s
function G(x, £).

6. Examples of calculations of Green’s functions of
boundary value problems for ordinary differential
equations of the second order

Let’s present the results of calculating the Green’s func-
tion of boundary value problems for second-order differen-
tial equations using the program [20]:



Example 1
Let’s consider the differential equation

(1)
GR(x’g):

Xy’ —xy +y=x’lnx+x
with boundary conditions

y(1)=0,

_ x° {SSin [ln(&/ 2)]+Gsin[lnﬁ]cos[ln(x/2)]—851n|:1n(§)]sin[ln(x/ 2)]}

GL (JC,(‘::,) =
~ 2x*sin(In x){S cos[ln(i /2)]—4sin[ln(<§/ 2)]}
- &’[5-8sin(In2)-6cos(In2)]

)

y’(1)+y’(2)=0.

Using the program [20] for the corresponding homoge-
neous differential equation, the Green’s function is obtained
in the form:

G,(x,8), 1sx<E<2,

Gw@F%GAMQ,iﬁ <x<?, (12)
where
_(Ing=In2—-1)xInx
Ciee) &(2+In2) '
Gy (1,8)= x(lnxlng-2Ing-In2In€+Inwx) '

£2(2+1n2)

Knowing the Green’s function (12) for a homogeneous
differential equation, which corresponds to an inhomoge-
neous differential equation (11), by the formula

2

y(x)=[G(x8) (e nE+E)dE

1
let’s obtain the solution of the inhomogeneous equation

2In’ x+2xIn2Inx +
+In2In*x+4xlnx—
-10In2Inx+10Inx - |.
~In*2Inx—8x—
—4xIn2+4In2+8

- *
 (4+2In2)

y(x)

Thus, a solution to the original differential equation is
found in an analytical form.

Example 2

Let’s consider the differential equation

x’y” -3xy’ +5y=3x"
with boundary conditions
2y(1)+5y'(1)+y(2)-3y'(2)=0,
y(1)-5y'(1)-y(2)+3y’(2)=0.
For the corresponding homogeneous equation with the

same boundary conditions, the Green’s function is obtained
from the program [20]

G (x,8), 1<sx<E<2

G(xy§)={

where

£ [5—85in[ln 2]-6cos(In 2)]

Thus, the Green’s function is calculated for the original
differential equation.

Example 3

Let’s consider the differential equation

Yy’ -2y /x*=3x"sinx+Inx
with boundary conditions

y(1)=0,

y(2)+y'(2)=0.

The following Green’s function is obtained:

]G (x8), 1=x<E<2,
G(x,(”;)— {GR(x,F,), 1<E<x <2,
where
GAx@):u_x%;;hx+Q,1st§sz
GR(x’§)=w7 _JCS§S2,

3xE

Similarly to the previous examples, from the given values
of the Green’s function let’s find

y(x)=60xsinx+120cosx —

—3x’sinx+1/6In’>x-1/9Inx.

Thus, a solution to this inhomogeneous differential equa-
tion is obtained:

Example 4
Let’s consider the differential equation

1
y"+—y’—ﬁ2y=0, m=1,2,...
X x

with boundary conditions
y(0)=y(1)=0.
The following Green’s function is obtained:

c<x,a)={

G, (%8), 0<sx<E<],
Gp(x,€), 0<E<x<t,



)

2m

)

Gp(x.8)=

which coincides with the known result [22].
Example 5
Let’s consider the following boundary value problem [23]

d 4 dy 9
dx{(1+(xx) dx}+k y=0,
y(0)=y(L)=0. (13)

This problem is an eigenvalue problem that arises when
studying the stability of a cone-shaped rod under the action
of an external longitudinal force. The parameter o deter-
mines the geometric configuration of the truncated cone.
In this problem, the critical force at which the rod loses
stability is equal to the product of Young’s modulus and the
smallest eigenvalue A.

Equation (13) has the following linearly independent
solutions:

v (%)= acos[a(ﬁw)}

+(<1+xw))““[a(ﬁw>}’

() =—ousin L(ﬁw)}

+(<1+kax>)c°s[a<1iow>}

Eigenvalues are found from the equation

det(UM (yi(x,k))) =0,

which leads to the following transcendental equation

(14)

m_azMg[i
1+ o

ML]~7»+0(2+013L:0.

The value A obtained by formula (14) differs by less than
2 % from the same value obtained in [23] in another way.

The examples of solving boundary value problems in
this section are used by the authors in solving the equa-
tions of heat conduction and oscillations with partial
derivatives.

7. Examples of calculations of the Green’s functions of
some boundary value problems for ordinary differential
equations of the third order

We present the results of calculating the Green’s func-
tion of boundary value problems for third-order differential
equations using the program [20].

Example 1

Let’s consider the boundary value problem for the differ-
ential equation

y” =xsinx+2x” cosx +3x°

with boundary conditions

y(0)=0, y(1)=0, ¥ (0)-y'(1)=0.

For this homogeneous differential equation, the Green’s
function is obtained in the form:

c(m):{

G,(x,8), 1sx<E<2,
Gr(x,§), 1<E<a<2,

where

G, (8) =5 +(E-1)(+-8),

Gy (8)= 5 E(v1)(E-).

Next, a solution to the inhomogeneous equation is ob-
tained:

1, 197 , 99 ,
= x40
()= 0

—%xz sin(1)—4x2 cos(l)—llxcos(x)+
+2lsin(x)+ 15xcos(1)—%xsin(1) .

Thus, a solution to the original differential equation is
found in an analytical form.

Example 2

Let’s consider the differential equation

y,’/ = 0
with boundary conditions
y(0)=0, y(1)=0, ¥ (0)=y(1).

Using the developed program, the Green’s function is
obtained:

G(x,)= {GL (25).

0<x<
Gr(x,§), 0<E<x<lt,

where

G, =%(x2§ —xE?—x? +x§),

G, = %(ng—xgz -l

The resulting expression coincides with the exact expres-
sion and is anti-self-adjoint.

Example 3

For a differential equation

y”(x)+y’(x)=xcos*(x)
with uniform boundary conditions

y(0)=0, y(g)ﬂ)



the Green’s function is found in the form

G(x8) G, (%§), 0sx<E<t,
x,E)=
Gp(x,8), 0<g<w<i,
where
: [‘cosx —sin x+cos x cos& —
GL(x,é):E —cosxsinE+sinxcosE+ |,
| +sinxsing —cos& +sin -1
1—cosx—sinx—cosxcos§—
GR(x,ﬁ):E —cosx sin&+sinx cosE— |,
| —sinx sin§ —cos§ +sing+1

where let’s find:

’ 11 . T .
y(x)=——=sinx———sinx+—sinx -
32 72 6
X n’ n n 11
—=Ccosx SinxX+—Cosx ————+—+
6 32 6 32 72

x? g T 11
+———C0S" X+—COSX+——COSX.
4 36 6 72

Thus, the solution of the initial inhomogeneous differen-
tial equation in the analytical form is obtained.

8. Construction of the Green’s function for third-order
differential equations in the form of power series

Let’s consider a third order differential equation

Po(2)y” + pi ()" + py(x) Y+ py(x)y =0 (15)

with boundary conditions
o,y (a)+oy,y (a)+o,,y"(a)+
+B1,0y(b) + Bmy,(b) + B1,2y”(b) =0,

O‘z,oy(a) + asz'(a) + ocny”(a) +
+B210y(b) + [32'1y'(b) + Bzzy”(b) =0,

+

0C:},Oy(a) + 0‘3,1y,(a) + Otg,zy” (a)
+Bz,oy(b) + Bmy,(b) + Bs,zy”(b)

0, (16)

where po(x), p1(x), p2(x), ps(x) are continuous functions
together with continuous derivatives of the first and second
orders on the interval [a, b], a9, 011, 01,2, 02,0, 02,1, 02,2, 03,0,
31, 032, Bro, P, B2, Bro, Bt, Bo2, B3, B3, P32 are the
coefficients in the boundary conditions (16) for a particular
boundary-value problem,

> a0, > B =0, i=1,2,3,k=0,1,2.
ik ik

To construct the Green’s function of the boundary val-
ue problem (15), (16), let’s first solve the Cauchy problem
at the point xy, find linearly independent solutions for equa-
tion (15) in the form of series:

1+ZC(1) x- xo , A7)
v, (x)=(x—2x,) 20(2) x— xo , (18)
wl@)=(=x)' /24 2 (v -,)' (19)

k=3

where ¢{?, ¢{?, are the numerical coefficients.

Let’s find the Green’s function in the form

c<x,a)={

G,(x§), asx<E<bh,
GR(x,ﬁ), a<f&<x<b,

where

Gy (x, §)=Z[ &) v ()

3
GR(xrg):;[Ak(é)_ &)] (%)

Using the properties of the Green’s function given above,
let’s find the coefficient functions Ax(E), Br(§) and with
their help let’s construct the Green’s function according to
formulas (17)—(19). Since linearly independent solutions are
represented by power series, the Green’s function is also in
the form of power series.

In accordance with the above formulas, an algorithm is
developed for constructing the Green’s function in the form
of power series for the boundary value problem (15) in the
Maple environment.

9. An algorithm for constructing the Green’s function for
third-order equations in the form of power series

Using three linearly independent solutions found in the
form of power series, the Green’s function is constructed on the
basis of the developed algorithm and its calculation program.

Input:

n is the desired maximum order of the power series;

PO(x)#0, P1(x), P2(x), P3(x) in general, the coefficient
functions in a given differential equation of the third order (15);

a, b are the boundary points of the segment [a, b] on
which the Green’s function is sought;

01,0, 01,1, 01,2, 02,0, 0,1, G2.2, 03,0, U3,1, 03,2, P10, P11, P12,
B2.0, B2.1, P22, B30, Bs.1, P32 are the coefficients in the bound-
ary conditions (16) for a particular boundary-value problem.

Output:

y1(x), y2(x), y3(x) are the fundamental system of solu-
tions for a given differential equation of the third order (15);

G _L(x, &) is the Green’s function on the interval a<x<&<b;

G R(x, &) is the Green’s function on the interval a<&<x<b.

Description of algorithm steps:

1) procedure for calculating linearly independent solu-
tions of a third-order differential equation in the form of
power series;



2) verification of the found solutions;

3) calculation of coefficient-functions B1(&), B2(E), B3(&)
for the Green’s function G(x, &);

4) verification of the calculated coefficient-functions
B1(&), B2(8), B3(S);

5) specification of particular boundary conditions in the
interval [a, b];

6) solving a system of algebraic equations for determin-
ing coefficient-functions A1(&), A2(&), A3(&);

7) verification of the calculated coefficient-functions
A1(8), A2(€), A3(8);

8) construction of the Green’s function G_L(x, §), (a<x<
<&<b)and G_R(x, &), (a<&<x<b);

9) verification of all properties of the Green’s function

G(x, ).

10. Examples of constructing the Green’s function of
ordinary differential equations of the third order in the
form of power series

Example 1
Let’s consider the differential equation

y"”—6y”+11y’'—6y=0 (20)

with boundary conditions

y(0)=0, y(1)=0, y"(0)=0. 1)

For differential equation (20), the solutions

y1 =ex , yz — e2x , ya =eBx (22)
are a fundamental system of decisions. According to the
above, the Green’s function G(x, &) can be constructed from

the general solutions of (22) using the formulas:

B GL(x,ﬁ), a<x<E<LD,
G(xyg)_{GR(x,ﬁ), a<&<x<h,

where

G, (x8)=3 LA

)+ B(&)] ()

Go(18)= [ AE)- BE)]o(x)

k=1

From the continuity conditions for the Green’s function,
its first derivative, and also the jump of the second deriva-
tive, let’s obtain a system for determining the coefficients of
the functions B1(§), B2(£), B3(E):

B,(8)y,(&)+ B,(8)y,(8)+ B,(8)y:(8)=0,
B,()yi(8)+B,(8)y; (&) + B, (§)w;(8) =0, (23)
B, (&)y/(&)+ B, (&)y(8)+ B, (&)y5(8)=—1/(2R, (&

System (23) is always solvable and has a unique solu-
tion, because Py(£)#0, and therefore, the main determinant
of this system is the Wronskian W[y1, v, y3], which is not
equal to zero.

From system (23) let’s find solutions:

To find the coefficient functions A;(§), (i=1,2,3), let’s use
the boundary conditions (21) and as a result let’s obtain the
system

A (8)+ A4, (8)+4,(8) =B, (&) B, (8) - B,(8),
1(8)+44,(8)+94,(8)=-B,(§) - 1B, (8) - 9B, (&),
(&)+ed, (8)+¢*A, (€)= B, (8)+eB, () + €’ B, ().

A
A
From this system let’s find solutions:

1
Al(g):_4(3ez—86+5)><

><(—20‘91+§ +56* +10e% + 8¢ % — 362+2§)6‘_3§ ,
1
A2~
() 2(3¢”~8e+5) *
X(—SGM’ +8¢% +8¢” —5¢° — ?)em)e'g’i ,
;X
4(3¢*—8e+5)
><(—126'1+é —5+6e% +3¢* + 83)6’35

Ay (ﬁ) ==

Using the found expressions for Az(€), Bi(§), (k=1,2,3),
let’s find the exact Green’s function for the boundary value
problem (20), (21) in the form:

Glet)= {GL (x,8), 0<x<E<1,

GR(xyE_y)v OS§SXS1,
where
e (=5 /2 +5e72% 5 / 2¢*7°¢
6, (ne) =S5/ /27)
! 3¢*-8e+5
eZJ( (4375 _861—2}'; +462,3§)
+
3e?-8e+5
(=3 /25 +3e 5 3 /26"
" L3/ 2 / ), (24)
3¢ -8¢+5
e (3/2e¥ —4e ™ +56% =5 /2655
G (x,g): ( / / )+
! 3¢’ -8e+5
er(4efi _362—2§ _56725_,_'_462,3@)
+ +
3e*-8e+5
e (=3/2e+3e%+5 /2% — 4%
(-3/ " +5/ ) 05
3e¢*-8e+5

Using the developed program for the boundary value
problem (20), (21), the approximate Green’s function is ob-
tained in the form of power series, the first terms of which
are given below

G(x,g):{GL (i’z)’



where
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70978 851736 425868
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Comparisons are calculated for different values & and
for the values of the power series n=13 and n=16. From the
calculations it follows that the obtained approximate Green’s
function differs from the exact one by 1.3 % and 6103 % at
n=13 and n=16, respectively.

Example 2

Let’s consider the differential equation

3,,m

Sy —y=0
with boundary conditions
y(W)+y ()+y"()+y(2)+y'(2)+y"(2)=0,
2y(1)+y'(1)-2y" (1) +y(2)+y'(2)-2y"(2)=0,
2y(1)+y (1) +3y"(1)-2y(2)- ' (2)+ 5" (2)=0.

Using the developed program, the Green’s function is
obtained:

c(m):{

G (xE), 0<sx<E<,
Gp(x,€), 0<E<a<t,
where the first terms of the Green’s function are:

= - X
267 (44+90In” 2-2481n2)

x[180In*E~120InE+...+],

Gp(x.€)

G, (x,&)

= - - X
26*(44+89In” 2-2481n2)

x[1361n*E-120InE+...+].

Thus, the Green’s function of the initial homogeneous
differential equation is obtained.

11. Discussion of the results obtained on the construction
of the Green’s function of ordinary differential equations

Methods for constructing the Green’s function for lin-
ear ordinary differential equations of the second and third
orders are developed. Knowing the Green’s function [8]
allows to calculate the solution of a linear inhomogeneous
differential equation with given boundary conditions, as
well as to find the eigenvalues and functions of the boundary
value problem.

An algorithm is developed for constructing the Green’s
function in the case when in the Maple system it is possible to
obtain in explicit form three linearly independent solutions
of a given third-order differential equation with boundary
conditions. The description of the algorithm for constructing
the Green’s function for ordinary differential equations of
the third order in an explicit analytical form is given. The
Green’s function calculations for specific boundary value
problems using the developed program are presented.

An algorithm has been developed for constructing the
Green’s function in the form of power series for a third-order
differential equation with given boundary conditions. The
description of the algorithm for constructing the Green’s
function for third-order equations in the form of power se-
ries is given. The Green’s function is calculated for specific
third-order boundary value problems using the developed
program, and the obtained approximate Green’s function is
compared with the exact, if known, and the accuracy of their
agreement is shown.

Based on the known properties of the Green’s function,
in this research, an algorithm is developed and a program
of symbol-numerical calculations of the Green’s function is
developed using computer systems of analytical calculations;
any boundary value problems for ordinary differential equa-
tions of the second and third orders can be stated. An es-
sential and important node in the calculation of the Green’s
function is the search for a fundamental system of solutions
for a given differential equation. In this paper, this problem
is solved by calculation using working programs.

Calculations are carried out for a number of boundary
value problems, and the corresponding Green’s functions
are obtained. For the answers of problems known from the
literature [22], a very good agreement is found (generally
exact coincidence) with the calculations of the Green’s
functions presented in this paper. This proves the efficiency
of constructing Green’s functions in the proposed approach.
Similar calculations in the known literature have not been
identified. It can and is important to note that the accuracy
of the calculation of the Green’s function is determined by
the accuracy of the calculation of the fundamental system
of solutions, which in the general case is automatically
controlled by the number of terms in power series and the
number of decimal places in decimal numbers.

In conclusion, it is possible to say that thanks to the
methods and algorithms proposed in this article, any
boundary-value problem for ordinary differential equations
of the second and third orders can be solved. The only
drawback of this work is that the calculation of the Green’s
function and finding all the linearly independent solutions
of the fundamental system of solutions necessary for this
is a difficult operation, manual calculations are practically
impossible for homogeneous equations, and even more so
for heterogeneous ones.



12. Conclusions

1. A method for constructing the Green’s function for
linear ordinary differential equations of the second and third
orders having singular points is described in the form of
generalized power series using computer systems of algebraic
transformations.

2. The construction of a fundamental system of solutions
in the form of convergent series allows, in subsequent numer-
ical calculations, to obtain the desired accuracy by increas-
ing the number of terms in the series and by increasing the
number of digits after the decimal point, it means with such
accuracy to calculate the Green’s function itself.

3. Examples of calculations of the Green’s functions
of boundary value problems for ordinary differential
equations of the second and third order in the form of
power series in the Maple system are presented, which
allows one to efficiently and accurately perform all the
necessary transformations when constructing the Green’s
function. The calculated Green’s functions are compared
with those available in the literature and the accuracy
of their agreement is shown. The exact coincidence of
the calculated Green’s functions with the known from
other sources is obtained, which proves the effective-
ness of the calculation method used and the developed
program.
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3anpononosano ezenemuunui memoo 07 NPOZHOIYEAHHS
NOKA3HUKIE 300pP08°A HACEIeHHA HA 0CHOB HelipoMepexHcesux mooe-
neti. Ipunyunosa 6idminnicmo 3anpPonoHO6aH020 2eHEMUUHOZO
Memo0y 610 iICHYIOUMUX AHAI0218 NOJIAAE Y BUKOPUCMAHHT OUNJL0I0-
H020 HAOOPY XPOMOCOM 6 0COOUH NONYNAU, AKA eBOTIOUIOHYE.
Taxa mooupixauis pobumv 3anedxicuicmo Qenomuny ocoounu 6io
2eHOMUNY MeHUL OeMePMIHOBANOI0 T, pewmi, CNPUSLE 30ePedHceH IO
piznomanimuocmi zenopondy nonynauii i eapiabeaviocmi o3nax
enomuny enpodosic suxonanns anzopummy. Kpim uyvozo, zanpo-
nonoeano mooudpixauiro zenemuunozo onepamopy mymauii. Ha
8IOMINY 610 KJAACUMH020 MemodYy, 0COOuHU, aKi niddaromvcs Oii
onepamopy mymauii, 06upaomMvcs He 6UNAGKOBUM HUHOM, A Y 6i0-
nosionocmi do ix mymauiinoi cmidixocmi, wo 6ionosioac 3nauen-
H10 Pynkyii npucmocosanocmi ocoounu. Taxum uunom, mymyromo
0COOUHU, WO XAPAKMEPUSYIOMbCA 2IPUUMU 3HAMEHHAMU UiIb0BOT
Qynruii, a 2enom CUNLHUX 0COOUH 3ANUMAEMBCA HEIMIHHUM. Y
UbOMY 6UNAOKY 3MEHWYEMBCSL 8ip02iOHICMbL 6mpamu 0oCsieHymo-
20 6nP0006IIC 600Ul excmpemymy Qynxuii 6nacaidox oii onepa-
mopa mymauii, a nepexio 00 08020 excmpemymy 30IUCHIOEMbCA Y
6unadxy HaKonuueHHs 00CMAaAmHb0i NUMOMOT 8aA2U KPAWUX O3HAK
8 nonynauii.

Topisnanvnuii ananiz podomu mooeneil, cunme306anux 3a 00no-
M02010 PO3POBIEHO20 2eHEMUHHO20 MEMOOY, NOKA3AE, WO HAUKPAU
pesyvmamu 0ocszrymi y Mooei Ha 0CHOBL HEUPOHHOT Mepedci 006~
20i Kopomxouacnoi nam’smi. ITio wac cmeopenns i nasuanus mooeni
Ha 0CHO61 Mepedici 006201 Kopomxouachoi nam’ami 6yao docionceno
MOJNCTIUBICMb BUKOPUCTMAHHS MEMOOY POIO UACMOK OJ151 ONMuUMI3auii
napamempie mepesici. Pesynomamu excnepumenmanviux 00caio-
JHCeHb NOKA3ANU, WO PO3POOIeHA MOOeTs 0A€ HAUMEHUY NOMUTKY
nepedoauenns Kinbkocmi HOBUX 6UnAOKie mybdepKyavo3y — cepeo-
Hs aéconomna nomunxa cknadae 6,139, wo menwe y nopieHanmi 3
Modensamu, nodyooeanumu 3a 00nOM02010 iHUUX MemODiG.

IIpaxmuune euxopucmanns pospoéenux memoodie dacmo mModxc-
JUBICMb CBOEUACHO KOpUYyeamu NAAHOBAHI NiKYEANbHO-0iAzHO-
cmuuni, npodinaxmuuni 3axoou, 3a64aACHO UHAMAMU HeOOXiOHi
pecypcu 0ns aokanizauii ma aikeioauii 3axeoproeans 3 Memoio 36e-
pedicents 300p06 s HaceNeHHs

Knouoei cnosa: Heuponni mepedci, zeHemMuuHul aizopumm,
ernomun, moougpixosanuii zenemuunuii onepamop mymauii, npo-
2HO3YBAHHS NOKA3HUKIE 300P06° HACETIeHHS.
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1. Introduction

Quality of life of population is determined by different
indicators, in particular health indicators, whose condition is
predetermined by environmental factors. According to med-
ical research conducted in recent years [1], there is a close re-
lationship between the anthropogenic air pollution in certain
areas and the increased population morbidity. As estimated
by the World Health Organization (WHO), air pollution is
the biggest factor of environmental health risks at present [2].
Based on this assessment, about 3.7 million of additional
deaths are related to ambient air pollution, 4.3 million — to

air pollution indoors. Since many people are exposed to both
indoor and outdoor polluted air, causes and deaths from vari-
ous diseases caused by different sources cannot be determined
through the usual generalization of data. The biggest health
problems caused by direct influence of air pollution are related
to diseases of blood circulation, respiratory diseases, cancer,
neuro-mental disorders, as well as some others [3, 4].

Consequently, the health condition and population mor-
bidity in a region can be considered as derivatives from the
environment.

The use of known statistics methods for forecasting the
dependence of health indicators, as well as mathematical



