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Запропоновано модель гомогенiзацiї трансверсально- 
iзотропного композитного матерiалу, механiчнi характери-
стики якого при поздовжньому розтягу та стиску вiдрiзня-
ються мiж собою. На її основi отримано  поздовжнiй модуль 
пружностi першого роду та коефiцiєнт Пуассона для рiзномо-
дульного композиту. Цi показники необхiднi для проектуван-
ня елементiв конструкцiй, що виготовляються з композитiв. 
Об’єктом дослiдження є односпрямований волокнистий компо-
зит, що складається з iзотропних пружних матрицi та волокна. 
Для визначення ефективних пружних сталих пропонується пiд-
хiд, що ґрунтується на використаннi умов узгодження перемi-
щень точок гомогенiзованого композиту, матрицi та волокна. 

Спочатку визначаються перемiщення та напруження для 
точок матрицi та волокна при їх сумiсному осесиметрично-
му розтягу. Для розв’язання цiєї задачi попередньо отримано 
рiвняння рiзномодульної теорiї пружностi. Аналогiчнi компонен-
ти напружено-деформованого стану визначаються при такому 
ж деформуваннi цилiндричної комiрки з однорiдного трансвер-
сально-iзотропного композиту. Умовами узгодженостi перемi-
щень, отриманих при розв’язаннi вказаних задач, є рiвнiсть 
осьових перемiщень у довiльному перерiзi композиту площиною, 
паралельною площинi iзотропiї, та радiальних перемiщень на 
поверхнi комiрки композиту. У результатi використання цих 
умов отримано формули для ефективних констант – поздовж-
нього модуля пружностi першого роду та коефiцiєнта Пуассона, 
що виражають цi показники через механiчнi характеристики 
матрицi та волокна, а також частку волокна у об’ємi комiр-
ки композита. Аналогiчнi формули отримано для поздовжньо-
го стиску. 

Отриманi ефективнi пружнi характеристики трансвер-
сально-iзотропного композиту можуть бути використанi при 
розрахунку напружено-деформованого стану виготовлених з 
нього елементiв конструкцiй. При цьому враховуються вiдмiн-
ностi у значеннях напружень та деформацiй при осьових розтя-
гу та стиску

Ключовi слова: гомогенiзацiя, рiзномодульний трансвер-
сально-iзотропний композит, напруження, перемiщення, дефор-
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1. Introduction

Requirements of technological progress give rise to the 
need to create new structural materials, among which an im-
portant place belongs to composites. The application of com-
posite materials makes it possible to optimize the technical 
and operational properties of the structures made from them. 

It is impossible to calculate the stressed-strained state of 
a fibrous composite as a fiber system reinforced by a matrix 
because of the huge number of such inclusions. In this regard, 
there is a need for the homogenization of a composite mate-
rial. The effective physical and mechanical characteristics, 
obtained in this case, are used in the design and calculation 
of structures made from composites.

Modern technology widely employs those composites 
whose physical-mechanical characteristics differ at stretch-
ing and compression. Such materials are called multimodu-
lar (bimodular) because their elastic constants that relate 
the stresses and deformations accept different values at 
stretching and compression. A multimodular material shows 
different elastic properties in different directions depending 
on the signs of the principal stresses. At present, the effective 

characteristics of multimodular composites are determined 
by the statistical treatment of experimental data. This path 
implies significant costs. Given this, it appears a relevant 
task to construct mathematical models for defining the 
effective characteristics of multimodular composites. The 
application of mathematical modeling avoids additional 
costs for experiments. The knowledge of the effective elastic 
constants for multi-modular composites would solve the task 
of determining the components of their stressed-strained 
state, which could create possibilities for successfully ap-
plying these materials in practice. Therefore, it is a relevant 
task to undertake a study aimed at deriving their effective 
mechanical characteristics.

2. Literature review and problem statement

Papers [1–7] resolved the task of homogenizing the 
fibrous composites, without considering their multimodu-
larity, for a matrix and different types of fibers. The authors 
examined the composite materials with anisotropic, plastic, 
viscoelastic components. In particular, study [1] suggested 
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formulae for the elastic characteristics of a fibrous compos-
ite with the isotropic matrix and transversally-isotropic 
fiber; the differences in these characteristics at stretching 
and compression were not taken into consideration. The 
homogenization of the viscoelastic composites was consid-
ered in [2–6]. In [2], an asymptomatic approach was used 
to homogenize the composites, excluding a multimodularity 
phenomenon. A similar simplification was applied in [3] 
when homogenizing the composites; a Kelvin-Voigt model 
was used to describe their viscoelastic properties. In [4], 
numerical simulation of the viscoelastic properties of the 
anisotropic composites was also carried out under the sim-
plifying assumption about their mechanical characteristics’ 
constancy at the stretching and compression deformation. 
In study [5], an effective longitudinal elasticity module for 
a viscoelastic transversally-isotropic composite was deter-
mined on the basis of the harmonization of displacements of 
the homogenized composite and its components. These dis-
placements were determined by disregarding the phenome-
non of multimodularity. Publication [6] gives an overview 
of the analytical micromechanical models of elastic-plastic 
composites; however, there are no models, which take into 
consideration the differences between the mechanical char-
acteristics of composites at the stretching and compression 
deformation. Study [7] reports a model of the asymptomatic 
homogenization of a composite, taking into consideration 
plastic deformations of its components based on a variational 
approach. The phenomenon of multimodularity was not tak-
en into consideration in the cited study.

The fundamentals of the classic multimodular elasticity 
theory are outlined in monograph [8]. It gives the main 
assumptions and equations for the stressed-strained state 
of homogeneous materials with mechanical characteristics 
that differ at stretching and compression, as well as the 
basic ratios related to the multimodular theory of elasticity, 
applied in the current paper. Work [9] derived the equations 
related to the multimodular theory of elasticity, based on 
the assumption about a constant shear module and the de-
pendence of the volumetric module of elasticity on the first 
invariant of a stress tensor. However, there is no study into 
the possibilities of using these equations to solve a problem 
on the homogenization of fibrous composites. The cited pub-
lications considered a homogeneous multi-modular material. 
Papers [10, 11] prove, on the basis of experimental data, the 
presence of the properties of multimodularity in different 
types of grain composites; however, no mathematical mod-
els that would take into consideration this property were 
constructed. A mathematical model of an isometric multi-
modular body, considered to be homogeneous, was proposed 
in [12]. Its application for studying composite materials was 
not considered there. Article [13] explores the mechanical 
properties of multimodular reinforced concrete but does not 
offer any mathematical models for its homogenization. The 
review of the above studies shows that at present there are 
almost no studies, which determine the effective mechanical 
characteristics of fibrous composites taking into consider-
ation the properties of different modularity. A mathematical 
model of the homogenization of a multimodular transver-
sally-isotropic fibrous composite at transverse deformation 
is proposed in [14]. Based on it, the authors determined the 
effective transverse module of elasticity for a multimodular 
composite at stretching and compression. The multimodu-
larity of materials is taken into consideration by using ap-
propriate models of the isotropic and transversally-isotropic 

materials. The equations that ultimately determine them 
were built in analogy to the basic ratios related to the multi-
modular theory of elasticity. Paper [14] determined only one 
of the five elastic constants that determine the mechanical 
properties of a composite at the stretching and compression 
deformations.

Our analysis of studies into the homogenization of com-
posites reveals that there has been an unresolved issue of 
determining all the effective constants that characterize the 
multimodular mechanical properties of the transversally- 
isotropic composite. In particular, there are no formulae 
for defining an effective longitudinal module of elasticity, 
shear module, and Poisson coefficients, for the stretching 
and compression of a fibrous composite with the transversal-
ly-isotropic properties.

3. The aim and objectives of the study

The aim of this study is to determine the effective elastic 
constants – a longitudinal module of elasticity of the first 
kind and a Poisson’s coefficient for a multimodular trans-
versally-isotropic fibrous composite. This would make it 
possible to apply them in addressing the practical problems 
on the statics and dynamics of parts and structures made 
from different composite materials.

To accomplish the aim, the following tasks have been set:
– to devise a homogenization procedure of a transversal-

ly-isotropic composite, which takes into consideration the 
differences in its mechanical properties at the longitudinal 
stretching and compression, and is based on the use of the ki-
nematic conditions for the alignment of displacements points 
of the composite and its constituent elements; 

– to solve auxiliary problems on determining the dis-
placements of the matrix and fibers at their joint longitudi-
nal stretching and compression, as well as determining the 
displacements of points in a homogeneous transversally-iso-
tropic composite under its longitudinal deformation;

– to derive formulae for the effective values of the lon-
gitudinal module of elasticity of the first kind and Poisson’s 
coefficient in the isotropy plane of a fibrous composite at 
stretching and compression;

– to apply the formulae derived for the homogenization 
of a multimodular composite.

4. Procedure for the homogenization of a multimodular 
transversally-isotropic composite at the longitudinal 

stretching and compression

We suggest a procedure for determining the effective 
elastic constants for a transversally-isotropic multi-modu-
lar fibrous composite at stretching and compression, which 
is based on the application of the kinematic conditions for 
aligning the displacements of the composite and its compo-
nents. Its essence is as follows.

At the first stage, we solve an auxiliary problem on the 
deformation of the matrix and fibers at longitudinal stretch-
ing and compression of the representative composite cell and 
find their axial and radial displacements.

At the second stage, an auxiliary problem is solved on 
finding the axial and radial displacements of points in a 
homogeneous composite at its longitudinal stretching and 
compression.
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In the third phase, the values of the effective elas-
tic constants, an elasticity longitudinal module, and a 
Poisson coefficient, are determined for each type of the 
deformation. The longitudinal module of elasticity is 
found by equating the axial displacements of points in the 
homogeneous composite and matrix (the latter coincide 
with the axial displacements of fiber points), derived from 
solving the auxiliary problems. We consider the cases 
of stretching and compression separately. The effective 
values of a Poisson coefficient for stretching and compres-
sion are determined from the condition for equality of the 
corresponding radial displacements on the surface of the 
composite cell, found from solving the first and second 
auxiliary problems.

A modification of a given procedure, without taking into 
consideration the phenomenon of multimodularity, was used 
to homogenize the viscoelastic composites in [5]. 

Let the cell of a fibrous unidirectional composite consist 
of the isotropic elastic multimodular matrix and fiber. The 
cell consists of a solid cylinder that simulates a fiber and a 
hollow matrix cylinder.

The elasticity modulus and Poisson’s ratio at stretching 
are denoted via E+  and +ν  at compression, E−  and −ν ,  re-
spectively. The material of the fiber is exposed to the evenly 
distributed stress 0+σ >  in the direction of the z-axis. This 
axis coincides with the cylinder axis, which approximates 
the composite cell. Similar stress, * 0,+σ >  acting in the 
material of the matrix is selected such that the axial dis-
placements of the matrix and fibers match for an arbitrary 
cross-section const.z h= =

Hereafter, we apply the basic prerequisites and assump-
tions from the multimodular theory of elasticity, as well as 
its main equations, outlined and substantiated in mono-
graph [8]. In particular, it is assumed that under a longitu-
dinal axisymmetric deformation (stretching or compression) 
in the axial direction the normal stresses in the cylindrical 
coordinate system of the composite cell are the principal 
stresses (tangent stresses are zero). In this case, the coordi-
nate axes of the cylindrical coordinate system are the main 
axes. At stretching, the radial and tangential strains are neg-
ative and the axial stress is positive. At compression, signs of 
the principal stresses change to the opposite. Thus, Hooke’s 
law for the isotropic components of a composite is used in the 
form similar to [8].

For the longitudinal stretching of the composite cell 
in the direction of the z coordinate, the formulae from the 
Hooke’s law in a direct form for an isotropic body take the 
following form:

( )( )1
,r r zE − θ

−

ε = σ − ν σ + σ 			   (1)

( )( )1
,r zEθ θ −

−

ε = σ − ν σ + σ  			   (2)

( )( )1
.z z rE + θ

+

ε = σ − ν σ + σ 			   (3)

By expressing strains through deformations, we obtain 
the formulae abiding the Hooke’s law in the inverse form:

( ) ( )
( )

1 11
,

1

r

r

z

E E

E

− − + − − + θ

+ − −

 − ν ν ε + ν + ν ε +
σ =  ∆ + ν + ν ε 

		 (4)

( ) ( )
( )

1 11
,

1

r

z

E E

E

− − + − + − θ
θ

+ − −

 ν + ν ε + − ν ν ε +
σ =  ∆ + ν + ν ε 

		 (5)

( ) ( )
( )( )2

1 11
.

1

r

z

z

E E

E

− + − − + − θ

+ −

 ν + ν ε + ν + ν ε +
 σ =

∆  + − ν ε 
		 (6)

In formulae (4) to (6), ( )( )− − + −∆ = + ν − ν − ν ν1 1 2 , ,rσ  ,θσ  

zσ  are the normal displacements in the direction of the r, θ, z 
coordinate axes in the cylindrical coordinate system; ,rε  ,θε  

zε  are the linear deformations in the direction of these axes. 
The discrepancies between the classical and multi-

modular theories of elasticity are found only in the ratios 
of stresses to deformations; other basic equations from 
the elasticity theory hold in both cases [8]. Consider the 
axisymmetric stressed-strained state of a cylindrical body 
under the action of stretching strain σ that operates in the 
direction of the z-axis. Then, at its points σ = σ,z  ( )σ = σ ,r r r  

( )θ θσ = σ ,r  θ θτ = τ = τ = 0.zr z r  The Cauchy formulae take the 
following form:

d
,

d
r

r

u
r

ε =
 

,ru
rθε =

 

d
const.

d
z

z

u
z

ε = = 		  (7)

Here ru  and zu  are, accordingly, the radial and axial 
displacement. Using the formulae from the Hooke’s law in 
the inverse form, as well as the Cauchy formulae, the equi-
librium equation

d
0

d
rr

r r
θσ − σσ

+ = 				     (8)

shall be recorded in the displacements. It takes the form:

2

2 2

d d1
0.

d d
r r ru u u

r r r r
+ − = 				    (9)

Equations (7) to (9) for the classical and multi-modular 
elasticity theories coincide [8]. 

The radial displacement ( ),ru r  which is the solution to 
equation (9), takes the following form:

( ) = ⋅ + 2
1 ,r

C
u r C r

r
 				    (10)

where 1C  and 2C  are the constants that are determined from 
the boundary conditions.

5. Joint deformation of the fiber and matrix at 
longitudinal stretching

Consider a joint deformation of the matrix and fiber at 
longitudinal stretching. The cell is exposed to a stretching 
force, which creates, at its points, a constant strain 0+σ >  
for the fiber and * 0+σ >  for the matrix.  

Write down the displacements, deformations, and strains 
for the matrix and fiber by using the Cauchy formulae and 
the Hooke’s law. For the matrix, we obtain the following 
equalities:

* 2
1 ,r

B
u B r

r
= ⋅ +  * 2

1 2 ,r

B
B

r
ε = −  * 2

1 2 ,
B

B
rθε = +  	 (11)
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( )
( ) ( )

* * * * * *
* 1

* * * *

1 2 2
,

1 1z

v v v E v B

E v E v
+ − − + − +

+ − + −

σ − −
ε = −

− −
 		  (12)

( ) ( ) ( )
* * *

* *2
1 2* * *

.
1 1 1r

E E B v
B

rv v v
− − −

+
− − −

σ = ⋅ − ⋅ + ⋅σ
− + −

 		 (13)

The radial displacements and stresses at fiber points, 
as well as the linear deformations at these points, take the 
following form:

1 ,ru A r= ⋅  

1 1, ,r A Aθε = ε =   			   (14)

( )
( ) ( )

1
1 2 2

,
1 1

o

z

v v v E v A

E v E v
+ − − + − +

+ − + −

σ − −
ε = −

− −

   





   

		  (15)

( ) ( )1 .
1 1r

E v
A

v v
− −

+
− −

σ = ⋅ + ⋅σ
− −

 

 

 

 			   (16)

If there is a perfect contact at the interface between 
a matrix and a fiber, the conditions for the continuity 
of the normal components of displacements and stresses 
hold. The outer surface of the composite cell is free from 
stresses. Therefore, the boundary conditions for a problem 
on the joint matrix and fiber deformation take the follow- 
ing form:

( ) ( )σ = σ* ,o
r ra a  ( ) ( )=* ,o

r ru a u a  

( ) ( )=* ,o
z zu h u h  ( )σ =* 0.r b 		  (17)

Using conditions (17), we obtain a system to determine 
the unknown A1, B1, B2 and the ratios between +σ  and ∗

+σ :

( ) ( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( )

* * *
*2

1 2* * *

1

2
1 1

* * * * * *
1

* * * *

1

* * *
2

1 2* * *

1 1 1

,
1 1

,

1 2 2

1 1

1 2 2
,

1 1

1 1 1

o o
o

o o

o o o o o o

o o o o

E E B v
B

rv v v

E v
A

v v

B
B a A a

a

v v v E v B

E v E v

v v v E v A

E v E v

E E B v
B

bv v v

− − −
+

− − −

− −
+

− −

+ − − + − +

+ − + −

+ − − + − +

+ − + −

− − −

− − −

⋅ − ⋅ + ⋅σ =
− + −

= ⋅ + ⋅σ
− −

⋅ + = ⋅

σ − −
− =

− −

σ − −
= −

− −

⋅ − ⋅ +
− + −

* 0.+



















 ⋅σ =


		  (18)

We obtain from the second equation of the system:

2
1 1 2 .

B
A B

a
= + 				    (19)

We derive from the last equation of the system:

− −
+

− −

−
= ⋅ − ⋅σ

+

* *
*2

1 * 2 *

1
.

1
v B v

B
v b E

			  (20)

Considering (20), condition (19) takes the form:

( ) ( )
( )

 
 − − − ⋅   +
  −− 

− ν + + ν ν
= − ⋅σ

+ ν

* * *
*

1 2 *2 *

1 1
.

1

f
A B

Ea
 		  (21)

We obtain from the first equality in (17):

( )
( )

( )
( ) ( )( )

( )( )

* *

*

* **
2
2 * *

1

1 11
.

1 1 1

o o o

oo

o

o

E v v
E Ev

E f v vE fB
а v v v

− − + − +

− −−

− − −−

− − −

 σ σ
⋅ − =  −

 − + +−
 = ⋅ −
 + − + 

		 (22) 

Suppose 
2

2

a
f

b
=  is the relative volumetric part of the 

fiber in a composite. 
We obtain from equality (22):

( )
( )( ) ( ) ( )( )

* *

2 *

2 *

* * *

1
.

1 1 1 1

o o

o

o

o o

v v
B

E E

а E v

E f v E f v v

− + − +

− −

− −

− − − − −

 σ σ
= − ×  

+
×

− − − − + +
 	 (23)

Introduce designations:

( )( )*
1 1 1 ,od E f v− −= − −  

( ) ( )( )* *
2 1 1 .od E f v v− − −= − + + 		  (24)

Then

( ) ( )− − − − −
+ +

−

+ +
= ⋅σ − ⋅ ⋅σ

− −

2 * 2 * *
*

2 *
1 2 1 2

1 1
,

o o

o
v a v a E v v

B
d d d d E

	 (25)

*
*2 1

1 *
1 2 1 2

,
o

o
o

d v d
A

d d E E d d
− −

+ +
− −

ν
= ⋅ σ − ⋅ ⋅σ

− −
		  (26)

( ) ( )( )** *
1 2 *

1 *
1 2 1 2

11
.

oo

o
fE v d dfv v v

B
d d E d d

− −− − −
+ +

−

− + −−
= ⋅σ − ⋅ ⋅σ

− −
	 (27)

We obtain, from the third equality in (17), the ratios of 
*
0σ  to 0σ :

( )( )
( ) ( )

( )( )
( )

( )( )
( )

( )

*
1 2 2

0

* * ** * *
1 21 2

* * * *

*
*1
0*

1 2 2 2
11 1

2 11 2

1 1

2
.

1

d d d f

E E

fE d dd d

E E

d

E

− + + − + + +

+ + + +

− + + +− + +

+ + + +

− +

+ +

 − ν ν − ν − ν ν ν ν
− + σ =  − ν − ν 

 ν ν − ν + −− ν ν − ν −
= + −
 − ν − ν

ν ν
− σ− ν 

  

  



   







(28)

By denoting

We obtain:

( )( ) ( ) ( )( )+ + − + + + − + +
+

+

− − ν − ν ν − − ν − ν ν + + ν
=

    





* * * *1 1 2 1 2 1
, (29)

E f E f
d

E

( )( ) ( ) ( )( )+ + − + + + − + +∗
+

+

− − ν − ν ν − − ν − ν ν + + ν
=

  * * * * * *

*

1 1 2 1 2 1
. (30)

E f E f
d

E
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*
0 0.d d ∗

+ +σ = σ   					     (31)

Thus, we have obtained the components of the displace-
ments, stresses, and deformations of the matrix and the fiber 
required for further study.

6. The longitudinal deformation of a homogeneous 
transversally-isotropic composite

Next, solve a similar problem on a homogeneous trans-
versally-isotropic material that simulates the composite. The 
stress field is determined from the ratios:

0,zσ = σ  0,rσ =  0,θσ =  

0.zr z rθ θτ = τ = τ =  		  (32)

To ensure that the equilibrium conditions are matched 
for both problems, the following condition must be met:

( )π σ + π − σ = π σ2 2 2 * 2
0 0 0a b a b 		  (33)

or 

( )*
0 0 01 .f fσ + σ − = σ  			   (34)

We obtain, considering dependence (31):

( )
* 0
0 ,

d

d f d d
+
∗

+ + +

σ
σ =

+ −



 

 ( )
0

0 .
d

d f d d

∗
+
∗

+ + +

σ
σ =

+ −


 

 	 (35)

Applying conditions (32), the ratios of deformations to 
stresses in a transversally-isotropic composite take the fol-
lowing form:

12
0

1

,r E

+

+

ν
ε = − σ  0

1

1
.z E +ε = σ  		  (36)

Accordingly, the displacements are determined 
from the following formulae:

( ) 12
0

1

,ru r r
E

+

+

ν
= − σ  

( ) += σ0
1

1
,zu z z

E
 		  (37)

taking into consideration that in a given problem the 
conditions ( )0 0ru =  and ( ) =0 0zu  must be met.

The conditions for the alignment of displacements 
in a problem on the joint deformation of the matrix and 
fiber in a cell of the composite at its longitudinal stretch-
ing and a problem about the longitudinal stretching of a 
homogeneous transversally-isotropic cell are the equal-
ity of axial displacements for the arbitrary z=h and the 
radial displacements at the outer surface of the cell r=b:

( ) ( )* ,r ru b u b=  

( ) ( ) ( )* .z z zu h u h u h= = 	 (38)

The second ratio from (38), considering (11) and (37), 
takes the following form:

( )
( ) ( )

* * * * * *
00 1

* * * *
1

1 2 2
.

1 1

E B
E E E

− − + − +
+

+ − + −

σ − ν − ν νσ ν
= −

− ν − ν
		  (39)

7. Determining the effective elastic constants

Considering (25) to (27) and (35), we obtain the ratio:

( )

( )
( )

( )

( )
( )

1

* *

*
1 2

* * *

* *

** *
1 2

**
1 2

1 1

2

1 2
.

1

12

1

E d f d d

E f
d

E d d

E
d

fE d d

E d d

+ ∗
+ + +

∗− + −
+

+

− − +

− −

+

− −− +

+−

= ×
+ −

 ν ν
− + − 

  − ν − ν ν + × − ν  +   − ν + −ν ν  +  −− ν  

 







	 (40)

After the transformations, we obtain a formula for deter-
mining the longitudinal module of elasticity for a composite 
material with the transversally-isotropic matrix and fiber:

where 

( )( )* * * *
1 1 22 1 .k d E fE d d+ − + − − −= ν ν − ν + −   

Then, considering the expression for 1B  in (27), we ob-
tain a ratio for the Poisson coefficient 12ν :

Similarly, under longitudinal compression, we determine:

here 

( )( )* * * *
2 3 42 1 .ok d E fE d d− + − + + += ν ν − ν + −

 

( )( )*
3 1 1 ,od E f v+ += − −  ( ) ( )( )* *

4 1 1 ,od E f v v+ + += − + + 	 (45)

To determine the mechanical properties of a transversal-
ly-isotropic composite, one needs to know the values of the 

( )( ) ( )( )
( ) ( ) ( )( )

∗
− + − + + ++

∗
− + − + − + + − − +

− ν − + −
=

ν ν − ν − − ν − ν ν − −

 

 

* * *
1 2

1 2* * * * * * *
1 2 1

1
, (41)

2 1 1 2

E E d d d f d d
E

E fd d E d d k

( ) ( )( )
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+ − − − + − + −+

∗
− + − + − + + − − +

− ν ν − ν − +
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  
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1 2
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five elastic constants: the modules of elasticity E1 and E2, 
the Poisson coefficients 12ν  and 23,ν  as well as the shear 
module 12.G  It is possible to determine this system of effec-
tive elastic constants based on the use of the conditions for 
aligning the relevant displacements for different types of the 
linear and shear deformation of the composite cell.

8. An example of the homogenization of a multimodular 
composite and an analysis of the results obtained 

Based on the derived formulae (41), (42), we calculated 
values of the longitudinal elasticity module 1E + and the Pois-
son coefficient +ν12.  A composite was studied, the constituent 
elements of which are the isotropic matrix and fiber of the 
following elastic characteristics: 

+ = 60.4 GPa,E  +ν = 0.38,  − = 48.32 GPa,E  −ν = 0.342,

∗
+ = 5.55 GPa,E  +ν = 0.37,  ∗

− = 4.44 GPa,E  ∗
−ν = 0.333.  

Fig. 1 shows, by a continuous line, the dependence of the 
longitudinal elasticity module 1E +  on the volumetric fiber 
content in the range 0,1...0,8.f =  The Poisson coefficients 
values 12

+ν  in this range remain almost constant, slightly 
varying from 0.418 to 0.426.

Compute values for the longitudinal elasticity module 1E − 
and the Poisson coefficient 12

−ν  from formulae (43), (44) for 
a composite with the specified elastic characteristics at the 
volumetric fiber content [ ]∈ 0.1; 0.8 .f  

The dotted line in Fig. 1 shows the dependence of the lon-
gitudinal module of elasticity under compression 1E − on the 
volumetric fiber content. The Poisson coefficient values 12

−ν   
in this interval of change f  range from 0.297 to 0.303.

Fig. 1. Dependence of the longitudinal modulus of elasticity 

1E + and 1E − on the volumetric fiber content f in a composite

The results obtained indicate that in the cases of the 
composite cell stretching and compression, as the fiber’s 
volumetric content increases, the effective longitudinal mod-
ule of elasticity 1E  in a transversally-isotropic composite 
material grows according to the law close to the linear one. 
The effective Poisson coefficient 12ν  in both cases is close to 
constant. In this case, the value of 1E  at the constant values 
of f  at stretching is, on average, larger by 25 % than the 
corresponding values of this indicator at compression. The 

value of the effective Poisson coefficient 12ν  at stretching 
exceeds its value at compression by 40 % on average.

Note that for the case 

,E E∗ ∗
− +=  ,∗ ∗

− +ν = ν  ,E E− +=   − +ν = ν  ,  

we derive, from formulae (41) and (43), a formula for the instan-
taneous longitudinal module of elasticity 1,E  obtained in [5].

9. Discussion of results of devising a procedure for the 
homogenization of a transversally-isotropic composite

The resulting formulae (41) to (44) for the effective 
values of the longitudinal module of elasticity and Poisson’s 
coefficient for a fibrous transversally-isotropic composite, in 
contrast to existing formulae for effective constants, make it 
possible to take into consideration the presence of differenc-
es in the mechanical characteristics of a composite material 
at the longitudinal stretching and compression. Their use 
could improve the design process of structures, which in-
clude transversally-isotropic composite materials.

In this case, it is necessary to take into consideration the 
limitations of using the obtained analytical ratios related to 
the possibility of representing a composite in the form of a 
homogeneous material. The formulae for the effective char-
acteristics of a homogenized composite adequately reflect its 
mechanical properties if the length of the fibers is sufficient-
ly large compared to their diameter. The fiber reinforcement 
in a composite must also be dense. For most of the compos-
ites used in practice, these conditions are met.

This study is a continuation of our research into the 
issues related to the homogenization of fibrous transversally- 
isotropic composites in terms of determining effective me-
chanical constants for the multimodular composite mate-
rials. A formula for the transverse elasticity module 2Е   
at stretching and compression was obtained in [14]. In the 
future, we expect to continue studies in order to obtain a 
system of effective constants, which would fully describe 
the mechanical properties of a transversally-isotropic fi-
brous composite. This implies finding an effective sec-
ond-kind elasticity module (the shear module) 12,G  as well 
as the effective values of the Poisson coefficients 21ν  and 23ν  
at the longitudinal stretching and compression. To solve 
this problem, the kinematic conditions for the alignment 
of displacements, used in the current paper, should be 
modified for the shear deformation of the composite cell. In 
addition, the promising areas for studying the homogeniza-
tion of multimodular composites are those associated with 
the refinement of a composite model, for example, taking 
into consideration the non-linearity of its elastic properties, 
the presence of the plastic and viscoelastic properties of a 
composite.

10. Conclusions

1. We have proposed a procedure for the homogenization 
of a transversally-isotropic fibrous multimodular composite, 
based on using the kinematic conditions for the alignment 
of the axial and radial displacements of a composite and its 
components. It makes it possible to derive values of the effec-
tive mechanical composite characteristics taking into con-
sideration their differences at stretching and compression.
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2. Two auxiliary problems were solved in order to 
solve a problem on the homogenization of a multimodular 
fibrous composite: determining the displacements of the 
matrix and fiber at their joint longitudinal stretching and 
compression and determining the displacements points of a 
homogeneous transversally-isotropic composite at its longi-
tudinal deformation.

3. At the longitudinal stretching and compression, we 
have derived, for a transversally-isotropic multimodular 
composite, formulae (41) and (43), in order to determine the 
effective longitudinal module of elasticity of the first type, 
as well as formulae (42) and (44) for finding the effective 
Poisson coefficient in the plane of isotropy. The obtained for-

mulae for the effective constants determine the dependences 
of these quantities in the share of fibers in a composite’s ma-
terial and the mechanical characteristics of its components, 
taking into consideration their differences at stretching and 
compression.

4. Formulae for the effective mechanical constants have 
been applied for homogenizing a particular multimodular 
composite. Our study of the multimodular fibrous compos-
ite shows that the effective longitudinal elasticity module 
for different values of the volumetric content of fibers at 
stretching exceeds that at compression by 25 % on average. 
The Poisson’s coefficient 12ν  at stretching is, on average, 
approximately 40 % larger than that at compression.
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