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Jlns 3a0aui npo einvii icecumempuyii KOMUGAHHA KPY20680i naa-
CMUHKU 31 3MIHHONO MOBUUHOINO OMPUMAHO 3A2ANLHUN AHATIMUY-
Hull po3e6’a30K Oudepenuianvroezo pieuanna IV 3i aminnumu xoedi-
uienmamu. Toswuna nnacmunxu 3mintoemocs 63006%c padiyca p
3a napatoniunum saxonom h=Hy(1-up)>. IIpu nobyooei poseasxy
BUKOPUCMOBYBABCS CUHMe3 Memody paxmopuzauii 3 Memooom cume-
mpiii. 3a 00nom0o2010 Memody Paxmopusauii piueHHs nOUAMK06020
pieusanns IV nopaoxy npedcmasneno sk cyma piwenv 060x 6i0nosio-
HUM quHom nodyoosanux piensane II nopsaoxy. Memodom cumempiii
3Hali0eni mouHi pileHHs YUX 080X PIBHSHD.

3adaua 3 mouKosuUM 3aKPINIEHHAM NIACMUHKU PO3LJAAHYMA K
epanuvnuil 6UNAOOK 3a0aui MPo HCOPCMKe 3AKPINJeHHs 6HYmpiui-
Hb020 KOHMYPY Kinvyeoi naacmunxu, y axii p—0. 3 uyicto memoro
BUKOHAHO MPAHCHOPMAuilo 3a2anbH020 PO36°A3KYy 00 6udy, AKull
3a30anezidb 3a00607bHAEC YMOBAM HA IHCOPCMKIUL MOUKOGIL Onopi.
Pesynvmamom maxozo nepemeopenns € 6inou npocme piwienns, axe
Micmums 3amicmv 4OMUPLOX WYKAHUX NOCMIUHUX THMEZPYEAHHS
Jnuwe 06i. Buacniook uvozo, vacmomne pieHaHHSA 015 RAACMUHKU NPU
0YOb-aKUX YMOBAX HA 308HIUHLOMY KOHMYPI ICMOMHO CRPOUWYEMb-
cs1, uepe3 me w0 60OHO OMPUMAHO 3 BUSHAHUKA OPY2020 NOPAOKY. 3
UACMOMHO20 PIGHAHHS OIS NILACMUHKY 3 MOYKOB010 ONOPOH0 i 3 6ilb-
Hum xpaem npu u=1,39127, wo gionosidae 6i0HOWEHNHIO 2PaAHUMHUX
moewun, pienomy 10,8, eusnaueno nepuii n'samov 6AACHUX HUCEN ;
(=1-5). [na 4; (i=1+3) 6 axocmi epagdiunoi intocmpauii nobydosaro
dopmu xonueans. Hasedeno uucaosi snanenns amniaimyonux xoeqi-
uienmis, Koopounamu (8i0HocHi padiycu) nyuHocme KOJIUBAH i BY3-
NI0BUX KN 0N KOIHCHOI 3 n'amu opm xoausans (i=1+5). naiideni
HUCTI061 3HAUEHHA NAPAMEMPIE KOIUBAH, AKI HA NPAKMUUT MOHCYMb
Oymu euxopucmani 0 nepeunnoi idenmuixauii 6udy KoaUBANLHI
cucmemu ma i MONCAUBUX XAPAKMEPUCMUK 6 PA3] 3AKPINIeHH nia-
CMUNKU 3 6HYMPIUHIM KOHmMYpoMm manozo diamempa. ITii sce memi
Modice cayzyeamu Kpumepiaivie 6i0HOUWEHHs Oiamempa KOHMYpY
3axpinaennsn 0o diamempy naacmunxu. SAxuo ye éionowenns dopie-
Hioe abo menwe 0,2, mo 3aKpinyienns 0ONYCMUMO 66ANCAMU MOUKO-
um. Y upbomy 6unaoxy po3paxyHox KOJIUBAHb Kilble60i NIACMUHKY
13 3aKPINNEHHAM 3a BHYMPIUHIM KOHMYPOM MONHCHA 6eCMU 34 Al20-
PUMMOM, AKUU UKAAOEHO 0151 RAACMUHKU 3 MOUKOB0H0 ONOPOH)
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1. Introduction

A series of problems on the natural oscillations of cir-
cular plates of various thicknesses have been considered in
studies [1-3]. They also outline issues that reveal the impor-
tance and essence of the problem, review the ways to solve it
with appropriate literary references.

In practice, there are cases when a circular plate in en-
gineering structures is fixed inside the inner contour whose
diameter is much smaller than that of the outer one. This sit-
uation necessitates considering a problem on the oscillations
of a solid plate with a point support. The transition from
natural conditions inside the internal contour to the con-
ditions of point fastening is predetermined by the desire to
simplify the plate estimation model without a significant loss
of accuracy. For a plate of constant thickness with a support
in the center, the results of solving the problem are reported
in [4—7]. There is a basic issue related to a variable-thickness
plate — the search for a general analytical solution based on

the original differential equation of free oscillations. If it is
solved, it is possible to consider a series of applied problems
on the oscillations of solid or circular, free, or fixed-in-dif-
ferent ways plates, including those with a point support.
The relevance of the issue of calculating the oscillations of a
plate of variable thickness with a point support is due to the
need to improve the efficiency of estimation models, which is
inextricably linked to their simplification, as is noted for the
case of point fastening.

2. Literature review and problem statement

Our analysis of publications [8—15] has revealed that the
solution to the problem of free oscillations of the plate with a
point support is very general in the scientific papers related
to the field of applied plate theory. At the same time, the
focus of research is on ways and finding analytical solutions
to the problem of free oscillations. In this aspect, one should




note the use of both a variety of classic approaches to solving
the specified problem and modern algorithms. However, the
numerous solution methods reviewed and the particular re-
sults obtained are difficult to use to analyze the oscillations
of a round plate of variable thickness with a point support.
The reason for this seems to be the difficulty of finding an
accurate analytical solution to the IV-order differential
equation with variable coefficients that will describe the
oscillations of a variable-thickness plate.

5 natural frequencies for a plate with two point supports
were obtained in work [8] based on the theory by Uffland-
Mindlin. However, no variant for a variable thickness plate
has been found.

The “cloud” method and the plate theory by Midlin
were considered in paper [9] to solve a problem on the free
oscillations of a plate with a point support. In this case, the
authors considered plates of different shapes and with differ-
ent fixation, except for a thin plate of variable thickness. As
a result, the reported results of the study are unsuitable for
use in solving a problem on the oscillations of a plate with a
point support.

Study [10] considers a numerical approach to solving a
problem on the oscillations of a complicated plate of rectan-
gular configuration. Given the problem statement and the
algorithm to solve it, the resulting expressions cannot be
used for a plate with a point support.

Works [11-13] give analytical solutions to a problem on
the free oscillations of rectangular plates. To find a solution,
numerical approaches are used — a simplex superposition
method, a method of finite elements, and an integrated
method of transformation. It is obvious that the proposed
approaches are difficult to use for analytical research into
the plates of variable thickness with a point support.

A paired coordinate method is used in [14] to calcu-
late the natural frequencies and build the plate oscillation
shapes. However, the considered case of a thin plate with
cutouts is difficult to adapt to the problem involving a solid
plate with a point support. The same refers to the analysis
of the ratios from article [15]. There, the Relay-Ritz method
was proposed to construct the first oscillation shape of a
thick plate. The cited article does not include any variants
for a plate with a point support.

Thus, the above review of the scientific literature testi-
fies to the absence of publications on the analytical solution
to the problem on the oscillations of a round plate of variable
thickness with a point support. The reason, of course, is not
the lack of demand, as evidenced by the noted interest in the
plates, including those with point supports, but, apparently,
the difficulties associated with finding a solution to math-
ematical problems. Building an analytical solution to the
problem on the free oscillations of a round plate with a point
support would complement the theory of thin plates with
new results, which, in itself, has scientific and applied value.

3. The aim and objectives of the study

The aim of this study is to derive an analytical solution
to the problem on the free oscillations of a round plate, which
changes in line with the law of concave parabola if its center
includes a rigid point support.

To accomplish the aim, the following tasks have been set:

—to derive, based on the synthesis of symmetry and
factorization methods, a general analytical solution to the

differential equation for a problem on the free axisymmetric
oscillations of a plate whose thickness A=Hy(1—pp)%;

—to transform the general solution to the form that
meets the conditions on the support;

—to derive a frequency equation, calculate natural fre-
quencies, and build the first three oscillation shapes for a
plate with a free contour.

4. Differential equation and its overall solution for
a variable thickness plate

For a plate whose thickness A=Hy(1—pp)?, work [3] gives
a differential equation for the shapes of natural axisymmet-
ric bending oscillations, which can be represented in the
following form
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Here, W=W(p) are the plate displacements (deflections);
W is an arbitrary constant. p=7/R is the relative variable; 7 is
the variable radius; R is the plate radius.

A =2nf
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/is the natural oscillation frequency; Hy is the thickness in
the plate center; v, y, E are, respectively, the Poisson coeffi-
cient, specific weight, a material’s elasticity module; g is the
acceleration of gravity. Hereafter, the Poisson coefficient is
accepted to equal 1/3, based on which equation (1) is written
for this particular case.

The notation of IV-order equation in form (1) makes it
possible, applying the factorization method, to derive its
solution in the form of the sum of solutions W=W;+W, to the
following two II-order equations
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By replacing the variable p=(1/p)(1-¢™¥), equation (4)
can be written in the following form

w2 2w Lot =0

D
” D’ ’ (6)
w22, g, =0,

where W=dW/dx; D(x)=(e3*—e*)/2. If the expression
D(x) is replaced with function

D, (x)sz%v )

then it is possible, in the interval x=0+1, at D;=0.21; Co=
=0.2484, to obtain a satisfactory match between the D and
D1 functions. In this case, as noted in work [16], it becomes

possible to derive accurate solutions to equations (6) using
the symmetry method, which take the following form:
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where [/, Y, I, K| are the Bessel functions. The sum (8) is
the desired general solution at which the values of con-
stants A, B, Ay, By depend on the boundary conditions for
the plate in question. This solution, therefore, takes the
following form:
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We find from derivatives
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the following:

W (2 e —a’AJ, (o) — o’ BY, (o )+
) s o) () |

(11)

With a general solution (9) and its derivative (11), one
can consider a series of problems on the oscillations of a plate
of variable thickness of the parabolic profile under different
boundary conditions. A plate with a point support is a par-
ticular case of the circular plate, fixed in the center, at p=p;
if py—0. The technique of moving from a general solution to the
solution for such a plate is outlined in the following chapter 5.

5. Transforming a general solution to the form that meets
the conditions on the support

Let the closing along the inner contour p=p; of the cir-
cular plate be rigid, then the boundary conditions should be
fulfilled

(W), =0: (W,) 0.
Given that W,=W.x,, these conditions while moving to
variable x, will be rewritten in the following form

W), =0 (W),_, =0.

x=1x

(12)

There are two cases if x1=0. In the first case, if a plate
is solid and there is no support in its center, then, at x=0,
the plate deflection should be finite; therefore, in (9), it is
necessary to adopt B=0 and B;=0 because functions Yy(ox),
Yi(ox), Ko(Bx), Ki(Bx) at x—0 tend to infinity. We shall,
therefore, derive a general solution for a solid plate without a
support in the center, which takes the following form

W=(x*+C)) A[%(ax)_ aczzfc0 ]1(0“")]+
+4, [BIO (Bx) - xffc() I (Bx)]

This case will not be considered here.

In the second case, when a plate is supported in the cen-
ter (Fig. 1), it is obvious that B#0 and B;#0 and, therefore,
it is necessary, when meeting conditions (12), to take into
consideration the behavior of the Bessel functions in the
vicinity of the point x=0.

Fig. 1. Graphic representation of the plate with a point
support

After introducing (9) and (11) to (12), we obtain, at

x=x1=0
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where
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Taking into consideration the decomposition of Bessel
functions into the power series [17], we shall obtain, for the
limits included in (13):
)-BBK, (Bx)] =
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where y=0.5772157 is the Euler constant.
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then, since Jo(0)=Iy(0)=1, expression (14) receives the re-
sulting value
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The limit (15), given (17) and decompositions (17) for

Ji(ax), I1(Bx), as well as taking into consideration the limits

limx"lnx=0
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will, in turn, be finite and equal to the magnitude
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and expression (16), additionally, taking into consideration
the decompositions for_Jy(ax), Io(px) in the limit will equal
zero, that is
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Taking into consideration the results from (18) to (20),
we shall obtain, for a point support, a single boundary con-
dition instead of two conditions (12)

W(0)=0,
ie.
0A+BA, +SB=0, 1)
where
20, o 2(1 1
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Constant B is to be determined from (21)
1
B=-<(0A+p4). (23)
Following the substitution of (23) in (8) and (10), we
obtain
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where L=x"+C,.

Thus, the resulting equations (24) that meet condi-
tions (21) make it possible to build a frequency equation,
based only on the conditions at the edge p=ps.



6. Deriving a frequency equation, computing
the frequencies, and building the oscillation shapes of
the plate with a free contour

If the contour p=p, is free, then, in the event of an
asymmetrical deformation, the radial bending momenta and
transverse forces on the contour are zero, that is

v
(“];Jp+u/;>) =0;
P p=p.

2

1 1
(prp+“/|>p_zij =0. (25)
p p P=p2

After the transition to variable x=—In(1—up), by com-
pleting the required transformations and a series of sim-
plifications, we shall obtain, instead of (25), at v=1/3, the
following conditions
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The substitution of (24) in (26) at x=x3 leads to two
equations relative to the desired constants A and A4

{ AL(X2)+A1L1 (xz):()’ (27)

AL (x,)+ AL, (xz) =0.

By equating the system’s (27) determinant to zero, we
obtain a frequency equation of the plate in question with a
point support, that is
LL,~LL,=0, (28)

where
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J.Y = J (ox),Y (owx);
IK=1(Bx),K(Bx).

It is easy to determine the amplitude coefficients from
the system of equations (27)
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The oscillation shapes W, according to (24), will be de-
termined from the following expression

W:(XZ+C0)A1{N1_N2_N3+N4}’ (30)

where
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Thus, equation (28) makes it possible to determine the
natural frequencies of a free plate of variable thickness with
a rigid point support. Expression (30) defines the functions
of the plate deflections.

To illustrate the effectiveness of the constructed prob-
lem-solving algorithm, a circular plate was chosen, whose
ratio of the limiting edge thicknesses £(0)/h(p3)=10.8
at p»=0.5, which corresponds to u=1.39127.

Based on the obtained estimation ratios, we determined
the frequency numbers of plate A; as the solutions to the cor-
responding frequency equation (28) (Table 1).

In order to construct the first three oscillation shapes,
one determines, using expression (30), after substituting the




frequency numbers }; (j=1, 2, 3) in it, the amplitude coeffi-
cients A/Aq. A graphic representation of the deflections for
the first three oscillation shapes is shown in Fig. 2—4.

Table 1
Natural plate frequencies and oscillation nodes coordinates
Oscilla- Natural Coordinates | Coordinates
tion shape fro aul’l;lc of oscillation| of oscillation A/A,
number 4 y nodes pg; |antinodes Py
1 A=3.911329 0 - —-59.283
11 1=6.635320 0;0.413 0.303 153.334
_ 0; .
11 13=9.872506 0.307:0.453 0.2; 0.396 -909.441
_ 0; 0.241; 0.147; 0.318; 3
v M=13.334707 0.375: 0.469 043 8.564x10
0; 0.198; . .
\Y% 25=16.892550|0.316; 0.409; 0.116; 0.263; —1.042x10°
0.368; 0.448
0.477
w
1.0
0.8
0.6
0.4
0.2

-0.5-0.44-0.36-0.27-0.15 0 0.150.270.360.44 0.5 p

Fig. 2. Graphic representation of round plate deflections on
the first oscillation shape
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Fig. 3. Graphic representation of round plate deflections on
the second oscillation shape
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Fig. 4. Graphic representation of round plate deflections on
the third oscillation shape

Note that, based on the classical theory of plates, danger-
ous radial stresses act in the zone of maximum deflections. It
is known that the distribution of stresses on a support has a
special character.

7. Discussion of results of solving the problem about
a plate with a point support

The resulting general solution to differential equation (1)
makes it possible to consider a series of specific problems on
the oscillations of parabolic plates — circular and solid ones,
with different types of contour fastening. This paper con-
siders the ultimate case of a plate rigidly fixed on the inner
contour (p=p1), whose radius p;—0. There are two objectives
for stating this type of problem. First, there are structures
that demonstrate the “point” fastening; therefore, one must
have an algorithm to analyze their oscillations. Second, it is
often impossible to judge with certainty the scale of the fas-
tening, but, given the relatively cumbersome way of obtain-
ing a rigorous solution to the problem, the assumption about
a “point” fastening is made. One can derive a solution for
the case of point fastening, which passes the limit to the point
support, if, by following conditions (12) and (26), one builds
four equations regarding the integration constants A, B, Ay, Bs.
A rather cumbersome determinant of the constructed system
of algebraic equations of the fourth order, equal to zero, is a
frequency equation. Further, accepting the condition p;—0,
it is necessary to run a mathematical analysis of the resulting
equation, reducing it to the form containing the final terms.
This path of transition to a point type of fastening is not
productive, as it is still cumbersome because it is based on
general boundary conditions. Another way is to transform
the general solution (8) to the form that pre-meets the con-
ditions on a rigid support. As a result of the transformations
performed, we derived, instead of (8), a general form of the
solution W as the sum of solutions (24) for a solid plate with
a point support under any conditions on the contour p=ps.
This solution contains only two basic integration constants
A and Ay, so, in this paper, the frequency equation (for a
free contour case) has been easily derived from the order 11
determinant. Such a problem-solving scheme is based on the
assumption about the independence of frequencies on the
magnitude of fastening radius py if it is small compared to ps.

For a plate of constant thickness, it is believed that,
if p1/p2<0.2, the fastening is of the point type. Based on
the calculation results, in particular, from determining the
coordinates pg of the first nodal circles S for five oscillation
shapes, it can be assumed that the ratio p;/ps<0.2 remains
valid for the plate of variable thickness. The basis for this
conclusion is the comparison of py for the plates of constant
thickness [18] and the plate, examined in the given example,
whose ratio of limit thicknesses £(0)/4(0,5)=10.8. The re-
sults of the comparison and the relative error & of deviation
in the parameters are given in Table 2.

Table 2

Comparison of parameter pg for the plates of constant
thickness and the plate considered in this paper

Oscillation shape I 11 111 v \Y%
S, quantity 0 1 2 3 4
po, h=const 0 0.434 | 0.4525 | 0.464 | 0.4715
po, h#const 0 0.413 | 0.453 | 0.469 | 0.477

3, % 0 —4.8 0 1 1.16

The location of nodal circles, given in Table 1, could in
practice serve as a criterion for determining the character
of fixation. If a plate is fixed in the center by some diameter,



then, by exciting the oscillations in it of one of the shapes
(from IT to V) and by measuring the radius Ry of a first (from
the edge) nodal circle, we compare the magnitude Ry/0.5
to po, which should be approximately equal. If the relative
value of this radius is not much different from, for example,
po=0.453 for shape III, the fastening should be assumed
to be of the point type; the oscillations should be analyzed
based on the model of a plate with a point support.

The limitation of the current study stems from the algo-
rithm to produce a general solution that requires lowering
the order of the original differential equation. The factor-
ization method, used for this purpose, while not universal,
pre-restricts the form of functions at which it holds. These
include parabolic functions.

The solution to the problem, reported in our paper, seems
to be one of the possible cases of the theory being applied to the
practical calculation of variable thickness plates. The theoret-
ical basis of such calculations is the method of symmetry, de-
veloped and implemented as a general solution to equation (1).

Given this, in the future it is easy to consider, for this
type of variable thickness plates, by directly using expres-
sions (24), the free oscillations of a plate rigidly- or freely
fixed along the contour with varying degrees of concaveness,
determined from the parameter p.

8. Conclusions

1. A general analytical solution to the IV-order differential
equation has been derived for a problem on the free axisym-
metric oscillations of a plate whose thickness A=Hy(1—pp)?.
This solution makes it possible to consider a series of prob-
lems about oscillations of parabolic plates — solid and circu-
lar ones, with different types of contour fastening, including
a point support in the center.

2. The general solution has been transformed into the form
that pre-meets the conditions on a rigid point support. The
transform result is a simpler solution, which includes, instead
of four desired integration constants, only two. Therefore,
the frequency equation could be easily obtained from the sec-
ond-order determinant under any conditions on the contour.

3. The frequency equation for a free-edged plate at p=
=1.39127 (the ratio of limit thicknesses is 10.8) has produced
the first five eigenvalues A;. For A; at i=1,2,3 the oscillation
shapes have been built as a graphic illustration. We have given
the numerical values of amplitude ratios, the coordinates of
oscillation antinodes and nodal circles in the form of relative
radii for each of the five oscillation shapes (i=1+5). All numer-
ical oscillation parameters could in practice be used to identi-
fy the characteristics and types of plate oscillations.
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