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1. Introduction

The tasks of estimating correlation functions and con-
volution computing c arise in various fields of digital signal 
processing. The calculation of autocorrelation functions 
(ACF) and cross-correlation functions (CCF) may be neces-
sary when processing images, in radar or sonar systems for 
ranging and direction finding, when calculating the spec-
trum of signals and in many other areas.

Real-time correlation and convolution calculation be-
come a rather time-consuming task in the case of long input 
sequences. To solve this task, it is advisable to use the so-
called fast algorithms. However, this requires the high-per-
formance calculator of convolutions and correlations, which 
often exceed the capabilities of current computer equipment.

This task can be solved by the hardware implementation 
based on programmable logic integrated circuits (PLIC). 
There are known examples of the hardware implementation 
of correlation and convolution processors on PLICs [1]. 
However, they do not fully use the capabilities of mathemat-
ical methods for accelerating computations.

To ensure the maximum performance speed of digital 
signal processing processors, it is necessary, on the one hand, 
to optimize the convolution and correlation computing al-
gorithms, and on the other hand, to design the structures of 
high-speed arithmetic units for such processors.

2. Literature review and problem statement

The calculation of convolution and correlation functions 
requires the number of additions and multiplications propor-
tional to N2, where N is the length of the processed sequence. 
Such a volume can be unacceptably large when processing 
signals in real time, therefore, faster algorithms for calculat-
ing convolution and correlation were proposed. One of these 
methods [2] implies calculating the calculation of a discrete 
Fourier transform (DFT) of the sequences of multiplication 
of the coefficients of the obtained DFT and the calculation 
of the inverse DFT of the obtained sequence. However, when 
calculating the DFT of sequences, the emergence of complex 
irrational values is inevitable, which complicates the compu-
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Запропоновано вибiр модулiв спецiального виду i вiдповiдних 
їм первiсних коренiв, якi допускають спрощену структуру ариф-
метичних пристроїв, iз застосуванням теоретико-числових пере-
творень. Розроблено метод визначення модулiв, що забезпечує 
мiнiмальне число арифметичних операцiй при виконаннi опера-
цiй додавання i множення за модулем. Розроблено i промоделю-
вано структури суматорiв за модулями спецiального виду, що 
дозволяють максимально швидко виконувати операцiю складання. 
Синтезованi i протестованi суматори за модулями чисел Ферма, 
Мерсенна i Голомба, якi можна застосувати в арифметичних бло-
ках швидкодiючих кореляторiв i фiльтрiв.

Обчислення кореляцiй i згорток в реальному часi стає досить 
трудомiстким завданням у разi довгих вхiдних послiдовностей. Для 
вирiшення цього завдання доцiльно застосувати так званi швидкi 
алгоритми. Однак це вимагає високої продуктивностi обчислювача 
згорток i кореляцiй, якi часто перевищують можливостi сучасної 
обчислювальної технiки. Тому запропонована методика визначен-
ня модуля i розробленi структурнi схеми суматорiв за модулями 
спецiального виду дозволяють прискорити обчислення кореляцiй i 
згорток з використанням теоретико-числових перетворень.

Так як операцiя множення за модулем виконується за допо-
могою операцiй додавання i зсуву, то трудомiсткiсть розрахун-
ку теоретико-числових перетворень в значнiй мiрi залежить вiд 
кiлькостi одиниць в двiйковому поданнi ступенiв первiсного коре-
ня. Операцiя множення, як правило, зводиться до багаторазового 
складання чисел, то складнiсть i швидкодiя арифметичних при-
строїв для теоретико-числових перетворень визначається харак-
теристиками суматорiв за модулем.

Запропонований метод проектування обчислювальних модулiв 
для цифрових пристроїв обчислення кореляцiї i згортки на основi 
швидких теоретико-числових перетворень забезпечує спрощену 
апаратну i програмну реалiзацiю цих структур, що призводить до 
високошвидкiсної обробки сигналiв i зображень

Ключовi слова: автокореляцiйна функцiя, кореляцiя, згорт-
ка, програмованi логiчнi iнтегральнi схеми, дискретне перетво-
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tations, since it becomes necessary to perform calculations 
involving both the real and the imaginary part of the number.

Another approach is based on number-theoretic trans-
forms (NTT) [3], which are similar to DFT and have the prop-
erty of convolution, but whose coefficients accept only integer 
values that do not exceed a certain maximum value. The NTT 
of sequence xi, i=0…N–1 is determined in the following way:

( )
1

0

mod ,
N

ik
k i

i

X x g p
−

=

= ⋅∑ 				    (1)

where the p module and the length of the sequence N do not 
share the multipliers, while g is chosen to meet the condition:

( )1 mod  .Ng p= .			   (2)

Specifically, for any simple p, there is a variant when 
N=p–1 and g is the so-called primitive root. 

An analysis of the methods for finding convolutions and 
ACF with the help of NTT shows that the main arithmetic 
operations that need to be performed are addition and mul-
tiplication based on the selected simple module, that is, cal-
culating the remainder of the result of arithmetic operations. 
For an arbitrary module, these operations are rather labori-
ous; therefore, some moduli of a special form are of interest 
for which the modulo addition operation is much simpler [4].

As simple moduli p, in particular, the so-called Mersenne 
numbers in the form p=2n–1, where n is a prime, are used.

The arithmetic modulo of Mersenne numbers is described 
in [5, 6]. However, these works give only the theoretical foun-
dations of modulo arithmetic and there are no adder and mul-
tiplier schemes on the basis of which specialized PLICs and 
large scale integrated circuits (LSI) can be built.

Also convenient in terms of reducing hardware costs 
are moduli in the form 22 1,

t

p = +  known as the Fermat 
numbers [7]. Similar to the procedure for Mersenne num-
bers, a bit with a weight of 2n represents a value comparable 
to –1 modulo p. Therefore, when adding, the bit of the carry 
with weight 2n is subtracted from the low order bits [8].  
Thus, it is interesting to find simple p moduli for NTT that 
are not the Mersenne and Fermat numbers and which sim-
plify the computation of these transforms.

Note that little attention is paid to the hardware imple-
mentation of such moduli. Examples of the implementation 
of adders and multipliers for some moduli are given in [9, 10]; 
however, the issue of synthesizing the structures of moduli 
applicable to all types of NTT that are quite easily imple-
mented on PLIC has remained unresolved.

3. The aim and objectives of the study

The aim of this work is to construct methods for select-
ing the NTT parameters and for synthesizing the arithmetic 
units that would provide accelerated hardware and software 
implementation.

To accomplish the aim, the following tasks have been set:
– to explore the possibilities for choosing moduli of a 

special form and their corresponding primitive roots in order 
to conduct fast NTT that permit a simplified structure of 
arithmetic devices;

– to develop a method for determining moduli that en-
sure the minimum number of arithmetic operations when 
performing addition and multiplication operations;

– to develop adder structures for moduli of a special form 
that would allow the addition operation to be carried out as 
quickly as possible, and to evaluate the effectiveness of their 
implementation by modeling.

4. Selecting special-form moduli for NTT

When selecting such NTT parameters (1) as the di-
mensionality of transform N, the prime modulus p and the 
primitive root g, there are a series of hard-to-compatible 
requirements. Thus, for the application of the so-called 
fast algorithms for calculating NTT, it is advisable that the 
dimensionality of the transformation should be a power of 
two N=2n. To simplify addition and multiplication, the mod-
ule must have a special form, for example, 2n±1.

In addition to the above-considered Fermat and Mer- 
senne numbers, whose quantity is small, the following mod-
uli can be considered

p=p1⋅p2+1=(2a−1)⋅2b+1,				   (3)

which also allow simple hardware and software implementa-
tion of NTT whose dimensionality is 2n. 

A special case of the moduli p=p1⋅p2+1=(2a−1)⋅2b+1 are 
the p=3⋅2n+1 moduli, known as the Golomb numbers [11, 12].

Using the developed software, we analyzed in the 
MATLAB environment all moduli in the form (3) for a=2..15, 
b=8..18. Composite moduli were excluded from consideration, 
and for each of the simple ones, a primitive root was searched 
for and checked whether it satisfies condition (2).

Simple moduli in the form p=p1⋅p2+1=(2a−1)⋅2b+1, iden-
tified in this way, as well as the corresponding sequence 
lengths N and primitive roots g, are summarized in Table 1.

Table 1 

Simple moduli in the form p=(2a−1)⋅2b+1

N a b p1 p2 p g

262,144 2 18 3 262,144 786,433 5

65,536 1 16 1 65,536 65,537 3

16,384 3 14 7 16,384 114,689 15

16,384 6 14 63 16,384 1,032,193 94

4,096 2 12 3 4,096 12,289 41

4,096 4 12 15 4,096 61,441 19

4,096 7 12 127 4,096 520,193 71

1,024 4 10 15 1,024 15,361 84

1,024 6 10 63 1,024 64,513 21

512 4 9 15 512 7,681 62

256 1 8 1 256 257 3

256 2 8 3 256 769 7

256 5 8 31 256 7,937 71

It should be noted that the derived moduli can be used 
to calculate the NTT of not only the dimensionality N,  
specified in Table 1, but also of lower powers of twos. 
For example, based on modulo 61,441, one can calculate  
the NTT not only of dimensionality 4,096 but also 2,048, 
1,024, 512, etc.

In addition to the known numbers by Fermat 65,537, by 
Mersenne 8,191, 131,071, 524,287, and by Golomb 12,289, 
786,433, we additionally propose to use the moduli 114,689; 
1,032,193; 61,441; 52,019; 15,361; 64,513.
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5. Method for determining moduli that ensure a minimum 
number of arithmetic operations

Since the operation of modulo multiplication is performed 
using the operations of addition and shift, the complexity of 
calculating the NTT largely depends on the number of unities 
in the binary representation of the degrees of the primitive 
root g. For a series of values for the dimensionality of trans-
formations N, various simple moduli p and the corresponding 
primitive roots g were sorted out from Table 1. For each of the 
possible moduli, the complexity of calculating the NTT from 
formula (1) was estimated by counting the unities in the bina-
ry representation of the degrees of the primitive root g; those 
moduli and primitive root were selected for which the total 
number of unities is minimal.

Results from computing the dimensionality N=1,024, 
frequently used in signal processing, are given in Table 2.

Table 2 

Simple moduli and their corresponding number of 	
additions in NTT

Module p 12,289 15,361 61,441 64,513 114,689

Number of 
additions A

29,785 28,968 32,555 33,067 33,799

An analysis of Table 2 shows that the minimum amount 
of computations in the calculation of fast NTT is provided 
by the values for module p=15,361. Having analyzed Table 1, 
we shall determine the primitive root as g=84. In this case, 
the wrong choice of a module may require 17 % more compu-
tations. Similarly, one can find a minimum number of NTT 
additions for any dimensionality N and module p.

6. Structure of modulo adders for NTT

For the quick calculation of correlations and convolutions 
using NTT, it is necessary to develop the basic “building 
blocks” of the NTT processors ‒ adders and modulators. Since 
the operation of multiplication is typically reduced to the mul-
tiple addition of numbers, it can be argued that the complexity 
and performance speed of arithmetic devices for NTT is deter-
mined by the characteristics of the modulo adders.

Fig. 1 shows the proposed modulo adder circuit for num-
bers in the form 2m−1, for example, the Mersenne numbers.

The scheme provides the summation of seven-digit bina-
ry numbers modulo 127.

In the scheme, FA unit is a complete adder with three 
inputs: a, b and p–1 ‒ the input of the carry from the previous 
cascade, as well as with two output: s – sum and p – output 
carry; HA unit is a half-adder with two inputs, a and b, and 
two outputs: s is the sum and p is the output carry [13]. 

The scheme provides a summation of the carry bit with 
a weight of 2n and a lower significant bit. There is also a 
possibility to correct the result if the sum of input values is 
equal to the module.

The modulo adder circuit for numbers in the form 2m+1, 
for example, the Fermat numbers, is shown in Fig. 2. The 
adder shown ensures a summation of nine-digit binary num-
bers modulo 257.

Similar to the procedure described above, a bit with a 
weight of 2n represents a value comparable to –1 modulo p. 
Therefore, when adding, the carry bit with a weight of 2n is 
subtracted from the least significant bits.

Of greatest interest is the development of adders for 
moduli p=p1⋅p2+1=(2a−1)⋅2b+1, which provide for a wider 
choice of NTT dimensionalities and the ranges of operand 
values and results.

Consider, in particular, an adder for the Golomb numbers 
modulo, for which a=2, p=3⋅2n+1.

The results of arithmetic operations for modulo p=3⋅2n+1 
can easily be reduced to residuals, given that 4⋅2n is compa-
rable to (2n–1) modulo 3⋅2n+1. Therefore, when added, the 
carry bit with a weight of 4⋅2n forms a value consisting of n 
unit bits. Next, this formed value must be added to n – the 
least significant bits of the resulting sum. The result is the 
sum modulo p=3⋅2n+1.

For the case when, at adding, one obtains a carry 
bit equal to zero, it is necessary to perform additional 
processing of the computation result. To this end, one 
should sum (n–1) ‒ the least significant bits of the re-
sulting sum, and then multiply them by two bits with a 
weight of 2n and 2n+1 and logically add it to the overflow 
bit, which weights 2n+2. The derived bit is then summed 
with each of the n-least significant bits of the receiv- 
ed sum.

The block diagram of the modulo adder for the Golomb 
numbers, based on the above reasoning, is shown in Fig. 3.

All the above structures were modeled and tested in the 
Active-HDL ver.9.1 environment, which proved their oper-
ability and the possibility of constructing NTT processors 
based on PLIC or specialized LSI.

Fig. 4 shows an adder of the VHDL model for the 
Mersenne number 8,191=213–1 modulo; Fig. 5 ‒ time dia-
grams of the adder operation.

Fig. 1. Block diagram of the modulo 127 adder

FA FA FA HA

HA HA HA HA

a0b0a1b1a2b2a3b3

s0s1s2s3

FA FA FA

HA HA

a4b4a5b5a6b6

s4s5s6

p0,0p0,1p0,2p0,3p0,4p0,5p0,6

p1,0p1,1p1,2p1,3p1,4

x0x1x2x3x4x5
&&&&&

HA p1,5

&1
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7. Discussion of results of studying the methods for NTT 
acceleration

Known works consider only the moduli in the form of 
the Fermat, Mersenne, and Golomb numbers. By applying 
methods from the theory of numbers, this paper has demon-
strated a two-fold and larger increase in the number of 
moduli for theoretical-numerical transformations (Table 1). 
Such an expansion of the range of moduli makes it possible, 
on the one hand, to better adjust the parameters of a NTT 
processor to specific requirements for accuracy and speed, 
on the other hand, to accelerate the computation of additions 
for the module.

In addition, known papers paid little attention to the 
form of the primitive root. Our analysis of possible moduli 
and primitive roots has made it possible to choose those that 
ensure the simplification of exponentiation and multiplica-
tion operations (Table 2). 

It has also become possible to design circuits for the 
fast-acting modulo adders, easily implemented on PLIC and 
specialized LSI, for a wide range of moduli not reported in 
available studies.

Thus, this research has allowed us to increase the speed 
performance of devices for computing NTT due to the use, 
on the one hand, the number theory methods, and, on the 
other hand, modern methods of synthesis and modeling of 
digital devices.

At the same time, the selection of modules proceeded to 
some extent empirically. Better results could be probably 
achieved by applying such an algebraic apparatus as the 
Galois fields and group characters when choosing moduli.

In addition, this work does not include the adder schemes 
for p=(2a−1)⋅2b+1 modulo for the case a>2, that is, modulo 
generalized Golomb numbers.

In the future, it is advisable to synthesize such schemes 
and, if possible, develop software for the synthesis of adders 

FA FA FA HA

FA FA HA

a0b0a1b1a2b2a8b8

s0s1s2s8

1

FA FA HA

FA FA HA

a3b3a4b4a5b5

s3s4s5

FA FA

FA FA

a6b6a7b7

s6s7

p0,0p0,1p0,2p0,3p0,4p0,5p0,6

p1,0p1,1p1,2p1,3p1,4

x0x1x2x3x4x5

p0,7p0,8

p1,5p1,6

x6x7x8 (p0,8 or x8)                                 

 

Fig. 2. Block diagram of the modulo 257 adder
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xn+11 1111&&
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Fig. 3. Block diagram of the modulo p=3⋅2n+1 adder

 
Fig. 4. Model of the modulo 8,191 adder

 
Fig. 5. Results from modeling the modulo 8,191 adder
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and multipliers for all possible moduli in a special form. This 
task, however, may require a volume of computations beyond 
the capabilities of modern computer equipment.

Theoretical and experimental estimates should also be 
made of the performance speed of the proposed structures 
depending on the element base used.

8. Conclusions

1. A procedure has been proposed for choosing the 
optimal moduli for calculating NTT, which could make it 
possible to increase by two times, and larger, the number of 

moduli for NTT, as well as to better adjust the NTT proces-
sor parameters for specific requirements for accuracy and 
performance speed.

2. A procedure has been proposed for analyzing the NTT 
parameters and choosing the primitive roots, which allows 
15–20 % faster computation of correlations and convolutions 
when using NTT. A procedure has been proposed and the al-
gorithms and programs have been developed for analyzing the 
NTT primitive roots, which make it possible to accelerate the 
computation of correlations and convolutions when using NTT.

3. We have synthesized and tested high-speed adders for 
the proposed moduli, which could serve as the basis for arith-
metic units in high-speed correlators and filters.
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