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1. Introduction

The tasks of estimating correlation functions and con-
volution computing c arise in various fields of digital signal
processing. The calculation of autocorrelation functions
(ACF) and cross-correlation functions (CCF) may be neces-
sary when processing images, in radar or sonar systems for
ranging and direction finding, when calculating the spec-
trum of signals and in many other areas.

Real-time correlation and convolution calculation be-
come a rather time-consuming task in the case of long input
sequences. To solve this task, it is advisable to use the so-
called fast algorithms. However, this requires the high-per-
formance calculator of convolutions and correlations, which
often exceed the capabilities of current computer equipment.

This task can be solved by the hardware implementation
based on programmable logic integrated circuits (PLIC).
There are known examples of the hardware implementation
of correlation and convolution processors on PLICs [1].
However, they do not fully use the capabilities of mathemat-
ical methods for accelerating computations.

To ensure the maximum performance speed of digital
signal processing processors, it is necessary, on the one hand,
to optimize the convolution and correlation computing al-
gorithms, and on the other hand, to design the structures of
high-speed arithmetic units for such processors.

2. Literature review and problem statement

The calculation of convolution and correlation functions
requires the number of additions and multiplications propor-
tional to N?, where N is the length of the processed sequence.
Such a volume can be unacceptably large when processing
signals in real time, therefore, faster algorithms for calculat-
ing convolution and correlation were proposed. One of these
methods [2] implies calculating the calculation of a discrete
Fourier transform (DFT) of the sequences of multiplication
of the coefficients of the obtained DFT and the calculation
of the inverse DFT of the obtained sequence. However, when
calculating the DFT of sequences, the emergence of complex
irrational values is inevitable, which complicates the compu-




tations, since it becomes necessary to perform calculations
involving both the real and the imaginary part of the number.

Another approach is based on number-theoretic trans-
forms (NTT) [3], which are similar to DFT and have the prop-
erty of convolution, but whose coefficients accept only integer
values that do not exceed a certain maximum value. The NTT
of sequence x;, i=0...N—1 is determined in the following way:

N-1

X, =2xi~g”‘(modp), (1)

i=0

where the p module and the length of the sequence N do not
share the multipliers, while g is chosen to meet the condition:

g" =1(mod p). ()

Specifically, for any simple p, there is a variant when
N=p—1 and g is the so-called primitive root.

An analysis of the methods for finding convolutions and
ACF with the help of NTT shows that the main arithmetic
operations that need to be performed are addition and mul-
tiplication based on the selected simple module, that is, cal-
culating the remainder of the result of arithmetic operations.
For an arbitrary module, these operations are rather labori-
ous; therefore, some moduli of a special form are of interest
for which the modulo addition operation is much simpler [4].

As simple moduli p, in particular, the so-called Mersenne
numbers in the form p=2"—1, where n is a prime, are used.

The arithmetic modulo of Mersenne numbers is described
in [5, 6]. However, these works give only the theoretical foun-
dations of modulo arithmetic and there are no adder and mul-
tiplier schemes on the basis of which specialized PLICs and
large scale integrated circuits (LST) can be built.

Also convenient in terms of reducing hardware costs
are moduli in the form p=2% +1, known as the Fermat
numbers [7]. Similar to the procedure for Mersenne num-
bers, a bit with a weight of 2” represents a value comparable
to —1 modulo p. Therefore, when adding, the bit of the carry
with weight 2" is subtracted from the low order bits [8].
Thus, it is interesting to find simple p moduli for NTT that
are not the Mersenne and Fermat numbers and which sim-
plify the computation of these transforms.

Note that little attention is paid to the hardware imple-
mentation of such moduli. Examples of the implementation
of adders and multipliers for some moduli are given in [9, 10];
however, the issue of synthesizing the structures of moduli
applicable to all types of NTT that are quite easily imple-
mented on PLIC has remained unresolved.

3. The aim and objectives of the study

The aim of this work is to construct methods for select-
ing the NTT parameters and for synthesizing the arithmetic
units that would provide accelerated hardware and software
implementation.

To accomplish the aim, the following tasks have been set:

—to explore the possibilities for choosing moduli of a
special form and their corresponding primitive roots in order
to conduct fast NTT that permit a simplified structure of
arithmetic devices;

— to develop a method for determining moduli that en-
sure the minimum number of arithmetic operations when
performing addition and multiplication operations;

— to develop adder structures for moduli of a special form
that would allow the addition operation to be carried out as
quickly as possible, and to evaluate the effectiveness of their
implementation by modeling.

4. Selecting special-form moduli for NTT

When selecting such NTT parameters (1) as the di-
mensionality of transform N, the prime modulus p and the
primitive root g, there are a series of hard-to-compatible
requirements. Thus, for the application of the so-called
fast algorithms for calculating NTT, it is advisable that the
dimensionality of the transformation should be a power of
two N=2". To simplify addition and multiplication, the mod-
ule must have a special form, for example, 2"+1.

In addition to the above-considered Fermat and Mer-
senne numbers, whose quantity is small, the following mod-
uli can be considered

P=pipat1=(29=1)-25+1, 3)

which also allow simple hardware and software implementa-
tion of NTT whose dimensionality is 2”.

A special case of the moduli p=pspy+1=(29—1)-20+1 are
the p=3-2"+1 moduli, known as the Golomb numbers [11, 12].

Using the developed software, we analyzed in the
MATLAB environment all moduli in the form (3) for a=2..15,
b=8..18. Composite moduli were excluded from consideration,
and for each of the simple ones, a primitive root was searched
for and checked whether it satisfies condition (2).

Simple moduli in the form p=pps+1=(29-1)-20+1, iden-
tified in this way, as well as the corresponding sequence
lengths N and primitive roots g, are summarized in Table 1.

Table 1
Simple moduli in the form p=(29-1)-25+1

N a b p1 2 p 8
262,144 2 18 3 262,144 786,433 5
65,536 1 16 1 65,536 65,537 3
16,384 3 14 7 16,384 114,689 15
16,384 6 14 63 16,384 1,032,193 94
4,096 2 12 3 4,096 12,289 41
4,096 4 12 15 4,096 61,441 19
4,096 7 12 127 4,096 520,193 71
1,024 4 10 15 1,024 15,361 84
1,024 6 10 63 1,024 64,513 21
512 4 9 15 512 7,681 62
256 1 8 256 257 3
256 2 8 3 256 769 7
256 5 8 31 256 7,937 71

It should be noted that the derived moduli can be used
to calculate the NTT of not only the dimensionality N,
specified in Table 1, but also of lower powers of twos.
For example, based on modulo 61,441, one can calculate
the NTT not only of dimensionality 4,096 but also 2,048,
1,024, 512, etc.

In addition to the known numbers by Fermat 65,537, by
Mersenne 8,191, 131,071, 524,287, and by Golomb 12,289,
786,433, we additionally propose to use the moduli 114,689;
1,032,193; 61,441; 52,019; 15,361; 64,513.



5. Method for determining moduli that ensure a minimum
number of arithmetic operations

Since the operation of modulo multiplication is performed
using the operations of addition and shift, the complexity of
calculating the NTT largely depends on the number of unities
in the binary representation of the degrees of the primitive
root g. For a series of values for the dimensionality of trans-
formations N, various simple moduli p and the corresponding
primitive roots g were sorted out from Table 1. For each of the
possible moduli, the complexity of calculating the NTT from
formula (1) was estimated by counting the unities in the bina-
ry representation of the degrees of the primitive root g; those
moduli and primitive root were selected for which the total
number of unities is minimal.

Results from computing the dimensionality N=1,024,
frequently used in signal processing, are given in Table 2.

Table 2

Simple moduli and their corresponding number of
additions in NTT

Modulep | 12,289 | 15361 | 61,441 | 64,513 | 114,689
Numberof | o 765 | 95968 | 32,555 | 33.067 | 33.799
additions A

An analysis of Table 2 shows that the minimum amount
of computations in the calculation of fast NTT is provided
by the values for module p=15,361. Having analyzed Table 1,
we shall determine the primitive root as g=84. In this case,
the wrong choice of a module may require 17 % more compu-
tations. Similarly, one can find a minimum number of NTT
additions for any dimensionality N and module p.

6. Structure of modulo adders for NTT

For the quick calculation of correlations and convolutions
using NTT, it is necessary to develop the basic “building
blocks” of the NTT processors — adders and modulators. Since
the operation of multiplication is typically reduced to the mul-
tiple addition of numbers, it can be argued that the complexity
and performance speed of arithmetic devices for NTT is deter-
mined by the characteristics of the modulo adders.

Fig. 1 shows the proposed modulo adder circuit for num-
bers in the form 2”—1, for example, the Mersenne numbers.

The scheme provides the summation of seven-digit bina-
ry numbers modulo 127.

In the scheme, FA unit is a complete adder with three
inputs: a, b and p_{ — the input of the carry from the previous
cascade, as well as with two output: s — sum and p — output
carry; HA unit is a half-adder with two inputs, a and b, and
two outputs: s is the sum and p is the output carry [13].

The scheme provides a summation of the carry bit with
a weight of 2" and a lower significant bit. There is also a
possibility to correct the result if the sum of input values is
equal to the module.

The modulo adder circuit for numbers in the form 27+1,
for example, the Fermat numbers, is shown in Fig. 2. The
adder shown ensures a summation of nine-digit binary num-
bers modulo 257.

Similar to the procedure described above, a bit with a
weight of 2" represents a value comparable to —1 modulo p.
Therefore, when adding, the carry bit with a weight of 2" is
subtracted from the least significant bits.

Of greatest interest is the development of adders for
moduli p=ppat+1=(29—1)-2+1, which provide for a wider
choice of NTT dimensionalities and the ranges of operand
values and results.

Consider, in particular, an adder for the Golomb numbers
modulo, for which a=2, p=3-2"+1.

The results of arithmetic operations for modulo p=3-2"+1
can easily be reduced to residuals, given that 4-2" is compa-
rable to (2"—1) modulo 3-2"+1. Therefore, when added, the
carry bit with a weight of 4-2" forms a value consisting of n
unit bits. Next, this formed value must be added to n — the
least significant bits of the resulting sum. The result is the
sum modulo p=3-2"+1.

For the case when, at adding, one obtains a carry
bit equal to zero, it is necessary to perform additional
processing of the computation result. To this end, one
should sum (n—1) — the least significant bits of the re-
sulting sum, and then multiply them by two bits with a
weight of 27 and 2! and logically add it to the overflow
bit, which weights 27*2. The derived bit is then summed
with each of the n-least significant bits of the receiv-
ed sum.

The block diagram of the modulo adder for the Golomb
numbers, based on the above reasoning, is shown in Fig. 3.

All the above structures were modeled and tested in the
Active-HDL ver.9.1 environment, which proved their oper-
ability and the possibility of constructing NTT processors
based on PLIC or specialized LSI.

Fig. 4 shows an adder of the VHDL model for the
Mersenne number 8,191=213-1 modulo; Fig.5 — time dia-
grams of the adder operation.

b6 ag b5 as b4 Ay b3 asz b2 ds b1 a) b() ap
| | | | T A A
Po.s FA Po.s FA Poa FA Pos FA Po.2 FA Po.1 FA Po.o HA
X5 X4 X3 X5 X1 X0

?F
e

HA Pis HA Pia HA P13 HA P12 HA P11 HA Pio HA
! l l | l l [
Se Ss S4 S3 So S1 So

Fig. 1. Block diagram of the modulo 127 adder
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Fig. 2. Block diagram of the modulo 257 adder
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Fig. 3. Block diagram of the modulo p=3-2"+1 adder
ab(12:0)
12:0
A(11)b(10) ﬁ(unbw) f@) b(8) E(X) b(7) k(?) b(6) tl(ﬁ) b(s) Fm b() []a@ b(3) k@) b(2) kxtz) b(1) t‘(l) boy (b0 O
a0 pif ~AQ P HAD Pif- ~AD P1|- A0 P~ a0 pif— | a0 Pif- +AD P A0 P1[- A0 P1{— | —]A0 P1f ko =
—-B0 81 BO S1 B0 S10— BO 81 BO 81 B0 S1 BO S1 B0 s1 BO 81 BO 81 B0 S1
PO W‘-Fa §‘|'Pﬂ W ‘-PD W"Po —‘|PD ‘-PO §‘| PO ‘-PG W‘-Po ‘-PD §‘ 50511{
e e ST e e e e e e e
=
b +- #BO S1f+ #B0 S +Bo S +BO S|+ HBo S1f- +BO S1++ +BO S1| +[B0 S|+ +B0 S1)+
Y | B F9) B e il
s(12) s 510)  [O) S(8) s(7) s(6) 5(5) 5(4) 56) s2) s() 51200
Fig. 4. Model of the modulo 8,191 adder
Signal name Value | - 180 . 240 .30 - - o400 ©oag0 ©560 + + c B40 S70 - 80 880 - © 9680 we
e-a 8190 3 i 74 X 334 1870 5066 8190
5] -b 10 ] 0 74 91 1883 5079 2 10
E X3 9 8 3 { 74 148 425 3753 3754 y 5978 1 9

Fig. 5. Results from modeling the modulo 8,191 adder

7. Discussion of results of studying the methods for NTT
acceleration

Known works consider only the moduli in the form of
the Fermat, Mersenne, and Golomb numbers. By applying
methods from the theory of numbers, this paper has demon-
strated a two-fold and larger increase in the number of
moduli for theoretical-numerical transformations (Table 1).
Such an expansion of the range of moduli makes it possible,
on the one hand, to better adjust the parameters of a NTT
processor to specific requirements for accuracy and speed,
on the other hand, to accelerate the computation of additions
for the module.

In addition, known papers paid little attention to the
form of the primitive root. Our analysis of possible moduli
and primitive roots has made it possible to choose those that
ensure the simplification of exponentiation and multiplica-
tion operations (Table 2).

It has also become possible to design circuits for the
fast-acting modulo adders, easily implemented on PLIC and
specialized LSI, for a wide range of moduli not reported in
available studies.

Thus, this research has allowed us to increase the speed
performance of devices for computing NTT due to the use,
on the one hand, the number theory methods, and, on the
other hand, modern methods of synthesis and modeling of
digital devices.

At the same time, the selection of modules proceeded to
some extent empirically. Better results could be probably
achieved by applying such an algebraic apparatus as the
Galois fields and group characters when choosing moduli.

In addition, this work does not include the adder schemes
for p=(29-1)-25+1 modulo for the case a>2, that is, modulo
generalized Golomb numbers.

In the future, it is advisable to synthesize such schemes
and, if possible, develop software for the synthesis of adders



and multipliers for all possible moduli in a special form. This
task, however, may require a volume of computations beyond
the capabilities of modern computer equipment.

Theoretical and experimental estimates should also be
made of the performance speed of the proposed structures
depending on the element base used.

8. Conclusions

1. A procedure has been proposed for choosing the
optimal moduli for calculating NTT, which could make it
possible to increase by two times, and larger, the number of

moduli for NTT, as well as to better adjust the NTT proces-
sor parameters for specific requirements for accuracy and
performance speed.

2. A procedure has been proposed for analyzing the NTT
parameters and choosing the primitive roots, which allows
15-20 % faster computation of correlations and convolutions
when using NTT. A procedure has been proposed and the al-
gorithms and programs have been developed for analyzing the
NTT primitive roots, which make it possible to accelerate the
computation of correlations and convolutions when using NTT.

3. We have synthesized and tested high-speed adders for
the proposed moduli, which could serve as the basis for arith-
metic units in high-speed correlators and filters.
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