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1. Introduction

The aerodynamic properties of seeds are widely used in 
seed cleaning practice, especially for the removal of impuri-
ties (straw, spike particles, etc.). Such impurities are sharply 
different in terms of specific weight from seeds; they have 
different critical velocity and are easily detached in the air-
flow. This principle of cleaning is fully and successfully used 
in simple (winnows) and complex seed-cleaning machines. 
Critical seed velocity depends to a large extent on their 
shape: in a spherical seed, it is quite constant, so it can be em-
ployed during cleaning. There is a group of weed seeds that 

vary in their sailing ratio; they can be completely removed by 
exploiting this property.

The effective separation of seed mixtures with pro-
nounced aerodynamic properties is carried out using devices 
that separate them based not on a single attribute, but rather 
based on a set of physical-mechanical properties: shape, 
roughness, and elasticity [1, 2]. These devices include vibra-
tory machines, which have shown high separation efficiency 
for many small-seeded crops [3–5].

For such machines, it is of interest to investigate the 
process of interaction between the working surfaces of the 
machine and air. The need to use gas-dynamic models is 
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Сучасна практика застосування вiбра-
цiйних машин при роботi з дрiбним насiнням 
малої ваги зiштовхується з таким небажаним 
явищем, як вплив на кiнематику вiбрацiйного 
руху частинок фракцiй насiннєвої сумiшi аеро-
динамiчних сил та моментiв. Перiодичний рух 
повiтря вiдносно робочих площин вiбрацiйної 
машини виникає за рахунок коливань пакетiв 
цих площин, якi утворюють плоскi аероди-
намiчнi канали. З цього виявляється акту-
альним питання дослiдження процесiв взає-
модiї робочих органiв вiбрацiйної машини з 
повiтряним середовищем з метою обґрунту-
вання їх конструктивних доробок. Iснуючи 
математичнi моделi, якi оцiнюють параме-
три руху повiтря вiдносно робочих площин 
вiбрацiйних машин, дають лише узагальнену 
картину та являються плоскими. В стат-
тi наведено постановку та розрахункову кiн-
цево-рiзницеву схему розв’язання тримiрної 
кураєвої задачi для обчислення поля швидко-
стей та тиску для областi повiтря, що зна-
ходиться мiж двома паралельними площи-
нами, якi синхронно коливаються. В задачi 
використано систему диференцiйних рiвнянь 
для опису течiї iдеального газу. Рiшення кiн-
цево-рiзницевої схеми здiйснено за допомогою 
методу прогонки. 

Використання методу прогонки для вирi-
шення такого роду завдань дозволяє забез-
печити збiжнiсть i стiйкiсть розрахункових 
схем незалежно вiд кроку i iнших параметрiв 
використовуваної сiтки. 

Наведено варiант розрахунку, що демон-
струє працездатнiсть запропонованого ме- 
тоду для заданих крайових умов i параме-
трiв вiбрацiйного режиму роботи машини. 
Встановлено, що в робочому просторi, укла-
деному мiж двома площинами, що колива-
ються, мають мiсце як вертикальна (попе-
речна), так i горизонтальна (поздовжня) 
складовi швидкостi руху повiтря, якi змiню-
ються за часом

Ключовi слова: газодинамiка, система 
диференцiальних рiвнянь, крайова задача, 
метод сiток, метод прогонки, поле швидко-
стей
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caused by that there is an air movement in the airspace be-
tween the oscillating work surfaces. This phenomenon has a 
significant impact on the pattern of vibrational movement of 
seeds with pronounced aerodynamic properties. To investi-
gate this interaction process, it is necessary to have adequate 
mathematical models for predicting airflow parameters over 
vibrating work surfaces, depending on the parameters of the 
operational mode and design features of vibratory machines.

The current theory of the vibrational movement of small 
seeds (particles) does not fully take into consideration 
the aerodynamic factor. This is mainly due to the lack of 
three-dimensional air movement patterns under the influ-
ence of the working organs of a vibratory machine.

This inhibits further improvement of vibrational clean-
ing methods and means as the most effective way to separate 
small-seeded crops. For example, a new mechatronic vibra-
tory cleaning machine [6–8], while providing significant 
performance improvement, needs to be refined to compen-
sate for the aerodynamic factor. The selection of rational 
structural parameters of the improved machine is possible 
only based on multivariate studies on modeling the work-
flow taking into consideration the dynamics of air mass 
movement. The kinematic parameters of air medium move-
ment that interacts with the processed seed crop must be 
calculated using gas-dynamic equations that could be solved 
by applying modern numerical methods. It is desirable that 
the method to be used, while producing a three-dimensional 
pattern of air movement, should at the same time not require 
an excessive increase in computational resources, as is the 
case, for example, in the gas-dynamic calculations of thermal 
machines.

2. Literature review and problem statement

The numerical methods for solving the problems of hy-
dro-gas-dynamics are constantly evolving and are applied 
in many practical areas of activity. These areas are related 
to the design of aircraft, water, and ground-based vehicles, 
various assemblies and devices, whose operation implies 
taking into consideration the impact of the surrounding 
air (gas) or water environment. Up to now, a large number 
of estimation schemes and models have been constructed, 
allowing the calculation of parameters of the gas-air (water) 
environment when interacting with the structural elements 
of designed vehicles (assemblies) [9]. The applied estimation 
approaches are mainly based on the grid method, the method 
of generators, or the Massot method [10, 11]. These meth-
ods, while demonstrating undeniable advantages in terms 
of simplicity and versatility, make it possible to resolve the 
issue of the non-linearity of differential equation systems, 
which typically describe the examined gas dynamic (hydro-
dynamic) processes. The price incurred is the instability and 
unsatisfactory convergence of the solutions derived, which 
depend on the technique and grid parameters for splitting 
the regions under study.

The problem of convergence of the numerical solution 
to gas-dynamic equations is central to the research of es-
timation schemes used in the field of thermo-gas-dynamic 
processes. 

An iterative method for solving the Euler’s finite differ-
ence equations was proposed in [12]. Given the simplicity of 
the method, the solution process has a slow convergence rate, 
which is unacceptable for variable calculations. 

In [13], to improve convergence, a matrix time step, and a 
method of directional coarsening of the grid were proposed. 
That made it possible to significantly increase the speed of 
convergence of calculations but significantly complicated 
the algorithm.

Papers [14, 15] examine the methods of multi-level multi-
ple grids, where the error of the solution obtained on a small 
grid is transferred to a large grid, and then the smoothed 
solution, obtained on a large grid, is transferred back to a 
small grid. The methods proposed, while outperforming 
the previous method in terms of convergence rate and the 
achieved accuracy of calculations, are even more complex 
and costly in terms of the consumption of computational 
resources.

It was noted in [11] that for the case of a perfect gas 
when differential equations are brought to a quasi-linear 
form, thereby reducing the estimation model to a boundary 
value problem, the toolset of applied computational methods 
could be supplemented with a sweep method. According to 
the studies reported in [16], it is claimed that a given method 
is insensitive to how a region splitting grid is formed. When 
decreasing a breakdown step, the accuracy of the solution 
always improves, which converges to a certain value. To 
ensure the stability of the solution, no additional measures 
are required, for example, the use of data formats with an 
increased number of bits.

The statement of a calculation scheme for solving the 
boundary value problem by a sweep method for a two-dimen-
sional case when solving a problem on heat exchange on the 
plane was proposed in [9]. As regards the case of a three-di-
mensional system of gas dynamics equations, the authors are 
not aware of any results in obtaining the estimation schemes 
to solve them using a sweep method. 

For the case of studying relatively simple gas-dynamic 
processes: the use of the perfect gas model, within an acous-
tic range of velocities and pressures, it is advisable to consid-
er the sweep method as a priority. This is due to a significant 
gain in the rate of computing at a relatively simple analytical 
development of the computational scheme.

Thus, when considering the processes of interaction be-
tween the working surfaces of vibratory machines and an air 
environment, when there are weak (acoustic) disturbances, 
it seems appropriate to conduct research on the analytical 
development of estimation schemes using a sweep method.

3. The aim and objectives of the study

The aim of this study is to devise a method for solving a 
boundary value problem for a three-dimensional system of 
differential equations of air dynamics under the influence of 
the working bodies of a vibratory machine using the sweep 
method. Applying the sweep method to solve these kinds of 
problems makes it possible to ensure the convergence and 
stability of calculation schemes, regardless of the step and 
other parameters of the grid used.

To accomplish the aim, the following tasks have been set:
– to construct a numerical sweep algorithm for three 

orthogonal axes; 
– to implement the built computer algorithm on PC 

using the MATLAB programming environment, in order 
to demonstrate its feasibility by computing the field of ve-
locities and pressures of air medium for the characteristic 
positions of the working bodies of a vibratory machine.
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4. Construction of a numerical sweep algorithm for three 
orthogonal axes

In a general form, the statement of a boundary value prob-
lem to calculate the field of velocities and air pressures, locat-
ed between two parallel synchronously oscillating working 
planes of a vibratory machine, is given in [19]. The results are 
presented in the analytical and finite difference form. 

The Euler equation, supplemented with a continuity 
equation, was used as a mathematical model of the process 
under study.

grad ,pρ = ρ −a F  (1)

2

1
div 0,p

c
+ =

ρ
V  (2)

where a is the air medium acceleration vector; F is the vector 
of acceleration due to the action of mass forces (gravity); p is 
the air pressure at the point in question; ρ is the air density, 
V, p  is the motion velocity vector and the velocity of air me-
dium pressure change at the point in question, respectively; 
c is the speed of sound. 

In the coordinate form, the system of equations being 
solved takes the form:

1
,x

u u u u p
u v w g

t x y z x
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1
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1
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 (5)

2
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∂ ∂ ∂
 (6)

where u, v, w are the projections of the air medium velocity 
vector, V, onto the X, Y, Z axes of the selected coordinate 
system; gx, gy, gz are the projections of the acceleration of free 
fall onto the axes of the selected coordinate system. 

The boundary conditions for the borders of the region 
confined between two synchronously oscillating work sur-
faces can be recorded as follows:

– for edges: C, D, E and G (along the contour of the cal-
culated area) there is an unimpeded relative movement of air 
and the pressure is equal to the atmospheric pressure

( ) ( )к ,, , ,
t

tC D E G = −V
V   (7)

0,, , ,
p pC D E G =   (8)

where V(t)/C, D, E, G is the velocity vector of air particle 
motion, which belong to the C, D, E and G edges of region Ξ, 
relative to the system of coordinates of the working surface; 
VK(t) is the velocity vector of the oscillations of points at 
the working surface relative to the inertial system of coordi-
nates; p/C, D, E, G is the air pressure along the C, D, E, and 
G border; p0 is the atmospheric pressure;

– for the A and B edges, which come into contact with 
the surfaces of the lower and upper working planes of a vi-
bratory machine, there is complete braking of the air when 
it comes into contact with the surface (the air at rest is set 
into motion by the oscillating working surfaces). A positive 
or negative pressure difference Δp is formed. The sign of this 
difference is determined depending on the motion direction 
of the working surface. That is, the boundary conditions for 
edges A and B take the form:

( ) ( ) ( ) 0,, , ,
u t v t w t

A B A B A B= = =   (9)
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where ρ is the air density; ( ),k
x tV  ( ),k

y tV  ( )k
z tV  are the pro-

jections of the oscillation velocity. 
An estimation scheme was proposed in [20], which 

implements the sweep for three orthogonal axes of the co-
ordinate system associated with the working planes of a 
vibratory machine. 

To derive an estimation scheme, the system of equa-
tions (3) to (6) is written in a matrix form:

,
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
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The sweep will run along two axes: the X axis and the Y 
axis. Thus, for a direct sweep along the X axis, each j-th node 
belonging to the Y axis is assigned with a set of nodes lying 
on the vertical axis, which passes through the j-th node. The 
formed left boundary of the studied region along the j-th sec-
tion is swept to the right boundary by moving it from the ZOY 
plane along the OX axis. The resulting set of nodes (i, j, k),  
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i=0, …, b/h, k=0, …, H/s, is also assigned to the j-th node of 
the Y axis. Next, the formed section is swept to node j=a/l 
(to the side end of the studied region). The directions of di-
rect sweep along the X axis and Y axis are shown by arrows 
in Fig. 1. Reverse sweep is performed in reverse order.

Fig. 1. Sweep scheme

Papers [19, 20] give the finite difference notation of the 
system of equations (16) and its transformation aimed to 
derive the recurrent direct-to-reverse sweep ratios. 

In the course of a direct sweep, for j=0,…, a/l, τ=1,…, T, 
one computes the elements of Xj,τ and yj,τ

 
tensors, using the 

following recurrent ratios:
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The computed elements are saved for all the steps 
j=0, …, a/l.

The elements of the tensor-section for 
the far-right position (at the end of the di-
rect sweep), Ξa/l,τ are determined:
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The values for ui,a/l,k,τ, vi,a/l,k,τ, wi,a/l,k,τ, pi,a/l,k,τ are deter-
mined based on the boundary conditions for edge D. 

Next, we run a reverse sweep. We compute the ten-
sor-section elements for all intermediate positions to the left 
of the right end of the sweep interval: 

( 1), , , , ,j j j jX y− τ τ τ τΞ = Ξ +  

( ) ( ), 1 , 2 , ... ,1.j a l a l a l= − −
 

(25)

The field of velocities and pressures is computed.

5. The results obtained and their analysis

Based on the proposed analytical expressions (14) to (25),  
we have constructed an estimation algorithm, which is 
implemented in the applied software package MATLAB 
designed to solve the problems of technical calculations. 
The results that were obtained using it are given for time 
moments t=0 (Fig. 2), t=1/4Ω (Fig. 3) and t=1/2Ω (Fig. 4). 
The time point t=0 corresponds to the neutral position of a 
vibratory machine’s planes. There is a maximum (by mod-
ule) value of the velocity magnitude and a zero value of the 
acceleration of the movement of oscillating planes. The time 
point t=1/4Ω corresponds to such position of planes where 
their deviation from the zero position is maximum. There are 
a maximum acceleration and a zero velocity of plane move-
ment. The motion parameters and the position of the planes 
corresponding to point time t=1/2Ω are identical to the time 
point t=0, but the movement speed of the working planes of a 
vibratory machine here is directed in the opposite direction.

The illustrations above (Fig. 2–4) show that in the working 
space confined between two oscillating planes there are both 
vertical (transverse) and horizontal (longitudinal) components 
of air velocity, which change over time. The law of change in the 
longitudinal and transverse components of velocity is periodic, 
with a change in the movement direction. The superposition of 
these two movements produces a complex distribution pattern 
of the movement speed of the elements within the studied air 
continuum, where there are uneven velocities both vertically 
and horizontally in the estimation area.

The resulting distribution of pressures is characterized 
by unevenness for the height of the region. When moving 
from top to bottom, at time point t=0 (Fig. 2) there is a max-
imum pressure difference at the inner surface of the upper 
plane. In an extreme position of the working bodies, when 
the velocity of planes is zero, there is no dynamic pressure 
difference (Fig. 3). When moving backward (time point 

t=1/2Ω) (Fig. 4), there is excess pressure at the inner surface 
of the lower plane.

The magnitude of excess pressure corresponds to the 
magnitude of relative air velocity. The layer of air directly 
adjacent to the inner surface of the plane is inhibited ‒ the 
boundary condition (9). Its relative velocity becomes zero. 
The kinetic energy of air movement passes into the energy of 
excess pressure ‒ the boundary conditions (10) to (12). 

Fig. 2. The field of velocities and pressures for time point t=0 

Fig. 3. The field of velocities and pressures for time point 
t=1/4Ω

Fig. 4. The field of velocities and pressures for time point 
t=1/2Ω

Thus, the maximum air velocity relative to working sur-
faces is achieved in a position where the working bodies of a 
vibratory machine pass the neutral position. When moving 
from top to bottom: the maximum relative air velocity is 
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reached near the lower plane. When moving from bottom to 
top: near the top plane.

6. Discussion of results of studying the application of  
a sweep method

The above calculation results (Fig. 2–4) demonstrate 
that the field of velocities and pressures changes in accor-
dance with the harmonic law, over a period equal to the 
period of oscillations of the working planes of a vibratory 
machine. For t=[0; 1/2Ω], which is equal to the half-peri-
od of oscillations of the working planes, the direction of 
air motion changes to the opposite, and the pattern of the 
distribution of velocities and pressures for t=1/2Ω (Fig. 4) 
mirrors the pattern for t=0 (Fig. 2). It is obvious that over 
the full period of oscillations, for t=1/Ω, the pattern of the 
distribution of velocities and pressures would take the form 
shown in Fig. 2 for the starting time point t=0. The move-
ment of the air occurs under the influence of pressure drop 
caused by the dynamic pressure, which is exerted on the air 
by the incoming plane, on the one hand, and by sucking near 
the outgoing plane, on the other hand.

The resulting pattern of the dynamics of air movement 
does not include the vortex phenomena that are likely to ac-
tually occur. However, the model used, which does not take 
into consideration the viscosity of the air, does not make it 
possible to derive swirls in a calculated way. When using, as 
a kinematic model, instead of the Euler equation, the Navier- 
Stokes equation, such vortex effects would be obtained. 
However, at the same time, the estimation scheme would 
be much more complicated and, perhaps, would not make it 
possible to implement the sweep method.

However, for the practical aspect of this issue, the noted 
methodical flaw is of inconsequential importance. To study 

the effect of the aerodynamic factor on the character of the 
vibrational movement of seeds, the most significant is the 
accounting of the tangential components of air velocity. 
And the proposed calculation method makes it possible to 
compute them successfully, and at the low time and machine 
memory costs.

Further prospects for the development of the results 
reported here imply the improvement of the formalized de-
scription of the boundary conditions, which make it possible 
to take into consideration the various structural elements 
used to eliminate the harmful effects of the aerodynamic 
factor. In addition, we believe, the proposed algorithm has 
an independent value for its application in the field of gas 
dynamic calculations over the acoustic range of gas currents. 
The convergence of the solution automatically provided by the 
sweep method could significantly simplify the various compu-
tational problems on determining the parameters of gas (air) 
in subsonic flows, without taking into account the viscosity.

7. Conclusions 

1. An algorithm for sweeping along three orthogonal 
axes has been constructed in order to solve a system of 
gas-dynamic equations recorded for the case of perfect gas 
over the acoustic range.

2. The algorithm calculates the field of velocities and 
pressures in the air mass, located between two parallel syn-
chronously oscillating planes of a vibratory machine. The 
resulting three-dimensional air dynamics pattern does not 
require significant computational resources, so it is advisable 
to use it to build complex models to study the processes of 
interaction between the air environment and the oscillating 
elements of vibratory machines when solving the tasks of 
their design (improvement).
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