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3anpononosano moodenv 20MozeHizauii MmpanceepcanibHo-
i30MpPoONHO20 KOMNOZUMHO20 Mamepiany, Mexaniuni xapaxmepu-
CMUKU K020 NPU NO3006HCHLOMY PO3MsA2Y MA CMUCKY 6IOPI3HSL-
tomoca misc coboro. Ha i ocnosi ompumano no3006xcuiti Mooy
npysicHocmi nepuiozo pody ma xoedivicnm Ilyaccona ons piznomo-
Oynvhozo xomnozumy. Ifi noxasnuxu neo0xioni ons npoexmyean-
HA eJleMenmié KOHCMPYKUill, W0 GU20MOBAIOMbC 3 KOMNOIUMIS.
06’ckmom docaidvcents € 00HOCNPAMOBAHUT 0JIOKHUCTULL KOMNO-
3um, wWo CKIA0AEMBC 3 I30MPONHUX NPYHCHUX MAMPUYT MA B0JOKHA.
JIns 6u3HaueHHs ehpexmueHUX nPYHCHUX CMATUX NPONOHYENMLCS N0~
X10, Wo TPYHMYEMbCA HA BUKOPUCMAHHI YMOE8 Y3200MHCEHHA Nepemi-
weHs MOUOK 20M02€HI306AH020 KOMNOIUMY, MAMPUYT MA 60JIOKHA.

Cnouamxy 6u3HaUaOMvCsL NepeMiueHHs ma HaAnPpYICeHHs Os
mouoK mampuyi ma 6070KHA npu iX CYMICHOMY OCeCUMEeMPUUHO-
My posmsizy. /s pose’szanns uiei 3a0aui nonepeoHvo ompumano
PIBHANHS PI3HOMOOYN6HOT meopii npyscHocmi. AHAL02iuHT KOMNOHEH-
mu HanpysicerHo-0edhopMmoeanozo cmany UIHAMAIOMBCL NPU MAKOMY
e depopmyeanti uuNIHOPUMHOT KOMIPKU 3 00HOPIOHO20 Mpanceep-
CaNbHO-130Mpontoz0 KomMnosumy. Ymoeamu y3200ceHocmi nepemi-
WeHb, OMPUMAHUX NPU PO36°A3AHHI 6KA3AHUX 3A0au, € PIBHICMb
0Cb0BUX nepeMiuietd Y 006LIbHOMY nepepizi KOMROIUMY NAOUUHOIO,
napanenvHol0 naowUHi i30mponii, ma paciaivHux nepemiuenv Ha
noeepxmi Komipxu xKomnoumy. Y peyavmani 6uKoOpuCmanus uux
YMOB ompumMano Popmyau 0as eexmueHUx KOHCMAHm — nO30064c-
Hb020 MOOYA NPYIHCHOCH neputozo pody ma xoediuienma Iyaccona,
wWo eUPANCAOMb Ui NOKAZHUKU Uepe3 MeXaniuHi XapaKxmepucmuxu
Mampuyi ma 60J10KHA, A MAKONC UACMKY BOJIOKHA Y 00’ €Mi KOMIp-
Ku Komnosuma. AHAN02iuHi PopMYaU OMPUMAHO OIS NO3006IHCHBO-
20 cmucky.

Ompumani eexmueni npyxrcHi XapaKxmepucmuxu mpauceep-
CANbHO-130MPONHO20 KOMNOIUMY MONCYNb GYmu SUKOPUCMAHI npu
PO3PAXYHKY HANPYHCEHO-0ePOPMOBAN020 CMAHY 6UZOMOBIEHUX 3
Hbo20 enemenmie Koncmpykuiii. Ilpu ybomy 6paxoeyiomvcs 6i0Min-
HOCMI Y 3HAMEHHAX HANPYIHCeHb Ma 0eopMauiil npu 0CbOGUX PO3M -
2y ma cmucky

Kniouosi cnosa: zomozenizauis, piznomooyavhuii mpamceep-
CANLHO-I30MPONHUL KOMNOIUM, HANPYICEHHSL, nepeMilentst, dedop-
Mauii, epexmusni cmani
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1. Introduction

Requirements of technological progress give rise to the
need to create new structural materials, among which an im-
portant place belongs to composites. The application of com-
posite materials makes it possible to optimize the technical
and operational properties of the structures made from them.

It is impossible to calculate the stressed-strained state of
a fibrous composite as a fiber system reinforced by a matrix
because of the huge number of such inclusions. In this regard,
there is a need for the homogenization of a composite mate-
rial. The effective physical and mechanical characteristics,
obtained in this case, are used in the design and calculation
of structures made from composites.

Modern technology widely employs those composites
whose physical-mechanical characteristics differ at stretch-
ing and compression. Such materials are called multimodu-
lar (bimodular) because their elastic constants that relate
the stresses and deformations accept different values at
stretching and compression. A multimodular material shows
different elastic properties in different directions depending
on the signs of the principal stresses. At present, the effective

characteristics of multimodular composites are determined
by the statistical treatment of experimental data. This path
implies significant costs. Given this, it appears a relevant
task to construct mathematical models for defining the
effective characteristics of multimodular composites. The
application of mathematical modeling avoids additional
costs for experiments. The knowledge of the effective elastic
constants for multi-modular composites would solve the task
of determining the components of their stressed-strained
state, which could create possibilities for successfully ap-
plying these materials in practice. Therefore, it is a relevant
task to undertake a study aimed at deriving their effective
mechanical characteristics.

2. Literature review and problem statement

Papers [1-7] resolved the task of homogenizing the
fibrous composites, without considering their multimodu-
larity, for a matrix and different types of fibers. The authors
examined the composite materials with anisotropic, plastic,
viscoelastic components. In particular, study [1] suggested



formulae for the elastic characteristics of a fibrous compos-
ite with the isotropic matrix and transversally-isotropic
fiber; the differences in these characteristics at stretching
and compression were not taken into consideration. The
homogenization of the viscoelastic composites was consid-
ered in [2-6]. In [2], an asymptomatic approach was used
to homogenize the composites, excluding a multimodularity
phenomenon. A similar simplification was applied in [3]
when homogenizing the composites; a Kelvin-Voigt model
was used to describe their viscoelastic properties. In [4],
numerical simulation of the viscoelastic properties of the
anisotropic composites was also carried out under the sim-
plifying assumption about their mechanical characteristics’
constancy at the stretching and compression deformation.
In study [5], an effective longitudinal elasticity module for
a viscoelastic transversally-isotropic composite was deter-
mined on the basis of the harmonization of displacements of
the homogenized composite and its components. These dis-
placements were determined by disregarding the phenome-
non of multimodularity. Publication [6] gives an overview
of the analytical micromechanical models of elastic-plastic
composites; however, there are no models, which take into
consideration the differences between the mechanical char-
acteristics of composites at the stretching and compression
deformation. Study [7] reports a model of the asymptomatic
homogenization of a composite, taking into consideration
plastic deformations of its components based on a variational
approach. The phenomenon of multimodularity was not tak-
en into consideration in the cited study.

The fundamentals of the classic multimodular elasticity
theory are outlined in monograph [8]. It gives the main
assumptions and equations for the stressed-strained state
of homogeneous materials with mechanical characteristics
that differ at stretching and compression, as well as the
basic ratios related to the multimodular theory of elasticity,
applied in the current paper. Work [9] derived the equations
related to the multimodular theory of elasticity, based on
the assumption about a constant shear module and the de-
pendence of the volumetric module of elasticity on the first
invariant of a stress tensor. However, there is no study into
the possibilities of using these equations to solve a problem
on the homogenization of fibrous composites. The cited pub-
lications considered a homogeneous multi-modular material.
Papers [10, 11] prove, on the basis of experimental data, the
presence of the properties of multimodularity in different
types of grain composites; however, no mathematical mod-
els that would take into consideration this property were
constructed. A mathematical model of an isometric multi-
modular body, considered to be homogeneous, was proposed
in [12]. Its application for studying composite materials was
not considered there. Article [13] explores the mechanical
properties of multimodular reinforced concrete but does not
offer any mathematical models for its homogenization. The
review of the above studies shows that at present there are
almost no studies, which determine the effective mechanical
characteristics of fibrous composites taking into consider-
ation the properties of different modularity. A mathematical
model of the homogenization of a multimodular transver-
sally-isotropic fibrous composite at transverse deformation
is proposed in [14]. Based on it, the authors determined the
effective transverse module of elasticity for a multimodular
composite at stretching and compression. The multimodu-
larity of materials is taken into consideration by using ap-
propriate models of the isotropic and transversally-isotropic

materials. The equations that ultimately determine them
were built in analogy to the basic ratios related to the multi-
modular theory of elasticity. Paper [14] determined only one
of the five elastic constants that determine the mechanical
properties of a composite at the stretching and compression
deformations.

Our analysis of studies into the homogenization of com-
posites reveals that there has been an unresolved issue of
determining all the effective constants that characterize the
multimodular mechanical properties of the transversally-
isotropic composite. In particular, there are no formulae
for defining an effective longitudinal module of elasticity,
shear module, and Poisson coefficients, for the stretching
and compression of a fibrous composite with the transversal-
ly-isotropic properties.

3. The aim and objectives of the study

The aim of this study is to determine the effective elastic
constants — a longitudinal module of elasticity of the first
kind and a Poisson’s coefficient for a multimodular trans-
versally-isotropic fibrous composite. This would make it
possible to apply them in addressing the practical problems
on the statics and dynamics of parts and structures made
from different composite materials.

To accomplish the aim, the following tasks have been set:

— to devise a homogenization procedure of a transversal-
ly-isotropic composite, which takes into consideration the
differences in its mechanical properties at the longitudinal
stretching and compression, and is based on the use of the ki-
nematic conditions for the alignment of displacements points
of the composite and its constituent elements;

—to solve auxiliary problems on determining the dis-
placements of the matrix and fibers at their joint longitudi-
nal stretching and compression, as well as determining the
displacements of points in a homogeneous transversally-iso-
tropic composite under its longitudinal deformation;

— to derive formulae for the effective values of the lon-
gitudinal module of elasticity of the first kind and Poisson’s
coefficient in the isotropy plane of a fibrous composite at
stretching and compression;

— to apply the formulae derived for the homogenization
of a multimodular composite.

4. Procedure for the homogenization of a multimodular
transversally-isotropic composite at the longitudinal
stretching and compression

We suggest a procedure for determining the effective
elastic constants for a transversally-isotropic multi-modu-
lar fibrous composite at stretching and compression, which
is based on the application of the kinematic conditions for
aligning the displacements of the composite and its compo-
nents. Its essence is as follows.

At the first stage, we solve an auxiliary problem on the
deformation of the matrix and fibers at longitudinal stretch-
ing and compression of the representative composite cell and
find their axial and radial displacements.

At the second stage, an auxiliary problem is solved on
finding the axial and radial displacements of points in a
homogeneous composite at its longitudinal stretching and
compression.



In the third phase, the values of the effective elas-
tic constants, an elasticity longitudinal module, and a
Poisson coefficient, are determined for each type of the
deformation. The longitudinal module of elasticity is
found by equating the axial displacements of points in the
homogeneous composite and matrix (the latter coincide
with the axial displacements of fiber points), derived from
solving the auxiliary problems. We consider the cases
of stretching and compression separately. The effective
values of a Poisson coefficient for stretching and compres-
sion are determined from the condition for equality of the
corresponding radial displacements on the surface of the
composite cell, found from solving the first and second
auxiliary problems.

A modification of a given procedure, without taking into
consideration the phenomenon of multimodularity, was used
to homogenize the viscoelastic composites in [5].

Let the cell of a fibrous unidirectional composite consist
of the isotropic elastic multimodular matrix and fiber. The
cell consists of a solid cylinder that simulates a fiber and a
hollow matrix cylinder.

The elasticity modulus and Poisson’s ratio at stretching
are denoted via E, and v, at compression, E_ and v_, re-
spectively. The material of the fiber is exposed to the evenly
distributed stress ¢ >0 in the direction of the z-axis. This
axis coincides with the cylinder axis, which approximates
the composite cell. Similar stress, Gi >0, acting in the
material of the matrix is selected such that the axial dis-
placements of the matrix and fibers match for an arbitrary
cross-section z=h=const.

Hereafter, we apply the basic prerequisites and assump-
tions from the multimodular theory of elasticity, as well as
its main equations, outlined and substantiated in mono-
graph [8]. In particular, it is assumed that under a longitu-
dinal axisymmetric deformation (stretching or compression)
in the axial direction the normal stresses in the cylindrical
coordinate system of the composite cell are the principal
stresses (tangent stresses are zero). In this case, the coordi-
nate axes of the cylindrical coordinate system are the main
axes. At stretching, the radial and tangential strains are neg-
ative and the axial stress is positive. At compression, signs of
the principal stresses change to the opposite. Thus, Hooke’s
law for the isotropic components of a composite is used in the
form similar to [8].

For the longitudinal stretching of the composite cell
in the direction of the z coordinate, the formulae from the
Hooke’s law in a direct form for an isotropic body take the
following form:
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€, =%(69—V,(6,+62)), (2)
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+

By expressing strains through deformations, we obtain
the formulae abiding the Hooke’s law in the inverse form:
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In formulae (4) to (6), A=(1+v_)(1-v_-2v,v_), 6,, 0,
o, are the normal displacements in the direction of the 7, 0, z
coordinate axes in the cylindrical coordinate system; €, €,,
g, are the linear deformations in the direction of these axes.

The discrepancies between the classical and multi-
modular theories of elasticity are found only in the ratios
of stresses to deformations; other basic equations from
the elasticity theory hold in both cases [8]. Consider the
axisymmetric stressed-strained state of a cylindrical body
under the action of stretching strain o that operates in the
direction of the z-axis. Then, at its points 6, =0, 0, =0, (r),
6, =0,(r), T,, =T, =T,,=0. The Cauchy formulae take the
following form:

du u du
g =—2=, g =—L & =-—=-=const. 7
dr 6 T dz ( )

Here u, and u, are, accordingly, the radial and axial
displacement. Using the formulae from the Hooke’s law in
the inverse form, as well as the Cauchy formulae, the equi-
librium equation

I

do, . 9.=5
dr r

=0 8)

shall be recorded in the displacements. It takes the form:

2
du, Ldu, )

dr* rdr

Equations (7) to (9) for the classical and multi-modular
elasticity theories coincide [8].

The radial displacement u,_(r), which is the solution to
equation (9), takes the following form:

(10)

T

u_(r)=C1~r+i,
-

where C, and C, are the constants that are determined from
the boundary conditions.

3. Joint deformation of the fiber and matrix at
longitudinal stretching

Consider a joint deformation of the matrix and fiber at
longitudinal stretching. The cell is exposed to a stretching
force, which creates, at its points, a constant strain o7 >0
for the fiber and o >0 for the matrix.

Write down the displacements, deformations, and strains
for the matrix and fiber by using the Cauchy formulae and
the Hooke’s law. For the matrix, we obtain the following
equalities:

. B, . , . B,
u, =B -r+—=, ¢, =B ——%, g,=B +—, (11)
7 7 r



G: (1 -0 - 20})1)

“TTE(-0)  E(-o) (2

E' E B, v

p— '6*

N (1+Ui).rT+(1—vi) -

e
The radial displacements and stresses at fiber points,

as well as the linear deformations at these points, take the
following form:

(13)
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If there is a perfect contact at the interface between
a matrix and a fiber, the conditions for the continuity
of the normal components of displacements and stresses
hold. The outer surface of the composite cell is free from
stresses. Therefore, the boundary conditions for a problem
on the joint matrix and fiber deformation take the follow-
ing form:

o, (a)=0!(a). u;(a)=u!(a),

. (h)=u (h). . (b)=0.

z
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Using conditions (17), we obtain a system to determine
the unknown Ay, By, By and the ratios between ¢ and o°:
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We obtain from the second equation of the system:
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We derive from the last equation of the system:
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Considering (20), condition (19) takes the form:
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We obtain from the first equality in (17):

wa—o_E%f0—5%ﬁ+fD]
(1+27) (1-o7)(1+27) |

0 0

0’0
EO

E’

(i~
|

a
Suppose f =7

v,
E.

_5
aZ

(22)

is the relative volumetric part of the

fiber in a composite.
We obtain from equality (22):
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We obtain, from the third equality in (17), the ratios of
G, to o)

0=
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We obtain:
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3D

Thus, we have obtained the components of the displace-
ments, stresses, and deformations of the matrix and the fiber
required for further study.

6. The longitudinal deformation of a homogeneous
transversally-isotropic composite

Next, solve a similar problem on a homogeneous trans-
versally-isotropic material that simulates the composite. The
stress field is determined from the ratios:

6,=0, 0,=0, 6,=0,

T, =1 =0.

zr 6z = T (32)

0

To ensure that the equilibrium conditions are matched
for both problems, the following condition must be met:

E =

na’s, +n(b’-a’)o, =nb’s, (33)
or
o,/ +0,(1-f)=0,. (34)
We obtain, considering dependence (31):
o,d; o,d; 35)

T (d ) T d s d)

Applying conditions (32), the ratios of deformations to
stresses in a transversally-isotropic composite take the fol-
lowing form:

+
V12_

+

g, =——%¢0,, ¢,=

r _E1+ 0 z

%+ O (36)

1

Accordingly, the displacements are determined
from the following formulae:

(37)

taking into consideration that in a given problem the

conditions #,(0)=0 and u,(0)=0 must be met. v, =

The conditions for the alignment of displacements
in a problem on the joint deformation of the matrix and
fiber in a cell of the composite at its longitudinal stretch-
ing and a problem about the longitudinal stretching of a
homogeneous transversally-isotropic cell are the equal-
ity of axial displacements for the arbitrary z=A and the

u, (b)=u, (b),
u, (h)=u.(h)=u. (k). (38)

The second ratio from (38), considering (11) and (37),
takes the following form:

do

radial displacements at the outer surface of the cell r=b: -

. Ei(f—i)(i—v‘:—2vivj)—Eﬁ(f(1—vi—2vivi)+(1+vi))

o, S(1-vi-2vivi) 2E'vB
E E(1-v)  E(1-v)

(39)

7. Determining the effective elastic constants

Considering (25) to (27) and (35), we obtain the ratio:

R S
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After the transformations, we obtain a formula for deter-
mining the longitudinal module of elasticity for a composite
material with the transversally-isotropic matrix and fiber:

E'E,(1-V')(d, ~d,)(d; + f(d: - ;)
2(E°) Vv fd (1-v )~ d.E, (1=v_ =2V'V. )(d, ~d,) ~k,

(41

where
k=24 EVV (fE(1-v')+d,~d,).

Then, considering the expression for B, in (27), we ob-
tain a ratio for the Poisson coefficient v,,:

E.(1=v')(2/V E'd: -V d;(d, - d, +2/E"))
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Similarly, under longitudinal compression, we determine:
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I
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To determine the mechanical properties of a transversal-
ly-isotropic composite, one needs to know the values of the



five elastic constants: the modules of elasticity Ey and Ej,
the Poisson coefficients v,, and v,,, as well as the shear
module G,,. It is possible to determine this system of effec-
tive elastic constants based on the use of the conditions for
aligning the relevant displacements for different types of the
linear and shear deformation of the composite cell.

8. An example of the homogenization of a multimodular
composite and an analysis of the results obtained

Based on the derived formulae (41), (42), we calculated
values of the longitudinal elasticity module E,* and the Pois-
son coefficient v;,. A composite was studied, the constituent
elements of which are the isotropic matrix and fiber of the
following elastic characteristics:

E:=60.4GPa, v, =038, E°=48.32GPa, v° =0.342,
E'=555GPa, v, =037, E' =4.44GPa, v' =0.333.

Fig. 1 shows, by a continuous line, the dependence of the
longitudinal elasticity module E," on the volumetric fiber
content in the range f=0,1...0,8. The Poisson coefficients
values vj, in this range remain almost constant, slightly
varying from 0.418 to 0.426.

Compute values for the longitudinal elasticity module E,~
and the Poisson coefficient v;, from formulae (43), (44) for
a composite with the specified elastic characteristics at the
volumetric fiber content f €[0.1;0.8].

The dotted line in Fig. 1 shows the dependence of the lon-
gitudinal module of elasticity under compression E,” on the
volumetric fiber content. The Poisson coefficient values v,
in this interval of change f range from 0.297 to 0.303.
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Fig. 1. Dependence of the longitudinal modulus of elasticity
E"and E,” on the volumetric fiber content fin a composite

The results obtained indicate that in the cases of the
composite cell stretching and compression, as the fiber’s
volumetric content increases, the effective longitudinal mod-
ule of elasticity E, in a transversally-isotropic composite
material grows according to the law close to the linear one.
The effective Poisson coefficient v,, in both cases is close to
constant. In this case, the value of E, at the constant values
of f at stretching is, on average, larger by 25 % than the
corresponding values of this indicator at compression. The

value of the effective Poisson coefficient v,, at stretching
exceeds its value at compression by 40 % on average.

Note that for the case

E'=E, v =v,, EE=E, v =V,
we derive, from formulae (41) and (43), a formula for the instan-
taneous longitudinal module of elasticity E,, obtained in [5].

9. Discussion of results of devising a procedure for the
homogenization of a transversally-isotropic composite

The resulting formulae (41) to (44) for the effective
values of the longitudinal module of elasticity and Poisson’s
coefficient for a fibrous transversally-isotropic composite, in
contrast to existing formulae for effective constants, make it
possible to take into consideration the presence of differenc-
es in the mechanical characteristics of a composite material
at the longitudinal stretching and compression. Their use
could improve the design process of structures, which in-
clude transversally-isotropic composite materials.

In this case, it is necessary to take into consideration the
limitations of using the obtained analytical ratios related to
the possibility of representing a composite in the form of a
homogeneous material. The formulae for the effective char-
acteristics of a homogenized composite adequately reflect its
mechanical properties if the length of the fibers is sufficient-
ly large compared to their diameter. The fiber reinforcement
in a composite must also be dense. For most of the compos-
ites used in practice, these conditions are met.

This study is a continuation of our research into the
issues related to the homogenization of fibrous transversally-
isotropic composites in terms of determining effective me-
chanical constants for the multimodular composite mate-
rials. A formula for the transverse elasticity module E,
at stretching and compression was obtained in [14]. In the
future, we expect to continue studies in order to obtain a
system of effective constants, which would fully describe
the mechanical properties of a transversally-isotropic fi-
brous composite. This implies finding an effective sec-
ond-kind elasticity module (the shear module) G,,, as well
as the effective values of the Poisson coefficients v,, and v,,
at the longitudinal stretching and compression. To solve
this problem, the kinematic conditions for the alignment
of displacements, used in the current paper, should be
modified for the shear deformation of the composite cell. In
addition, the promising areas for studying the homogeniza-
tion of multimodular composites are those associated with
the refinement of a composite model, for example, taking
into consideration the non-linearity of its elastic properties,
the presence of the plastic and viscoelastic properties of a
composite.

10. Conclusions

1. We have proposed a procedure for the homogenization
of a transversally-isotropic fibrous multimodular composite,
based on using the kinematic conditions for the alignment
of the axial and radial displacements of a composite and its
components. It makes it possible to derive values of the effec-
tive mechanical composite characteristics taking into con-
sideration their differences at stretching and compression.



2. Two auxiliary problems were solved in order to
solve a problem on the homogenization of a multimodular
fibrous composite: determining the displacements of the
matrix and fiber at their joint longitudinal stretching and
compression and determining the displacements points of a
homogeneous transversally-isotropic composite at its longi-
tudinal deformation.

3. At the longitudinal stretching and compression, we
have derived, for a transversally-isotropic multimodular
composite, formulae (41) and (43), in order to determine the
effective longitudinal module of elasticity of the first type,
as well as formulae (42) and (44) for finding the effective
Poisson coefficient in the plane of isotropy. The obtained for-

mulae for the effective constants determine the dependences
of these quantities in the share of fibers in a composite’s ma-
terial and the mechanical characteristics of its components,
taking into consideration their differences at stretching and
compression.

4. Formulae for the effective mechanical constants have
been applied for homogenizing a particular multimodular
composite. Our study of the multimodular fibrous compos-
ite shows that the effective longitudinal elasticity module
for different values of the volumetric content of fibers at
stretching exceeds that at compression by 25 % on average.
The Poisson’s coefficient v,, at stretching is, on average,
approximately 40 % larger than that at compression.
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