
Mathematics and cybernetics – applied aspects

59

18. Matsuura, M. (2014). Asymptotic Behaviour of the Maximum Curvature of Lame Curves. Journal for Geometry and Graphics, 18 (1), 45–59. 

19. Dura, E., Bell, J., Lane, D. (2008). Superellipse Fitting for the Recovery and Classification of Mine-Like Shapes in Sidescan Sonar 

Images. IEEE Journal of Oceanic Engineering, 33 (4), 434–444. doi: https://doi.org/10.1109/joe.2008.2002962 

20. Khoomwong, E., Phongcharoenpanich, C. (2016). Design of a Dual-Band Bidirectional Antenna Using Superellipse-Monopole-Fed 

Rectangular Ring for IEEE 802.11 a/b/g/n Applications. International Journal of Antennas and Propagation, 2016, 1–11. doi: https:// 

doi.org/10.1155/2016/9368904 

21. Dos Santos, R. A., Penchel, R. A., Rehder, G. P.,Spadoti, D. H. (2019). Omnidirectional Ultra-wideband Superellipse Patch Anten-

na for mm-Waves Applications. 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). doi: https:// 

doi.org/10.1109/piers-spring46901.2019.9017517 

22. Duchemin, M., Tugui, C., Collee, V. (2017). Optimization of Contact Profiles using Super-Ellipse. SAE International Journal of 

Materials and Manufacturing, 10 (2), 234–244. doi: https://doi.org/10.4271/2017-01-1349 

23. Forsayt, Dzh., Mal’kol’m, M., Mouler, K. (1980). Mashinnye metody matematicheskih vychisleniy. Moscow: Mir, 279.

IMPROVEMENT 
OF THE BRANCH 

AND BOUND 
ALGORITHM 

FOR SOLVING 
THE KNAPSACK 

LINEAR INTEGER 
PROBLEM

E l i a s   M u n a p o
PhD,	Professor	of	Operations	

Research
Department	of	Statistics	and	

Operations	Research
School	of	Economics	and	Decision	

Sciences
North	West	University	

Mmabatho	Unit	5,	Mahikeng,	2790,	
Mafikeng,	South	Africa

E-mail:	emunapo@gmail.com	

У статті представлений новий підхід до переформулювання, що доз-
воляє зменшити складність алгоритму розгалуження і меж для вирі-
шення лінійної цілочисельної задачі про рюкзак. Алгоритм розгалужен-
ня і обмеження в цілому спирається на звичайну стратегію, яка полягає 
в першому ослабленні цілочисельного завдання в моделі лінійного про-
грамування (ЛП). Якщо оптимальне рішення лінійного програмування  
є цілочисельним, то є оптимальне рішення цілочисельного завдання. Якщо 
оптимальне рішення лінійного програмування не є цілочисельним, то оби-
рається змінна з дробовим значенням для створення двох підзадач, так 
що частина допустимої області відкидається без усунення будь-якого  
з можливих цілочисельних рішень. Процес повторюється для всіх змін-
них з дробовими значеннями, поки не буде знайдено цілочисельне рішення. 
У цьому підході змінна сума і додаткові обмеження генеруються і дода-
ються до вихідної задачі перед її рішенням. Для цього швидко визначаєть-
ся об’єктивна межа задачі про рюкзак. Потім межа використовується 
для генерації набору меж змінної суми і чотирьох додаткових обмежень. 
Виходячи за межі змінної суми, вихідні підзадачі будуються і вирішуються.  
Оптимальне рішення потім виходить як краще рішення з усіх підзадач  
з точки зору об’єктивного значення. Пропонована процедура призводить 
до підзадач, які мають меншу складність і легше вирішуються, ніж вихід-
на задача, з точки зору кількості гілок і пов’язаних ітерацій або підзадач.

Задача про рюкзак – це особлива форма загальної лінійної цілочисель-
ної задачі. Є багато видів задач про рюкзак. Вони включають в себе задачі 
«нуль-один», «множинного вибору», «обмежену», «необмежену», «ква-
дратичну», «багатоцільову», «багатовимірну», «колапсу нуль-один» та 
задачу про об’єднання рюкзаків. Задачі про рюкзаки «нуль-один» – ті,  
в яких змінні приймають тільки 0 і 1. Причина в тому, що предмет може 
бути обрано або не обрано. Іншими словами, немає можливості отрима-
ти дробові суми або предмети. Це найпростіший клас завдань про рюкза-
ки, і він єдиний, який може бути вирішений в поліномі за допомогою алго-
ритмів внутрішніх точок і в псевдополіноміальному часі за допомогою 
методів динамічного програмування. Задачі з множинним вибором рюкза-
ків – це узагальнення звичайної задачі про рюкзаки, коли набір предметів 
розбивається на класи. Нульовий варіант вибору предмета замінюється 
вибором рівно одного предмета з кожного класу предметів

Ключові слова: цілочисельна задача про рюкзаки, переформулювання, 
алгоритм гілок і меж, унімодулярний, обчислювальна складність
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1. Introduction

In general the linear integer programming problem has 
very important real life applications. The general linear in-
teger problem comes in the form of capital budgeting, trans-
portation, traveling salesman, facility location, scheduling, 
knapsack etc. This model even though it is very easy to 

model mathematically, has proved to be very difficult to solve. 
See [1–5] for more on linear integer models. 

The paper presents a new reformulation approach to 
reduce the complexity of a branch and bound algorithm for 
solving the knapsack linear integer problem. The branch 
and bound algorithm [6, 7] in general relies on the usual 
strategy of first relaxing the integer problem into a linear  
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programing (LP) model. If the linear programming optimal 
solution is integer then, the optimal solution to the integer 
problem is available. If the linear programming optimal solu-
tion is not integer, then a variable with a fractional value is 
selected to create two sub-problems such that part of the fea-
sible region is discarded without eliminating any of the feasible 
integer solutions. The process is repeated on all variables with 
fractional values until an integer solution is found. In this ap-
proach variable sum and additional constraints are generated 
and added to the original problem before solving. In order to do 
this the objective bound of knapsack problem is quickly deter-
mined. The bound is then used to generate a set of variable sum 
limits and four additional constraints. From the variable sum 
limits, initial sub-problems are constructed and solved. The 
optimal solution is then obtained as the best solution from all 
the sub-problems in terms of the objective value. The proposed 
procedure results in sub-problems that have reduced comp-
lexity and easier to solve than the original problem in terms of 
numbers of branch and bound iterations or sub-problems. 

Knapsack problem reformulation is not a new idea. The 
reformulation approaches were once used to solve some knap-
sack and other problems [8, 9].

The knapsack problem is a special form of the general linear 
integer problem. There are so many types of knapsack problems. 
These include the zero-one, multiple, multiple-choice, bounded,  
unbounded, quadratic, multi-objective, multi-dimensional, 
collapsing zero-one and set union knapsack problems. The zero- 
one knapsack [10, 11] problem is one in which the variables as-
sume 0 s and 1 s only. The reason being that an item can be cho-
sen or not chosen. In other words there is no way it is pos sible 
to have fractional amounts or items. This is the easiest class of 
the knapsack problems and is the only one that can be solved 
in polynomial by interior point algorithms and in pseudo-poly-
nomial time by dynamic programming approaches. The multi-
ple-choice knapsack problem is a generalization of the ordinary 
knapsack problem, where the set of items is partitioned into 
classes. The zero-one choice of taking an item is replaced by 
the selection of exactly one item out of each class of items.

The multiple knapsack problem [12–14] is a generaliza-
tion of the standard knapsack problem formed by combining 
single knapsacks into a group of knapsacks having different 
capacities. In this case the objective is to assign each item to 
at most one of the knapsacks in such a way that all capacity 
constraints are satisfied and that the total profit of all the 
items put into knapsacks is made maximum. In the boun-
ded knapsack problem [15] there is a knapsack capacity and  
a set of items, each having a positive integer value, a positive 
integer weight, and a positive integer limit or bound on its 
availability. With the bounded knapsack problem the main 
objective is to select the number of each item type to add to 
the knapsack in such a way that the total weight is not vio-
lated and that the total value is a maximum. 

2. Literature review and problem statement

In this case of the unbounded knapsack problem, types of 
items of different values and volumes are given, then it is re-
quired to find the most valuable set of items that fit in a knap-
sack of fixed volume. The main difference with the bounded 
knapsack problem is that the number of items of each type is 
unbounded. A quadratic knapsack [16–19] is a knapsack prob-
lem whereby the objective is expressed as a quadratic function 
subject to a set of linear constraints. The variables in this 

knapsack problem can either be zero-one or general integers. 
With the multi-objective knapsack, the objective changes from 
a single objective into many objectives within the same prob-
lem. For example in agriculture, there is an objective to ma-
ximize profit and at the same time minimizing transportation 
costs and maximizing the number of employees. In multi-ob-
jective [20, 21] knapsack problems there is the dilemma of 
dealing with environmental, social, political and or economic 
concerns. In the multidimensional knapsack problem, several 
dimensions are considered in the formulation of the problem. 
The multidimensional knapsack [22–25] problem basically 
consists of finding a subset of objects that maximizes the total 
profit while observing some capacity restrictions. 

The collapsing zero-one knapsack problem is a type of 
non-linear knapsack problem in which the knapsack size is 
a non-increasing function of the number of items included. 
The set-union knapsack [26] problem is a variation of the 
zero-one knapsack problem in which each item is a set of ele-
ments, each item has a nonnegative value, and each element 
has a nonnegative weight. The weight of one item is given by 
the total weight of the elements in the union of the items’ sets.

The branch and bound was the first algorithm to be 
developed in 1960 [6] for these linear integer models. This 
method was further modified in 1965 to solve the mixed 
linear integer problem [7]. So many improvements have been 
done on the branch and bound algorithm in terms of addition 
of cuts to get the branch and cut algorithm [19, 27–29]. Pric-
ing was introduced within the context of branch and bound 
to get the branch and price algorithm [30, 31]. The improved 
versions, branch and cut and branch and price were also com-
bined to get the branch, cut and price [32–34]. In addition 
to using cuts and pricing within the context of a branch and 
bound algorithm, preprocessing can reduce the number of 
sub-problems needed to verify optimality. Even with all these 
efforts the general linear integer is still very difficult to solve. 
In fact the general linear integer problem including the knap-
sack problem is NP hard [10, 18, 19, 26, 35, 36] and there 
are not aware of any consistent efficient algorithm for these 
problems. These difficult problems and include the knapsack 
problem which is a special case with only one constraint.

The proposed algorithm has the advantage that it is 
parallelizable and independent processors can be used. The 
knapsack problem has so many real life applications. These 
include home energy management, cognitive radio networks, 
mining operations use, relay selection in secure cooperative 
wireless communication, electrical power allocation manage-
ment, production planning, in selection of renovation actions, 
waste management, formulation and solution method for tour 
conducting and optimization of content delivery networks. 
Network of electricity that  intelligently integrates  the users’.

The knapsack problem has so many real life applications. 
These include home energy management [37], cognitive radio 
networks [38], mining operation use [39], relay selection in 
secure cooperative wireless communication [40], electrical po-
wer allocation management [41], production planning [42], in 
selection of renovation actions [43], waste management [44], 
formulation and solution method for tour conducting and 
optimization of content delivery networks [45].

Nowadays electricity network grid which incorporates 
the user’s input or actions is now being used and is known as 
a smart grid. This smart grid is very important for sustainable, 
economical and secure supply of electrical power to the people.  
Knapsack optimization is used in the management and distri-
bution of power.
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Knapsack problem formulation is used in channel and 
power allocation for cognitive radio (CR) networks. In this 
formulation it is assumed that the total available spectrum 
is divided into several bands, each consisting of a group of 
channels. A centralized base station, enabled by spectrum 
sensing, is assumed to have the knowledge of all vacant chan-
nels, which will be assigned to various CRs according to their 
requests. In this case the objective of resource allocation is to 
maximize the sum data rate of all CRs.

An extension of the precedence constrained knapsack 
problem where the knapsack can be filled in multiple pe riods 
has applications in the mining operations. This problem 
formulation is known in the mining industry as the open-pit 
mine production scheduling problem. Both exact and heu-
ristics are used in solving the LP relaxation of this problem.

Knapsack formulation is used in cooperative jamming. 
Cooperative jamming schemes support secure wireless com-
munication in the presence of more eavesdroppers. Large 
numbers of cooperative relays provide better secrecy rate 
while increasing the communication ad synchronization 
needs associated with cooperative beam forming.

When renovating a building structure there is a need 
for the construction manager to select the most feasible 
renovation activities and the order in which they must be 
done. The main challenge of renovating a building structure 
is to determine whether to renovate the existing structure or 
start building a new building. Such a decision requires use of 
decision tools such as knapsack modeling.

Waste is another challenge that may cause serious en-
vironmental damage if not properly managed. Plastic and 
paper waste is a serious issue in most developing countries. 
The many problem of waste in developing countries is that 
there is very low level recycling in these countries. In other 
words there is a small amount of plastic and paper waste that 
is recycled and the rest is sent to the landfills or dumbed on 
the streets. For recycling to be financially profitable there is 
need to use effective and efficient ways in selecting items to 
be produced from a lot of items given a limited amount of 
money and other resources. This is where knapsack modeling 
is applied to minimize waste management costs.

Land conservation projects require proper managing and 
planning for the benefits to be seen. For these land projects 
there is always the dilemma of how to select the most profi-
table land projects subject to financial constraints. A multi-
ple knapsack formulation is employed in making such deci-
sions and it outperforms other decision making tools such as 
benefit targeting, cost-effectiveness analysis, and sequential 
binary integer programming.

The fast growing populations and introduction of health-
care systems have resulted in increased both inpatients and 
outpatients to public hospitals, particularly those hospitals 
that provide special and comprehensive health services in large 
countries such as China and India. The hospitals in these coun-
tries have huge numbers of both inpatients and outpatients. 
The huge numbers of patients result in overcrowding and 
these overcrowding conditions are a concern for the hospital 
managers. The obvious question is how to manage these huge 
numbers of patients effectively given the fact that some pa-
tients require less attention than the others, the lengths of some 
patients are predictable than the others. In other words those 
who require less clinical care are less likely to stay longer at the 
hospital. In order to alleviate the challenge of overcrowding,  
a multi-criteria knapsack model is used for disease selection in 
the reception or observation ward of the public hospitals.

So many studies have been done in the field of optimi-
zation methods. Unfortunately, sometimes it is not possible 
to directly apply these optimization methods to practical 
problems. As an example, a tourist deciding on a traveling 
sche dule within a traveling time limit needs to select travel 
tourist spots from lists so as to be satisfied as far as pos-
sible. This is a problem that can’t be solved by the available 
conventional methods. This problem is formulated as a tour 
conducting knapsack problem. The formulation and solution 
method of tour conducting knapsack problem are based on 
those of traveling salesman problem and knapsack problem. 

The knapsack problem has many very important appli-
cations in so many areas of business and engineering and it 
is certainly very necessary to develop efficient solution algo-
rithms for it. Most of the algorithms for the knapsack prob-
lem are branch and bound based and in this paper the branch 
and bound algorithm is improved for the knapsack problem.

The knapsack problem has so many applications [37–45] 
and there is definitely a need for efficient and consistent al-
gorithms for this problem. Some of the applications are home 
energy management [37], cognitive radio networks [38], 
mining operation use [39], relay selection in secure coopera-
tive wireless communication [40], electrical power allocation 
management [41], production planning [42], in selection of 
renovation actions [43], waste management [44], formula-
tion and solution method for tour conducting and optimiza-
tion of content delivery networks [45].

Even though there is a lot of effort from researchers to deve-
lop an efficient and consistent solution such a method does not 
exists. The knapsack problem is NP hard [10, 18, 19, 26, 35, 36] 
and an optimal solution is very difficult to obtain. For example 
in [10] a parallel algorithm for solving the NP-complete Knap-
sack Problem was proposed. NP complete is the most difficult 
subset of the NP hard problems. In [18] it is pointed out that 
the knapsack problem is an NP-hard optimization problem 
with so many diverse applications in industrial and manage-
ment engineering, however, computational complexities asso-
ciated with this problem still remain in the knapsack problem. 
In [19] it is also made very clear that the knapsack problem is 
a well-known NP-hard combinatorial optimisation problem, 
with many practical applications. Even up to now, approxi-
mation methods are still being developed [13, 25, 26, 35, 45] 
for this problem. The reason for using heuristics is that there 
are no efficient consistent exact methods for the knapsack 
problem. In [35] it is clarified that because of the high com-
putational complexity of knapsack problem, three heuristic 
approaches are proposed. The paper [26] is a recent heuristic 
which shows that exact efficient approaches for this knapsack 
problem are not available.

 The approximated solution for the knapsack problem is 
easy to obtain and good for quick decisions but the difference 
between the approximated solution and the exact solution 
may be in millions of dollars for large projects such the UN 
humanitarian projects and the US military operations. There 
is a need for exact methods for the knapsack problem.

3. The aim and objectives of the study 

The aim of the study is to reformulate the knapsack 
problem given in so that it is easier to solve by branch and 
bound algorithm. To achieve the set aim the following tasks 
have been solved:

– to determine the objective bound Z B
0 ;
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– to use the objective bound to generate the variable sum 
limits   1 2, ,..., k  and additional constraints;

– to construct the k initial parallel sub-problems;
– to illustrate by an example how to reformulate a knapsack;
– to give classes ad examples of difficult knapsack problems.

4. The knapsack linear integer problem

4. 1. General form of knapsack problem
The knapsack linear integer problem is a special case of 

the general integer problem. Even though this integer prob-
lem has only one constraint, it is believed to be NP complete 
and very difficult to solve. 

Minimize Z c x c x c xn n= + + +1 1 2 2 ... .  Such that:

a x a x a x bn n1 1 2 2+ + + ³... ,  (1)

where x j  is integer.

4. 2. Totally unimodular transportation matrix
The constraints of any linear integer problem can be 

expressed as (2).

AX B= ,  (2)

where A  is the transportation coefficient matrix.
Theorem 1: Matrix A is totally unimodular if the determi-

nant of each square submatrix of is 0, –1 or +1.
Theorem 2: If matrix A is totally unimodular, then every 

vertex solution of (2) is integral
Proof of 1&2. Note that every column of A  has exactly 

two 1’s, thus any column of Ak  has either:
1) two 1’s;
2) only one 1;
3) exactly No. 1.
If Ak  contains a column that has No. 1, then clearly 

Det Ak[ ] = 0 and done for (i). Thus now assume that every co-
lumn of Ak contains at least one 1. There are two cases that must 
be considered here. The first case is where every column of Ak 
contains two 1’s. Then one of the 1’s must come from the source 
rows and the other one must come from the destination rows. 
Hence subtracting the sum of all source rows from the sum of 
all destination rows in Ak  will give the zero vector. Thus the 
row vectors of Ak  are linearly dependent. Hence Det Ak[ ] .= 0  
What is now left is to consider the case where at least one  
column of Ak  contains exactly one 1. By expanding Ak with 
respect to this column, let’s have Det A Det Ak k[ ] [ ]= ± −1  where 
the sign depends on the indices of that particular 1. Now the 
theorem is proved by repeating the argument to matrix Ak−1.  
Therefore the matrix Ak is totally unimodular. More on un-
imodular matrices can be found in [46]. The variable sum 
inequalities constructed in this chapter have zeros and ones as 
the only coefficients. Making the coefficient of every linear in-
teger problem unimodular is a very difficult task. In this paper 
let’s rely on the strategy of introducing new constraints to the 
knapsack problem with only zeros (0s) and ones (1s) as coeffi-
cients. This does not make the knapsack problem unimodular 
but makes the problem easier to solve than the original form. 

4. 3. Branch and Bound Algorithm
The branch and bound algorithm in general relies on 

the usual strategy of first relaxing the integer problem into 
a linear programing (LP) model. If the linear programming 

optimal solution is integer then, the optimal solution to the 
integer problem is available. If the linear programming optimal 
solution is not integer, then a variable with a fractional value is 
selected to create two sub-problems such that part of the feasi-
ble region is discarded without eliminating any of the feasible 
integer solutions. The process is repeated on all variables with 
fractional values until an integer solution is found. The worst 
case complexity of the branch and bound algorithm on knap-
sack linear integer models is NP Complete. The number of 
sub-problems can easily reach levels that are not manageable.

4. 4. Variable sum equality
A constraint of the form x x xn1 2+ + + =... ,  where   is 

an integer, is called a variable sum equality. Let’s note the 
coefficients are only ones and this equality is not new and 
has been used as clique inequality in the general integer pro-
gramming. Variable sum equalities can be generated for (1). 
Let x SINT b cj j

0 = ³ ( )/  where SINT stands for the smallest 
integer. The objective bound Z B

0  can be found as (3) and can 
be expressed as (4). 

Z c x c x c xB
n n0 1 1

0
2 2

0 0=  min , ,..., .  (3)

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... .  (4)

The variable sum bounds  1 & k( )  which are integers can 
now be determined once the objective bound is known. These 
two integral bounds satisfy (5).

 1 1 2≤ + + + ≤x x xn k... .  (5)

The two variable sum bounds may be found by solving 
the following two linear programming models (6), (7).

Maximize  k nx x x= + + +1 2 ... .  Such that: 

a x a x a x bn n1 1 2 2+ + + ³... ,  

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... ,  (6)

where x j  is integer.
Minimize 1 1 2= + + +x x xn... .  Such that: 

a x a x a x bn n1 1 2 2+ + + ³... ,

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... ,  (7)

where x j  is integer.
The variable sum equality was used recently in [17] to im-

prove the optimality verification process. If there are parallel 
processors then these can be solved at the same time, other-
wise these can be solved as a combined problem given in (8).

Let’s maximize  2 1− .  Such that: 

a x a x a x bn n1 1 2 2+ + + ³... ,

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... ,

 k nx x x= + + +1 2 ... ,

a y a y a y bn n1 1 2 2+ + + ³... ,

c y c y c y Zn n
B

1 1 2 2 0+ + + ≤... ,

1 1 2= + + +y y yn... ,  (8)

where x yj j, ³ 0  are the unknown variables.
In this case the y variables are used for the second problem.
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4. 5. Initial branches
Once the variable sum bounds have been determined 

then the variable sum constraints can now be constructed 
as given in (9). From  1 1 2≤ + + + ≤x x xn k... ,  let’s have k 
equality constraints, i. e. 

x x x xn1 2 3 1+ + + + =... ,

x x x xn1 2 3 2+ + + + =... ,

x x x xn1 2 3 3+ + + + =... ,

…

x x x xn k1 2 3+ + + + =... .  (9)

Each variable sum equality is an initial branch for the 
branch and bound procedure which imply that the knapsack 
problem has k  initial branches to be explored. The branches 
are shown in Fig. 1. he k initial branches of the proposed in 
and illustrated in Fig. 1, can be explored independently thus 
allowing the use of the much needed parallel processors. 

4. 6. Two additional constraints 
Two additional binding constraints can be constructed 

and added to the original knapsack problem so that the 
complexity is reduced further. If the variable giving the ob-
jective bound is x j  then an additional variable xn+1  can be 
introduced such that.

x xj n i+ =+1  , x x x xn n+ = + + +1 1 2 ... , (10)

i. e. 

x x x xn n1 2 1 0+ + + − =+... .  (11)

The variable x j  is excluded in the sum of variables (11). 
Let’s note that (11) is obtained by rearranging the variables 
and that the two constraints (10) and (11) are made up of 
only (0 s) and (±1 s) as the coefficients. The addition of these 
two constraints to each branch will significantly reduce the 
complexity of the problem. 

5. Reformulation procedure for the knapsack linear 
integer problem

5. 1. Numerical illustration
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279 69

6 122 18773
1 2 3 4 5

6 7

x x x x x

x x

+ + + + +
+ + ³ ,  (12)

where x j ³ 0  and integer ∀j. 

The branch and bound algorithm takes 1351 sub-prob-
lems to verify the optimal solution: x3 568= ,  x x x x x x Z6 1 2 4 5 75 0 14 793= = = = = = =, & , . x x x x x x Z6 1 2 4 5 75 0 14 793= = = = = = =, & , . 

x x x x x x Z6 1 2 4 5 75 0 14 793= = = = = = =, & , .  This is a very small 
problem and the 1,351 sub-problems used to verify the opti-
mal solution is too much. 

There is definitely a need to preprocess the knapsack 
linear problem before solving it by the branch and bound 
method. In this paper there are variable sum constraints and 
additional constraints and add them to the original problem 
and then solve,

5. 2. Reformulation procedure 
Given any knapsack linear integer problem of the form.
Let’s minimize Z c x c x c xn n= + + +1 1 2 2 ... .
Such that: 

a x a x a x bn n1 1 2 2+ + + ³... ,  

where x j  is integer.
An objective bound ( ),Z B

0  variable 
sum limits ( , ,..., )  1 2 k  and the two 
additional constraints as x xj n i+ =+1   
and x x x xn n+ = + + +1 1 2 ...  can be de-
termined. The initial k sub-problems 
generated are:

– Initial sub-problem 1.
Let’s minimize:

Z c x c x c xn n= + + +1 1 2 2 ... .

Such that:

a x a x a x bn n1 1 2 2+ + + ³... ,

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... ,

x x xn1 2 1+ + + =... ,

x xj n+ =+1 1 ,  

x x x xn n1 2 1 0+ + + − =+... .  

– Initial sub-problem 2.
Let’s minimize Z c x c x c xn n= + + +1 1 2 2 ... .  Such that: 

a x a x a x bn n1 1 2 2+ + + ³... ,

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... ,

x x xn1 2 2+ + + =... ,

x xj n+ =+1 2 ,  

x x x xn n1 2 1 0+ + + − =+... .  

– Initial sub-problem k.
Let’s minimize Z c x c x c xn n= + + +1 1 2 2 ... .  Such that:

a x a x a x bn n1 1 2 2+ + + ³... ,

c x c x c x Zn n
B

1 1 2 2 0+ + + ≤... ,

x x xn k1 2+ + + =... ,

x xj n k+ =+1  ,

x x x xn n1 2 1 0+ + + − =+... .  

Fig.	1.	Initial	branches	of	a	knapsack	problem

1 k
2

…

1 2 1... nx x x    1 2 2... nx x x    1 2 ... n kx x x   

21 k

0

2
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The k initial sub-problems can be solved independently 
and the optimal solution is the best solution (in terms of 
objective value) from the k sub-problems.

5. 3. Algorithm
In other words the knapsack linear integer problem is 

solved using the following steps.
Step 1: Determine the objective bound Z B

0 .
Step 2: Use the objective bound to generate the variable 

sum limits   1 2, ,..., k  and additional constraints.
Step 3: Construct the k initial sub-problems.
Step 4: Solve the k sub-problems to obtain the optimal 

solution as the best solution from the k sub-problems in terms 
of the objective value.

5. 4. Using the numerical illustration from 5. 1
Let’s minimize:

Z x x x

x x x x

= + + +
+ + + +

162 38 26

301 87 5 137
1 2 3

4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + +
+ + + + ³ , ,

where x j ³ 0  and integer ∀j. 
Step 1.

x j
0 289 418 569 68 273 3129 154=       .  

It should be a solid formula:

Z B
0

46 818 15 884 14 794

20 468 23 751 15 645 21 098
=




min

, , , , , ,

, , , , , , ,



 = 14 794, .  (13)

Step 2. 
Let’s maximize 10 1 2 3 4 5 6 7= + + + + + +x x x x x x x .
Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

x j ³ 0.

10 578 33≤ . ∴ =10 578.  

Let’s minimize 1 1 2 3 4 5 6 7= + + + + + +x x x x x x x .
Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

x j ³ 0.

1 568 43≤ . ∴ =1 569.

i. e.

569 5781 2 3 4 5 6 7≤ + + + + + + ≤x x x x x x x ,  (14)

i. e. 

1 569= ,  2 570= ,  3 571= ,  

4 572= ,  5 573= ,  6 574= ,  

7 575= ,  8 576= ,   9 10577 578= =& .  (15)

The general two additional constraints are:

x x ii3 8 1 2 9+ = ∀ = , , ,.. .  (16)

x x x x x x x8 1 2 4 5 6 7= + + + + + .  (17)

Step 3. 
The 9 initial sub-problems are:
1) Sub-problem 1.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (18)

x x x x x x x1 2 3 4 5 6 7 569+ + + + + + = ,

x x3 8 569+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

2) Sub-problem 2.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (19)

x x x x x x x1 2 3 4 5 6 7 570+ + + + + + = ,

x x3 8 570+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

3) Sub-problem 3.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.
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Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (20)

x x x x x x x1 2 3 4 5 6 7 571+ + + + + + = ,

x x3 8 571+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

4) Sub-problem 4.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (21)

x x x x x x x1 2 3 4 5 6 7 572+ + + + + + = ,

x x3 8 572+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

5) Sub-problem 5.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (22)

x x x x x x x1 2 3 4 5 6 7 573+ + + + + + = ,

x x3 8 573+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

6) Sub-problem 6.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (23)

x x x x x x x1 2 3 4 5 6 7 575+ + + + + + = ,

x x3 8 575+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

7) Sub-problem 7.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (24)

x x x x x x x1 2 3 4 5 6 7 576+ + + + + + = ,

x x3 8 576+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

8) Sub-problem 8.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.

Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (25)

x x x x x x x1 2 3 4 5 6 7 577+ + + + + + = ,

x x3 8 577+ = ,

x x x x x x x8 1 2 4 5 6 7= + + + + + .

9) Sub-problem 9.
Let’s minimize:

Z x x x x x x x= + + + + + +162 38 26 301 87 5 1371 2 3 4 5 6 7.
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Such that: 

165 45 33 279

69 6 122 18 773
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ³ , ,

 

162 38 26 301

87 5 137 14 794
1 2 3 4

5 6 7

x x x x

x x x

+ + + +
+ + + ≤ , ,

 (26)

x x x x x x x1 2 3 4 5 6 7 578+ + + + + + = ,

x x3 8 578+ = ,  

x x x x x x x8 1 2 4 5 6 7= + + + + + .

The initial branches and their corresponding number of 
sub-problems are given in Table 1.

Table	1
No.	of	sub-problems	for	each	branch

Sub- 
prob-
lem

Number of 
sub-prob-

lems
Solution

Optimal 
solution

1 7
Zo = 14794,  x3 569= ,  

x x x x x x1 2 4 5 6 7 0= = = = = =

2 7 Infeasible

3 7 Infeasible

4 11 Infeasible

5 5
Zo = 14793,  

x3 568= ,  x6 5= ,  
x x x x x1 2 4 5 7 0= = = = =

Best & op-
timal

6 5 Infeasible

7 5 Infeasible

8 5 Infeasible

9 7 Infeasible

10 3 Infeasible

The automated branch and bound algorithm takes only  
5 sub-problems to verify the optimal solution: x3 568= , x6 5= , 
x x x x x Z1 2 4 5 7 0 14793= = = = = =& , in the initial parallel 
problem 5.

6. Some difficult classes of knapsack problems

6. 1. Knapsack binary linear problems with bizarre be-
haviour

Let’s maximize:

Z xi
i

n

=
=

−

∑
1

1

 

or Minimize xn .
Such that: 

2 1
1

1

x x ni
i

n

n
=

−

∑ ± = − ,  (20)

where x jj = ∀0 or 1  and n is even.
The behaviour of the standard branch and bound me-

thod for n = 4, 6, 8, 16, …, is given in Table 2. The number of 
sub-problems increases exponentially as n increases.

Table	2

Complexity	of	the	problem	as	n	increases

Value of n 
in model

Number of sub-problems created by the branch and 
bound approach to reach the optimum solution

4 11

6 39

8 139

16 25,739

32 Number of sub-problems exceeds 30,000

… …

This shows that the branch and bound on its own is not 
a very good approach.

6. 2. Second class of bizarre knapsack problems
This is a modification of Class 7. 1. Class 7. 1 and the 

general form is given in (21).
Let’s maximize:

Z x j
j

n

=
=

−

∑
1

1

or Minimize xn .
Such that: 

2 1
1

1

x x nj
j

n

n
=

−

∑ ± = −κ ,  (21)

where x j = 0 or 1 ∀ ≤ ≤ −j n, ,3 1κ  κ  is odd and n is even.
The bizarre behaviour of the branch and bound method 

is given in Table 3.

Table	3

Complexity	of	the	problem	as	n	increases

Value of n 
in model

Number of sub-problems created by the branch and 
bound approach to reach the optimum solution

4 κ = 3,  sub-problems = 17

6
κ = 3,  sub-problems = 59

κ = 5,  sub-problems = 59

8

κ = 3,  sub-problems = 209

κ = 5,  sub-problems = 209

κ = 7,  sub-problems = 209

16 Sub-problems exceeded 30,000

These are small problems and the branch is not expected 
to struggle to solve these problems.

6. 3. Third class of knapsack problem pure integer case
Changing of variables from binary to pure integer in any 

difficult knapsack problem automatically increases the com-
plexity of the problem.

Let’s maximize:

Z x j
j

n

=
=

−

∑
1

1

or Minimize xn .
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Such that: 

2 1
1

1

x x nj
j

n

n
=

−

∑ + = −κ ,  (22)

where x j ³ 0,  integer ∀j,  1 1≤ ≤ −κ n ,  κ  is odd and n is even.
The behaviour of the branch and bound method for n = 4, 6, 

8 and 16 for this class of difficult problems is given in Table 4.

Table	4

Complexity	of	the	problem	as	n	increases

Value of n 
in model

Number of sub-problems created by the branch and 
bound approach to reach the optimum solution

4 κ = 3,  sub-problems = 23

6
κ = 3,  sub-problems = 129

κ = 5,  sub-problems = 129

8

κ = 3,  sub-problems = 755

κ = 5,  sub-problems = 755

κ = 7,  sub-problems = 755

16 Number of the sub-problems exceed 30,000

Changing from binary to general integer means expand-
ing the problem. The number of sub-problems increases and 
this is expected.

6. 4. Fourth class of hard knapsack problems
Let’s maximize:

Z x j
j

n

=
=

−

∑
1

1

or Minimize xn .
Such that: 

2
1

1

x xj
j

n

n
=

−

∑ + =κ λ,  (23)

where x j ³ 0,  integer ∀j,  2 1( ) ,n k− + = λ  κ λ, ³ 0  are odd 
and n is even.

The standard branch and bound method can’t solve most 
of these for large values of κ.  For example a knapsack prob-
lem with the parameters, n = 4,  k = 91,  λ = 97,  explodes to 
an unmanageable number of sub-problems.

Let’s minimize Z xn= .  Such that: 

2 2 2 91 971 2 3 4x x x x+ + + = ,  (24)

where x j ³ 0,  integer ∀j.
The branch and bound method requires 7449 sub-prob-

lems to verify the optimal solution. For large values of λ the 
knapsack problems are very difficult to solve by the standard 
branch and bound algorithm on its own. These numerical 
illustrations and more on complexity of knapsack problems 
and other linear integer models are given in [9]. 

7. Discussion of experimental results

The knapsack problem has been reformulated and a nu-
merical illustration is used to show the reformulation process. 

The numerical illustration is given in Section 5. The branch 
and bound on its own took 1351 sub-problems to verify op-
timality. The same knapsack problem is reformulated into 
10 parallel problems which can be solved independently as  
given in Section 5. 4. The reformulated same knapsack problem 
is solved by the branch and bound algorithm. The numbers of 
iterations required to verify optimality ranges from 3 to 11 for 
the parallel problems as given in Table 1. Reducing complexity 
from 1,351 to the worst case of 11 is a very significant improve-
ment. The branch and bound algorithm is a general purpose 
algorithm for solving the general linear integer problem. Un-
fortunately this approach on its own has serious weaknesses as 
presented in Section 6 from Tables 2 to 4.  

The reformulated knapsack can be identified by the follow-
ing features. The new knapsack problem is split into several 
independent parallel problems. The number of constraints in-
creases from 1 to 5 for each parallel. The 4 new constraints for 
each parallel problem include an objective bound. Splitting the 
problem into many parallel problems, increasing the number 
of constraints from only 1 to 4 and increasing the number of 
variables by 2 for each split problem are the weaknesses of the 
proposed approach. The most important feature of the new 
problem is that it is easier to solve by the branch and bound 
algorithm than the original single constraint knapsack form.

There is a need to compare the proposed approach with 
other methods. Again this is a limitation and a shortcoming 
for this study. What seems to be an obvious weakness is that 
the reformulation splits the single problem into many but 
easier problems to solve. The challenge of splitting the prob-
lem into parallel independent sub-problem can be alleviated 
by use of parallel computer processors. There is a need to 
further reduce the numbers of branch and branch bound iter-
ations needed to solve each sub-problem. The main challenge 
with this is that the complexity of the general integer prob-
lem increases with an increase in the number of variables. 

8. Conclusions

1. Determining an objective bound Z B
0( )  to the knapsack 

problem. An objective bound which is the initial upper limit 
to the objective value of the problem. In this study all the n 
given variables in the original knapsack problem were used in 
determining the objective bound.  

2. Once the objective bound was determined it became 
easy to generate the k variable sum limits   1 2, ,..., k  and the  
2 additional constraints. To do this let’s only calculate 1 and  k 
and the rest generated as all the integers between 1 and  k . The 
first additional constraint was easily generated from the objec-
tive bound and objective row and the other two constraints 
were generated from the variable sum limits. 

3. The k parallel initial sub-problems where constructed 
from the k variable limits   1 2, ,..., k  and 3 additional con-
straints. Even though the original knapsack problem looked 
simpler than the each of the k parallel sub-problems the truth 
is that the reformulated parallel problems were easier to solve 
than the original problem as attested to by the numerical il-
lustration. The available computing power which is in terms 
parallel processing can be taken advantage of.

4. The numerical illustration was shown in Section 5. Refor-
mulation is the way for a knapsack problem given I this paper.

5. Classes of difficult problems were presented in this 
study. There is need for more research on knapsack problems 
as shown from the various applications. 
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