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Po3zensidatomvcs cnocodu niosuuwenns edexmusnoc-
mi MOHIMOpUH2Y NPOUECI6 XMapHOi iHPpacmpyxmypu, axi
nOAAAION® 6 3HUNCEHHT GUMPAM 0GHUCTIOBATLHUX PeCYPCi6
npu 30epesicenti Heo0Xi0H020 Pi6HA MOUHOCMI 6UMIDIO6AHD.
Y Oaniii po6omi ompumas nooanvuuil po3eumox cnocio
opzanizauii MOHIMOPUHZY NPOUECI6 XMAPHOI tHPpacmpyk-
mypu, 3aCHOBAHUI HA ANPOKCUMAYIT BUMIPIOBAHDL, WO HAKO-
nuuyromocs. Chopmosana neodxiona i 0ocmamus MHONCU-
Ha anpoxcumyouux Qyuxyiil, wo 6i0nosidaiomv Ka0406UM
snacmusocmamu cnocmepexcyeanux npovecis. Pospoéneno
Memoo eudopy anpoxcumyrouux QynKuii 0as cnocmepexncy-
eanux npouecie xmapnoi inppacmpyxmypu. Memoo cxna-
daemocs 3 OUIHIOBAHHS BJIACMUBOCMETL COCMEPENCYBAHO20
npouecy ma euéopy 1020 anpoxcumy01oi Qynruii.

IIpaxmuuna yinnicmoe po6omu nonseae 6 moxcaugocmi
SHUIICEHHS BUMPAM 0OUUCTIOBANLHUX PECYPCI8 34 PAXYHOK
3MeHUueHHA KITbKOCMI NIIAHOBUX BUMIPIOBAHL NPU 00NYCMmu-
MoMmy pieni 3nudicenusn ix mounocmi. Opuzinanshicmo nio-
X00Y NONS2A€ Y SUKOPUCMAHHI anpiopHUX 0AHUX NPO Cno-
cmepescysani npouecu 3 Memor0 OMpUManHsi 0iIol MOUHUX
ouinox ix enacmugocmeil. Ilpaxmuuna peanizauyis 3anpo-
nonosamnozo memody noxazye 20—40 % 3nudcenns Kino-
KOCmi naanosux eumiproéanv npu 30epediceni mounocmi
Monimopuney na pieni ne nudicue 95 %. Taxum wunom, 3anpo-
nonoeanuii memoo 00360JS€ 3HUIUMU HABAHMANCEHHS HA
KOMNOHEHMU XMApPHOT iHPpacmpyxmypu, 3MeHWUMYU 6UKO-
PUCManHs NPouecopHozo uacy i 3aouwadumu OUCKoeull ma
onepamuenuil npocmip Qi3uMHUX i GIPMYANLHUX 6Y3i6.
Pesynomamu 0ocnioxncenns moxucymo Gymu euxopucmani
05 npoepamnoi peanizayii cucmem MOHIMOPUH2Y XMAPHOT
ingppacmpyxmypu

Knrouosi cnoea: monimopune xmapnoi inpacmpyx-
mypu, KomMn'romepna mepeixica, anpoxcumayis QPynxuyiero,
sumpamu 064uUCII08aTLHUX PecypCis
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1. Introduction

The main purpose of monitoring any information sys-

tem (IS) is to obtain up-to-date and complete information
about its state. The effectiveness of decision making, directed
to ensure the required quality of the IS operation, depends
on the success of achieving this goal. The applied monitoring
techniques must correspond to the technical conditions of
the information environment, meet the requirements for the
quality of collected information and the level of the compu-
tational burden.

At present, many software solutions [1] have been deve-
loped to monitor a cloud-based IS. Many of them implement
the function of continuous monitoring with the help of stan-
dardized technologies such as SNMP [2] or WMI [3]. These
technologies are deeply integrated with existing operating
systems and are characterized by high scalability, adaptabi-
lity, and predictability of overheads.

The distributed multi-level architecture of the cloud
based IS implies using the client-server technologies to col-
lect the values of observable variables. Monitoring a large
number of distributed objects of the physical and virtual
levels and transmission of large arrays of collected data to

Copyright © 2020, O. Grytsenko, V. Sayenko
This is an open access article under the CC BY license
(http.//creativecommons.org/licenses/by,/4.0)

centralized warehouses cause significant computational bur-
den and increase the costs of operation of a cloud-based IS.
It is required to find solutions to reduce the excessive
computational burden generated by monitoring the cloud
infrastructure processes. Computational resources such as
the bandwidth of network communication channels, the use
of processor time by the nodes of monitoring sites, and data
storage space, are expected to be saved.

2. Literature review and problem statement

One of the challenges in the organization of monitoring
cloud infrastructure processes is the issue of the generated
excessive computational burden. In paper [4], it is argued
that continuous monitoring of various types of services of
a hybrid cloud-based IS can lead to the reduction of its total
bandwidth and increase the cost of its operation. To reduce
the operating burden, the optimal topology of monitoring
agents should be developed and the level of data redundancy
should be minimized. In [5], it is said that the cloud based
IS is the future of cloud computing. The functions of cloud
resources management are classified. The importance of



ensuring the required level of monitoring cost-effectiveness
is indicated. In [6], the task of the organization of cost-effec-
tive monitoring in the context of minimizing delays and ana-
lyzing large data arrays in real time is considered. Paper [7]
proposes a new monitoring architecture, which shows a high
level of cost-effectiveness under limited conditions: a 0.05 %
degradation of the response of the offered service while moni-
toring a small number of indicators of the performance of
virtual machines.

Various methods of technical and organizational nature
were developed to solve this problem: load redistribution by
the communication channels [8, 9], compression of transmit-
ted data [10], statistical processing of measurements [11] and
others [12]. However, there is a not solved issue of ensuring
the required accuracy of measurements when achieving the
goal of reducing the total computational burden. The reason
for this is the objective difficulty of finding effective ways to
implement monitoring that is independent of the changing
conditions of the cloud environment.

Typically, the process of reducing the computational bur-
den remains outside the scope of standardized technologies
of cloud infrastructure monitoring. The task of improving
the cost-effectiveness of monitoring is solved by developing
additional methods and technologies. The issue of organizing
the platform-independent cost-effective monitoring of large
hybrid cloud-based IS remains unresolved.

A variant of overcoming these difficulties may be using
monitoring methods based on approximation of measure-
ments. However, the effectiveness of such methods depends
significantly on the adequacy of the chosen approximating
function. Research into the problems of approximation of va-
lues of observable processes of cloud infrastructure is appro-
priate. The formal approach can be based on the information
models and the methods for their estimation proposed in [13].

3. The aim and objectives of the study

The aim of this study is to develop an approach to reduc-
ing the computational burden generated by monitoring the
processes of the cloud infrastructure based on the approxi-
mation of measurements. The research is aimed at improving
the accuracy of approximation of the values of observable
processes by selecting an adequate approximating function.

To achieve the set goal, the following tasks are to be
solved:

— to analyze the methods for approximation of observable
processes and describe the necessary and sufficient condi-
tions for choosing the optimal approximating function;

—to develop the method for selecting approximating
functions for observable processes of cloud infrastructure;

— to test the developed method.

4. Studying the techniques for selecting the
approximating functions for the observable processes
of cloud infrastructure

4.1. Provisions of the approximation of observable
processes of cloud infrastructure

Any observable process of cloud infrastructure can be
considered a random process. Therefore, some approximating
function may be chosen for it. We will formulate the state-
ments that are relevant to solve the problem of selecting the

approximation functions for the observable processes of the
cloud infrastructure.

Statement 1. The true function f(¢) of any observable
process of the cloud infrastructure can be approximated by
apre-selected function f(¢) with adequacy not lower than A.

The feature of cloud infrastructure monitoring is that
many of the measured indicators describe well-studied and
understandable processes. This allows pre-selection (before
measurements) of the structure of an approximating function
based on the most significant properties of an observable pro-
cess. Thus, during measurements, it remains only to choose
the parameters of the function by ensuring the required de-
gree of approximation adequacy.

If the set of functions @ with different properties is
formed, according to [14, 15], there can be found at least one
function f(¢)e® that allows approximating the values of
an observable process with the adequacy that is not worse
than A, provided that an observable process has a functional
dependence.

Statement 2. To approximate the observable processes,
it is enough to choose the finite set of approximating func-
tions @ in accordance with the established requirements for
approximation adequacy not lower than A.

The structural adequacy of the approximating func-
tion f(¢) is determined by the degree of its proximity to the
true function of the process f(¢) by their properties. For all
possible combinations of a priori selected values of the ob-
servable process, it is possible to form the finite set of approx-
imating functions ®. In this case, according to statement 1,
there can be found at least one function f(¢)e ®, that allows
approximating the values of an observable variable with ade-
quacy not worse than A.

Statement 3. To approximate any observable cloud in-
frastructure process, a limited set of approximating func-
tions F c ® are necessary and sufficient.

It is enough to select the functions non-recurrent by
properties out of the set of approximating functions ®, that
correspond to pre-selected properties of an observable pro-
cess. The resulting set of approximating functions Fcdis
sufficient to approximate any observable process of the cloud
infrastructure.

4. 2. Assessing the properties of the observable pro-
cesses of cloud infrastructure

Paper [16] described the key properties of the observ-
able processes of the cloud infrastructure for the selec-
tion of approximating functions. Formally, these proper-
ties are represented in the form of a priori information
model C , ={d¢,l‘p,sw,tw} and a posteriori information model
Cy=1{d 1Syt c;omp,u ). Their parameters are presented
in Table 1.

The represented models were revised in the current
paper. Thus, to increase informativeness and brevity, the
«lifetime» parameter of the a priori model was renamed
«variability»> and the <«bulge/concave» parameter of the
posteriori model was renamed <«bulge». The «continuity»
parameter was excluded from a posteriori model as not re-
levant. The values of the «monotony» and «bulge/concave»
were reduced to set {0, 1}, where 0 is no monotony or bulge,
respectively, 1 — the existence of monotony or bulge, respec-
tively. The values of other parameters remained the same. The
designation of a priority model was changed from C; to I,
of a posteriori information from C, to I, the index was re-
moved for all parameters, and parameter [ was renamed for p.



Values of parameters of models C ,={d,
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Parameter

Value

Dynamicity dy 0 — low dynamicity, 1 — high dynamicity

Linearity £, 0 — non-linearity, 1 — linearity

Stationarity s, 0 — stationary, 1 — non-stationary

Lifetime ¢, 0 — no changes, 1 — existence of changes

Non-linearity degree /;

0 — no non-linearity, 1 — first degree non-linearity (existence and permanence of a derivative of first order), 2 — se-
cond degree non-linearity (existence and permanence of second order and higher)

Continuity ¢ 2 — continuous function that has no breaks

0 — piece-continuous function with a break of first kind, 1 — piece-continuous function with a break of second kind,

Monotony my

—1 — monotonous decrease, 1 — monotonous increase, 2 — no monotony

Bulge/concave uy

—1 — bulge, 1 — concave, 2 — no bulge/concave

The new records of a priori and a posteri-
ori information models I~ ={d,l,s,t} and I"=
={d,l,s,t,p,mu} respectively, where d is dy-
namicity, [ is linearity, s is stationarity, ¢ is the
variability, p is linearity degree, m is monotony,
u is the bulge.

Estimation of models I~ ={d,/,s,t} and " =
={d,l,s,t,p,m,u} is based on the method [13].
The source data are formed in the form of the
monitoring specification M = {G, F,S,T,V}, where
G is the aims of monitoring, F is the functional
tasks of monitoring, S is the characteristics of an
observable system, T'is the monitoring tools, Vis
the set of observable variables (processes).

To assess a priori model I~ ={d,[,s,t}, information about
the character of an observable process is collected. A short-
term measurement session for obtaining the sample of values
of observable process X is carried out. Based on X, a priori
analytical data A(X™) — basic statistical indicators and dia-
grams for graphic-visual analysis are formed. The parameters
of model I~ ={d,/,s,t} are calculated based on A(X") and
rules R. The formed a priori model I~ ={d,/,s,t} can be used
both for the choice of the approximating function for an ob-
servable process, and more detailed analysis of its properties
and the formation of a posteriori model I*={d,[,s,t, p,m,u}.

A posteriori model I*={d,[,s,t, p,m,u} is assessed based
on the data obtained after longer measurements of an ob-
servable process. The plan for measurements P, containing
a set of measurement sessions non-intersecting in time p, € P
is chosen. The specification p, ={¢,¢,,At} is chosen for each
session, where ¢ is the measurement duration, ¢, is the time
of the beginning of measurements, At is the measurement
interval. P is formed expertly based on the pre-selected
a priori model I~ ={d,l,s,t} and specification of monitor-
ing M ={G,F,S,T,V}. Specification of data post-processing
N={R, At} is formed, where R is the rules of converting the
measured values, At is the assessment interval. The elements
of the analyzed series of values are shown in Fig. 1.

As a result of the implementation of measurement plan P,
a series of measured values X" is formed for an observ-
able process. In accordance with At¢, series X* is split
into segments, for each of which an instance of model
I"={d,l,s,t, p,mu} is selected. The assessment of a posteriori
model is based on rules R*. All the resulting instances of
model I"={d,l,s,t, p,m,u} are recorded in the form of a fre-
quency distribution table A™.

Fig. 1. Relations between measurement duration 7, measurement
interval At and assessment interval At

4. 3. Selection of the set of approximating func-
tions F c ®

In accordance with section 4.1, we will select the initial
set of approximating functions ®.

We will consider one of the basic sets of functions for
the approximation of a time series [17]. These include such
functions as linear, quadratic, cubic, power, exponential,
fractional-linear, logarithmic, hyperbolic, fractional-ratio-
nal and moving average. According to statement 3, it is
possible to choose from the described set of functions @
such set Fc®, that will correspond to all possible vari-
ants of instances of a posteriori model. As a result, out of
all mathematically possible combinations of the values of
parameters of a posteriori models, we obtain the follow-
ing admissible combinations: 0101010, 0110000, 0001111,
0001101, 0001201, 0000201, 0000200, 0000111, 0000210,
0010200, 0001110, 0001210, 0001200, 0011200, 1001200,
1001100, 0001100, 0101111, 1001111. Following the prin-
ciple of the choice of the simplest approximating function
and excluding redundancy, we will choose the final set of
functions F:

1) linear: f(¢)=at+a,;

2) quadratic: f,(¢)=a,t* +at +ay;

3) cubic: f,(t)=at’+at’ +at+ay;

4) exponential: f,(¢)=a,e";

5) moving average: f;(£)=(f(t-n)+..+ f(t-1))/n.

For each f,(¢)eF, write down the corresponding in-
stances of a posteriori model in the form of set ©, (Table 2).

The formed sets ©, consist of instances I ={d,/,s,t, p,m,u},
obtained after verification and validation of all the values of
parameters of the model separately and in combination with
each other.



Table 2
Set O, of instances /" ={d,/,s,t,p,m,u} for f(r)e/?
e, e, o, o, o,
0101010 0001111 0000201 0001110 1001111
0110000 0001101 0000200 0001210
0001201 0000111 0001200
0000210 0011200
0010200 1001200
1001100
0001100
0101111

4. 4. The rule of choosing an approximating function
for an observable process of cloud infrastructure

For the rule of choosing f (t) e F, designated as p(©,A"),
the original data are: © —the set of admissible instan-
ces I"={d,ls,t, p,m,u} for all f(t)eF (Table 2), A* — fre-
quency table of instances distribution I"={d,l,s,t, p,m,u}
for v, eV. There is a search for the closest by properties
f(t)eF for v;eV based on the normalized indicator of
Euclidean distance between instances I* ={d,l,s,t, p,m,u}
from sets © and A":

D:N( (mm(du,dz],...,d,q.)-5(1;/,))), 1)

where

dy= |3 (1li1- 13 1)

i=1

I},[i] is the i-th parameter of the k-th instance of the model
from @, I} lil s the i-th parameter of the j-th instance of the
model from the table A", N is the normalizing function.

The criterion of choosing f (t) e F is the minimization of
indicator (1).

5. Formation of the necessary conditions for the adequate
approximation of the observable processes of cloud
infrastructure

5. 1. Description of a method for the selection of ap-
proximating functions for the observable processes of
cloud infrastructure

The method for selecting approximating functions for
observable processes of cloud infrastructure with partial
a priori and a posteriori certainty is proposed.

The original data of the method are the specification of
monitoring of cloud infrastructure M ={G,F,S,T,V}, where
G is the monitoring aims, F is the functional tasks of moni-
toring, S is the characteristic of an observable system, T'is the
monitoring tools, V is the set of observable processes.

The result of the method application is the choice of appro-
ximating function f,(¢) € F for each observable process v, € V.

The method consists of twelve steps, carried out for
eacho, eV:

1) a short-term measurement session for the observable
process o, is carried out to form the sample of values X™.
The recommended session duration is 30 minutes with the
measurement interval from 1 to 10 seconds;

2) based on X~, a priori analytical data A(X~) — basic
statistical indicators and diagrams — are formed,

3) graphic and visual analysis of A(X™) is performed,
within which model I~ ={d,[,s,t} is estimated with the help
of rules R~;

4) the hypothesis about the necessity of a detailed analy-
sis of properties of the observable process v, is verified. If the
hypothesis is rejected, proceed to step 12, otherwise, to step 5;

5) the plan of measurements P for the observable pro-
cess o, is formed; for each session p,eP, specification
p; ={t,t,,At}, is described, where ¢ is the session duration,
t, is the time of the beginning of the session, At is the mea-
surement interval. Plan P is formed in an expert way based
on the monitoring specification M ={G,F,S,T,V} and mo-
del I"={d,l,s,t};

6) within the implementation of the plan of measure-
ment P of observable process v;, series of measured values X*
is formed;

7) the rules of converting the measured values R are
selected;

8) the series of values X* is processed according to
rules R for a whole series of values;

9) estimation interval At is selected in the range from
10 to 15 values;

10) the whole set X™ is split into sections x, € X" ac-
cording to At

11) the cycle of analysis of all x; € X" is implemented.
The values are converted according to R and instances of
a posteriori model I*={d,l,s,t, p,m,u} are selected with the
help of rules R*. The frequency table of distribution A* of all
computed instances of the model is formed;

12) f(t)€eF is selected using rule p(©, A¥).

5. 2. Verifying the adequacy of approximating func-
tions of the observable processes

The adequacy criteria f,(t)e F are based on indica-
tors from [18]:

1. The existence of a trend in the training sample. The
hypothesis about the absence of a trend is checked using the
method for checking the average levels’ differences. Within
this method, using the Fischer criterion F=§%/8, where
87 is the selective variance, the hypothesis about the homo-
geneity of variances is verified. If this hypothesis is accepted,
we proceed to the next stage of verification of the trend
existence, otherwise, the method does not give an answer
to the question of whether there is a trend or not. The final
verification of the hypothesis about the absence of a trend is
made using a two-selective ¢-criterion by Student:

51
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where & is the root mean square deviation of the difference
of the mean.

If the hypothesis is accepted, the trend is absent, other-
wise, the trend is proved.

2. The randomness, normal distribution, zero mathema-
tical expectation and lack of autocorrelation of residuals.
A series criterion is used to verify the residual’s randomness:

< [3 3( 1gn+1)]

>[0.5(n+1—1.96\/ﬂ)], ()



where &
tal number of series, 7 is the length of the sample of values,
square brackets designate the whole part of a number.

If at least one inequality of (3) is broken, the approximat-
ing function is considered inadequate.

The peak criterion is also used to verify the randomness:

is the duration of the longest series, v is the to-

p>[ﬁ—1.96@], (4)

where square brackets designate the integer part of the
number, p is the number of peak points, p is the mathematic
expectation of the number of peak points, & is the variance
of the number of peak points.

If inequality (4) is met, the approximating function is
considered adequate.

To verify the normal distribution of the residual value,
indicators of asymmetry and excess indicators are used:

Y, < 1.50?1,

6 (@)
+——I<1.50.,
T2 n+1 ‘%

Y, > 20?‘,
_ 6 (6)

2 1596,
Y2+n+1 226y,

where v,, ¥, are selective characteristics of asymmetry and
excess, o, , G, are corresponding root mean square errors.

If both mequahtles in (5) are true, the hypothesis about
the normal character of the distribution of residual com-
ponent is accepted. If at least one of the system’s inequali-
ties (6) is true, the hypothesis of the normal character of
distribution is rejected and the approximating function is
considered inadequate.

The verification whether a mathematical expectation of
residual component is equal to zero is based on the single-
selective ¢-criterion by Student:

z=%\/ﬁ %)

where € is the mathematic expectation, S is the standard
deviation. If (7) is smaller than the tabular value with sig-
nificance o and the number of freedom of powers n—1, the
hypothesis about the equality of mathematical expectation to
zero is accepted, otherwise this hypothesis is rejected and the
approximating function is considered inadequate.
Verification of independence of values of the residual com-
ponent is performed using the d-criterion by Darbin-Watson.

d==2 (8)

The value (8) is compared with tabular values of d,
and d,. If d>d,, the hypothesis about the independence
of the levels of the residual sequence is accepted — the ap-
proximating function is adequate. If d <d,, the hypothesis
is rejected and the approximating function is not recognized
as adequate. At values d, <d >d,, it is impossible to draw
any conclusion.

6. Example of implementing the method for the selection
of approximating functions for the observable processes
of cloud infrastructure

6. 1. Description of specification of cloud infrastruc-
ture monitoring

Table 3 gives the specification of the planned monitoring
of cloud infrastructure M ={G,F,S,T,V}, G is the aims of
monitoring, F is the functional tasks of monitoring, S is the
characteristics of an observable system, T is the monitoring
tools, Vis the observable processes.

Table 3
Specification of planned monitoring of cloud
infrastructure
Parameter Meaning

Ensuring the required level of performance of virtual

¢ cloud infrastructure nodes

Control of the loading level of processors of virtual

£ nodes of cloud infrastructure

Cloud infrastructure based on VMware vSphere tech-
N nology, consisting of a set of virtual servers based on
Windows Server 2008 and Windows Server 2012

T Monitoring tools within VMware ESXi

Variable «CPU utilization», showing an instant value
of percentage of using processor time

Description of the specification of the planned monitor-
ing allows proceeding to the beginning of selecting appro-
ximating functions for observable processes.

6. 2. Implementation of the steps of the developed
method

Step 1. Form a set of values X~ by measuring the pro-
cess v, every second within 5 minutes.

Step 2 Prepare A(X™). Based on sample X~, calculate
the basic statistical indicators (Table 4), plot the diagram of
measured values X~ (Fig. 2) and the diagram of the corre-
sponding histogram (Fig. 3).

Table 4

Statistical indicators of observable process v,

Minimum Maximum Mean Standard deviation

15.68357 86.82031 22.72008 7.647295

100 +
90 -
80 -
70 -
60 -
50 -+
40 -
30 -
20
10 -
O e 0 N 0 0 8 8

1 31 61 91 121 151 181 211 241 271

Time point

CPU utilization

Fig. 2. Diagram of the set of values X~ of the
CPU utilization variable
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Fig. 3. Histogram of the set of values X~ of the
CPU utilization variable

Step 3. Choose parameters I~ ={d,l,s,t} for v, by means
of graphic-visual analysis A(X™) according to rules R™. The
result is given in Table 5.

Table 5

Values of parameters of model /™={d,/,s,t} for an
observable process

Parameter | Value Comment
Low indicator of standard deviation rate, as well
D 0 | as the absence of a large number of strong curve
fluctuations, indicates the lack of high dynamism
I 0 Existence of the points of the graph inflection and
curvature characterizes the process as non-linear
s 0 Inconstant character of variance and the mean
indicates the lack of stationarity
Observable process is long-term because its va-
T 1 . .
lues differ at any moment of time

Thus, I~ ={0,0,0,1}.

Step 4. Consider that the observable process v, requires
more detailed analysis since the existence of a weakly pre-
dictable noise component does not allow determining quite
exactly the character of the process based on a priori data.
Proceed to step 5.

Step 5. Choose the measurement plan P for process v,.
Based on the description of the system, the basic period of
activity of the database servers under consideration is from 9
to 18 hours. Carry out 6 measurement sessions p, € P, widely
embracing the specified period of activity. Select the specifi-
cation of measurement sessions p, ={t,¢,,At}, where ¢ is the
session duration, 7, is the time of the beginning of the ses-
sion, AT is the measurement interval: sy={30 min, 11:30, 1 s.},
$9={30 min, 12:30, 1s}, s3={30 min, 14:30, 1 s}, s4={30 min,
15:30, 1 s}, s5={30 min, 16:30, 1 s}, ss={30 min, 17:30, 1 s}.

Step 6. Perform the measurements of the observable pro-
cess o, according to plan P and form the sample of values X*
with the capacity of 10800 values.

Step 7. Select the rules of converting the measured
values R: sharply outstanding values (exhausts) should be
eliminated using the Irvine criterion [19] and exponential
smoothing with alpha constant 0.8 should be performed in
each estimation interval.

Step 8. As rules R, applied to the entire X* were not se-
lected, proceed to the next step.

Step 9. Select the estimation interval At equal to 10 values.

Step 10. Split set X" into sections x,€ X" according
to At, where each subsequent section x; is taken by means of
shifting the value window having length Az by one position
to the right. As a result, we form 10791 sections x; € X™.

Step 11. For each x,€ X", convert the values in accor-
dance with rules R and estimate model I ={d,l,s,t, p,m,u}
using rules R*. As a result, form the frequency table
of distribution A" of estimated instances of model I*=
={d,l,s,t, p,m,u} (Table 6).

Table 6

Frequency table A* — frequency fof model instances
1*={d,l,s,t,p,m,u}

I"(0001200|0001100{0001110|0011200{0001101(0101000{0101010
J191.16% | 842% | 024% | 0.08% | 0.07% | 0.01% | 0.01%

Step 12. Select the approximating function ﬁ(t) € F using
rule p(©,A"). Calculate normalized indicator D from for-
mula (1) for each tested function (Table 7).

Table 7
Value of indicator D for tested approximating functions
/.(t) | Cubic | Quadratic | Moving average | Exponential | Linear
D 0 0.42 0.43 0.83 1

In accordance with the presented indicator, it is recom-
mended to select a cubic approximating function.

6. 3. Assessing the adequacy of the selected approxi-
mating function

Verify the adequacy of the approximating function empir-
ically. Form test samples of the values of observable process o,
and using the rules described earlier, compare the chosen ap-
proximating function with the other functions of set F.

Test data were collected for a week on weekdays. Mea-
surements of the observable process v, were performed in
accordance with the measurement plan P. 39 samples of
1.800 each, united into a single set of values of the capacity
of 70.200, were formed. ~

The adequacy of approximating function f(t)eF was
estimated within estimation interval At selected at step 9 of
the method testing. The estimation interval is shifted by one
position to the right after each calculation of adequacy indi-
cators. For the value set of the capacity of 70200, the approx-
imating function will be tested 70199 times. Using rules from
p. 5.2, calculate indicator A — the percentage of intervals, in
which corresponding f,(¢) is adequate (Table 8).

Table 8
Adequacy indicator A of the tested approximating functions

/) | Cubic
A, % | 41.32

Quadratic
37.25

Linear

33.90

Exponential

34.24

Moving average

29.42

The resulting adequacy indicator is the best for the cubic
approximation function, which proves the adequacy of the
developed method. Moreover, the order of adequacy value of
other approximating functions is also almost in line with the
previous theoretical calculations. Only the moving average
function got a relatively worse result than it was predicted.

The presented evidence of the adequacy of the developed
method, calculated based on theoretical indicators, requires
additional practical verification. Testing will be carried
out, which will involve the implementation of the moni-
toring process in accordance with the previously described
specification (Table 3). The results of monitoring without



approximation and with the approximation of each func-
tion f(t)eF will be estimated. We expect the best indica-
tors for the previously selected cubic function.

Table 9 gives the results of calculations of computational
burden C and the approximation error MAPE after conduc-
ted test measurements. The C indicator is calculated as an
average bitrate of the data transmitted within the monitoring
process. The MAPE is calculated as the average absolute
approximation error percent.

Table 9

Results of measurement of the observable variable
CPU utilization

/0
Indicator - j ] :
Wlt.hOUt. Cubic Qua. Expg Linear Moving
approximation dratic | nential average
C, bite/s 360 193 | 267 319 337 359
MAPE, % 0 3.79 | 4.00 0.28 0.21 0.21

Fig. 4 shows a fragment of the curves of values of an ob-
servable variable without and with the approximation of the
cubic function.

CPU Utilization

1 26 51

76 101 126 151 176 201 226 251 276 301 326
Time point

— Without approximation ~ —— With approximation

Fig. 4. True and approximated values of
the observable process

The obtained results prove the adequacy of the developed
method because the cubic approximating function received
the best indicator of computational burden at an acceptable
level of reduction in measurement accuracy (no more than
5 %). During monitoring a large number of processes, signi-
ficant savings in computational burden can be achieved.

7. Discussion of results of studying the approximation
of values for the observable processes in the cloud
infrastructure

One of the criteria of effectiveness of monitoring the
cloud infrastructure processes is to achieve the required
indicators of the level of computational burden and degree
of measurement accuracy. The monitoring effectiveness,
based on the approximation of accumulated measurements,
depends, in particular, on the adequacy of the chosen appro-
ximating function.

The studies of the ways of approximation of values of pro-
cesses of the cloud infrastructure revealed that it is possible
to choose an adequate approximating function based on se-
ven properties of the approximating curve (information mo-
dels I-={d,l,s,t} and I" ={d,l,s,t, p,m,u}), in this case, five

approximating functions (set F) are enough for the approx-
imation of any process. The selection criterion f,(¢)eF is
the minimization of the indicator (1) — normalized Euclidean
distance between the instances of model I ={d,[,s,t, p,m,u}
of functions from set F (Table 2) and instances of model
I"={d,l,s,t, p,m,u} calculated for an observable process.

The formal approach to the selection of f,(¢)e F is rep-
resented by twelve steps of the proposed method. Analysis
of accumulated measurements according to the structure
shown in Fig. 1, allows estimating the properties of an ob-
servable process in the form of a set of instances of model
I"={d,l,s,t,p,mu} and select f,(t)eF according to rule
p(©,A"). The results of the method testing (Table 7) are
verified in the study by the criteria for verification of the
adequacy of the approximating function (Table 8). Empi-
rical indicators of monitoring efficiency (Table 9) prove the
effectiveness of solving the problem of the generated excess
computational burden. The positive result is reached due to
missing the planned measurements and their replacement
with approximated values.

A feature of the proposed method of selecting approxi-
mating functions for cloud infrastructure processes is the use
of a priori information about observable processes. This made
it possible to improve approximation results and ultimately
reduce computational burden within the required measure-
ment accuracy. The designed method is the development of
the approaches proposed in [20, 21]. The improvement lies
in enhancing the approximation accuracy by increasing the
number of approximating functions.

The constraints of the method are:

1) the probability of obtaining 100 % accuracy of ap-
proximation of values of observable processes tends to zero.
Using the method when solving the problem of reducing the
computational burden is bound to lead to some decrease in
measurement accuracy;

2) for an observable process with a poorly predictable
behavior or often changing properties, the use of the method
is not effective, as in this case, it is difficult to choose an ade-
quate approximating function;

3) The method is focused on the quantitative one-dimen-
sional observable processes of cloud infrastructure. Qualita-
tive or multidimensional processes require additional trans-
formations to enable the use of the proposed method.

The disadvantages of the developed method include pos-
sible omissions of short-term bursts of measured values, a low
probability of achieving 100 % accuracy of measurements, the
dependence of the method effectiveness on expert evaluation.

The proposed method can find its practical application in
the implementation of cloud infrastructure monitoring sys-
tems. The described method for approximation of the values
of observable processes can reduce the level of computational
burden, provide the required level of measurement accuracy
and promptness.

8. Conclusions

1. The set of key properties of an observable process
of cloud infrastructure for the selection of an appro-
ximating function (information models I~ ={d,/,s,t} and
I" ={d,l,s,t,p,mu}) was formed. The set of approximating
functions F was selected. Criterion D and rule p(©,A") of
selecting the approximating function f,(¢)e F based on the
properties of an observable process were developed.



2. The method for the selection of approximating func-
tions for cloud infrastructure processes was developed. The
method involves evaluation of the properties of an observ-
able process, comparing these properties with the properties
of pre-selected approximating functions, and selection of
an approximating function using the proposed criterion.
The specific feature of the method is the use of a priori
information about observable processes to improve the ac-
curacy of evaluation of their properties and the choice of an
appropriate approximating function. Compared to similar
solutions [20, 21], the difference of the proposed method is
to enhance approximation accuracy through an expanded set
of approximating functions and the developed method of se-
lecting them for observable processes. The method solves the

problem of an excessive computational burden by increasing
the number of missing planned measurements.

3. The computational research into the developed method
was carried out by implementing the process of monitoring
the CPU utilization variable of one of the cloud infrastruc-
ture servers. The result of the method implementation was
verified by statistical criteria, and the obtained final assess-
ment proved the adequacy of the chosen function. The indi-
cators of computational burden and measurement accuracy
calculated during monitoring the CPU utilization variable
prove the effectiveness of solving the described problem of
the research: the use of the bandwidth of communication
channels was reduced by 40 %, the monitoring accuracy is
ensured at the level of 95 %.

Savic, M., Ljubojevic, M., Gajin, S. (2020). A Novel Approach to Client-Side Monitoring of Shared Infrastructures. IEEE Access, 8,

Lavy, M., Meggitt, A. (2001). Windows Management Instrumentation (WMTI). Indianapolis, Ind.: New Riders.
Natu, M., Ghosh, R. K., Shyamsundar, R. K., Ranjan, R. (2016). Holistic Performance Monitoring of Hybrid Clouds: Complexities

Liagat, M., Chang, V., Gani, A., Hamid, S. H. A., Toseef, M., Shoaib, U., Ali, R. L. (2017). Federated cloud resource management: Re-
view and discussion. Journal of Network and Computer Applications, 77, 87—105. doi: https://doi.org/10.1016/j.jnca.2016.10.008
Ward, J. S., Barker, A. (2015). Cloud cover: monitoring large-scale clouds with Varanus. Journal of Cloud Computing, 4 (1).

Alcaraz Calero, J. M., Aguado, J. G. (2015). MonPaaS: An Adaptive Monitoring Platformas a Service for Cloud Computing Infra-
structures and Services. IEEE Transactions on Services Computing, 8 (1), 65-78. doi: https://doi.org/10.1109/tsc.2014.2302810

Kozat, U. C,, Liang, G., Kokten, K., Tapolcai, J. (2016). On Optimal Topology Verification and Failure Localization for Software
Defined Networks. IEEE/ACM Transactions on Networking, 24 (5), 2899-2912. doi: https://doi.org/10.1109 /tnet.2015.2494850
Khalili, M., Zhang, M., Borbor, D., Wang, L., Scarabeo, N., Zamor, M.-A. (2019). Monitoring and Improving Managed Security
Services inside a Security Operation Center. ICST Transactions on Security and Safety, 5 (18), 157413. doi: https://doi.org/

Tudoran, R., Costan, A., Antoniu, G. (2016). OverFlow: Multi-Site Aware Big Data Management for Scientific Workflows on
Clouds. IEEE Transactions on Cloud Computing, 4 (1), 76—89. doi: https://doi.org/10.1109/tcc.2015.2440254

Weingirtner, R., Briascher, G. B., Westphall, C. B. (2015). Cloud resource management: A survey on forecasting and profiling models.
Journal of Network and Computer Applications, 47, 99—106. doi: https://doi.org/10.1016/j.jnca.2014.09.018

Surianarayanan, C., Chelliah, P. R. (2019). Cloud Monitoring. Essentials of Cloud Computing, 241-254. doi: https://doi.org/

Grytsenko, O. (2015). Evaluation method of information models of observed processes in computer network. Eastern-European
Inozemtsev, K. O., Sharapov, M. P. (2014). O vybore approksimiruyushchey funktsii dlya opisaniya zavisimosti otnositel'nogo ener-
geticheskogo razresheniya gamma-spektrometrov ot energii gamma-kvantov. Vestnik magistratury, 1 (7 (34)), 4—13.

Chatfield, C. (1995). Problem Solving: A statistician’s guide. Chapman and Hall/CRC, 325. doi: https://doi.org/10.1201/b15238
Saenko, V. I, Gritsenko, A. I. (2014). Informatsionnye modeli nablyudaemyh protsessov dlya monitoringa komp’yuternyh setey.
Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriya: Novi rishennia v suchasnykh tekhnolohiyakh, 48, 55—66.

Lunt, M. (2013). Introduction to statistical modelling: linear regression. Rheumatology, 54 (7), 1137—1140. doi: https://doi.org/
Lukashin, Yu. P. (2003). Adaptivnye metody kratkosrochnogo prognozirovaniya vremennyh ryadov. Moscow: Finansy i sta-

Lemeshko, B. Yu. (1997). Robastnye metody otsenivaniya i otbrakovka anomal'nyh izmereniy. Zavodskaya laboratoriya,

Saenko, V. I, Gritsenko, A. I. (2007). A sampling method for the processes of contiguous monitoring. Radioelektronika i infor-

References
1. Network Monitoring Tools. Available at: http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
2.
44175-44189. doi: https://doi.org/10.1109/access.2020.2978172
3.
4.
and Future Directions. IEEE Cloud Computing, 3 (1), 72—81. doi: https://doi.org/10.1109/mcc.2016.13
5.
6.
doi: https://doi.org/10.1186/s13677-015-0041-9
7.
8.
9.
10.4108 /eai.8-4-2019.157413
10.
11.
12.
10.1007/978-3-030-13134-0_8
13.
Journal of Enterprise Technologies, 1 (2 (73)), 4—11. doi: https://doi.org/10.15587/1729-4061.2015.36277
14.
15.
16.
17.
10.1093 /rheumatology /ket146
18.
tistika, 416.
19.
63 (5), 43—49.
20.
matika, 4, 113-118.
21.

Hernandez, E. A., Chidester, M. C. George, A. D. (2001). Adaptive Sampling for Network Management. Journal of Network and
Systems Management, 9, 409—-434. doi: https://doi.org/10.1023/A:1012980307500



