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1. Introduction

Passive automatic balancers are used to balance fast-ro-
tating rotors [1–12]. Under certain conditions, loads in au-

tomatic balancers find themselves in the positions in which 
they balance the rotor. 

Constructing a theory of the single-plane automatic bal-
ancing of rotors that execute a spatial motion is a relevant 
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Визначено умови настання статичного авто-
балансування в разi асиметричного ротора на 
двох iзотропних пружних опорах, що балансуєть-
ся пасивним автобалансиром будь-якого типу. У 
загальному випадку площина статичної неврiв-
новаженостi не збiгається з площиною авто- 
балансира.

Застосовано енергетичний метод в припущен-
нi, що маса вантажiв автобалансира набагато 
менше маси ротора.

Встановлено, що статичне балансування ро- 
тора автобалансиром будь-якого типу можли-
ве у випадках:

– довгого ротора при обертаннi ротора зi швид-
костями мiж першою i другою i над третьою 
характерними швидкостями;

– сферичного ротора при обертаннi ротора зi 
швидкостями мiж першою i другою характерними 
швидкостями;

– короткого ротора на швидкостях, що пере-
вищують деяку характерну швидкiсть за умови, 
що автобалансир знаходиться поблизу вiд центру 
мас ротора.

Асиметрiя ротора збiльшує число резонанс-
них швидкостей, але кiлькiсть областей настання 
автобалансування не змiнюється.

Неврiвноваженiсть ротора i мiсце її розта-
шування не впливають на характернi швидкостi 
обертання ротора. Автобалансир в дiапазонi 
швидкостей обертання ротора, що забезпечують 
автобалансування, прагне максимально зменшити 
вiдхилення свого центру вiд осi обертання ротора. 
При пiдходi швидкостi обертання довгого або сфе-
ричного ротора до другої характерної швидкостi 
балансувальної ємностi автобалансира перестає 
вистачати для повного усунення вiдхилення цен-
тру автобалансира вiд осi обертання ротора.

Отриманий результат узагальнює результа-
ти, отриманi ранiше з застосуванням емпiрично-
го критерiю настання автобалансування. Енер- 
гетичний метод, на вiдмiну вiд емпiричного, дозво-
лив оцiнити залишковi вiдхилення поздовжньої осi 
ротора вiд осi обертання. Це дозволяє оцiнюва-
ти запас або розраховувати балансуючу ємнiсть 
автобалансира.

Тип автобалансира не враховується в таких 
дослiдженнях. Тому отриманi результати при-
датнi для автобалансира будь-якого типу, а сам 
метод придатний для побудови загальної теорiї 
пасивного автобалансування (застосовної для 
автобалансирiв будь-якого типу)

Ключовi слова: ротор, iзотропна опора, авто-
балансир, стацiонарний рух, стiйкiсть руху, рiв- 
няння усталеного руху

UDC 62-752+62-755

DOI: 10.15587/1729-4061.2020.200428



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/7 ( 104 ) 2020

60

scientific task as it describes the operation of many rotor 
machines with automatic balancers [2–6].

A large number of different types of automatic balanc- 
ers [1, 4] renders special importance to building a gener-
al theory of passive self-balancing suitable for automatic 
balancers of any type. The empirical [9] and energy [10] 
methods have been developed for this purpose. The methods 
make it possible to answer the question on which conditions 
and over which range of rotation velocities can enable the 
balancing of a rigid or flexible, fixed in a certain way, rotor 
using one or more passive automatic balancers of any type.

It is important to find the analytical conditions for es-
tablishing static self-balancing for an asymmetric rotor on 
two isotropic elastic supports for the case when the plane 
of the automatic balancer does not coincide with the plane 
of imbalance. This is the case most common in practice. On 
the other hand, resolving this issue is an important step in 
building the theory of a single-plane automatic balancing of 
rotors.

2. Literature review and problem statement

It is a relevant scientific task to construct a theory of the 
single-plane automatic balancing of rotors that execute a 
spatial motion. The attempt to build such a theory involved 
an example of balancing by using a single passive automatic 
balancer: the impellers of axial fans [2], the drums of wash-
ing machines with a horizontal [3] and vertical [4] rotation 
axis, the drums of extractors, centrifuges, separators [5], 
CD/DVD discs in the respective drives, etc. Various passive 
automatic balancers were considered: ring-, ball-, pendu-
lum-type [1], ball-type [2, 3, 5, 6], liquid-type [4].

It should be noted that taking into consideration the 
type of a rotor machine and the type of automatic balancer 
significantly complicates the mathematical statement of the 
problem. The resulting mathematical model is almost impos-
sible to analyze [2‒6]. The basic results are derived when 
using numerical methods for the specific system parameters 
values. Therefore, the results are of a particular character 
and defy generalization.

When applying more general approaches, one considers, 
instead of a specific rotor machine, a certain generalized 
rotor mounted on two compliant supports. However, the 
type of automatic balancer is taken into consideration. Thus, 
the single-plane self-balancing using a two-ball automatic 
balancer was investigated through numerical modeling for 
the case of the anisotropy of supports by both the static and 
dynamic imbalance of the rotor [7]. It was established for 
specific parameters of the system that the self-balancing is 
warranted at the speeds of rotor rotation above the reso-
nance. It should be noted that the numerical methods make 
it possible to model and investigate the dynamics of complex 
mechanical systems. However, the results are of particular 
character as they are obtained at the specific parameters of 
the system for a specific automatic balancer. In addition, the 
results derived are almost impossible to generalize.

Let us take a closer look at the main analytical results.
The axisymmetric rotor on two isotropic supports was 

considered in [8]. The plane of the automatic balancer coin-
cides with the plane of imbalance. The automatic balancer 
is of a two-ball type. The stability of all possible steady 
motions at which the balls rotate synchronously with the 
rotor was investigated. The dynamic system synchronization 

method was used. The resulting analytical conditions for the 
occurrence of self-balancing are difficult to analyze as they 
contain the phase angles that determine the positions of the 
balls relative to the rotor. However, it was found that the 
conditions for the occurrence of self-balancing significantly 
depend on the length of the rotor and the distance from 
the center of the rotor mass to the plane of the automatic 
balancer.

Let us consider approaches that make it possible to build 
a general theory of passive automatic balancers (suitable for 
automatic balancers of any type). 

An empirical criterion for the occurrence of self-balanc-
ing was proposed in [9]. The criterion examines the rotor’s 
response to the sample elementary imbalances located in the 
balancing planes. The criterion makes it possible to answer 
the question on what conditions and what range of rotation 
velocities can enable the balancing of a rigid or flexible, fixed 
in a certain way, rotor using one or more passive automatic 
balancers of any type.

An asymmetric rotor on two isotropic elastic supports 
was considered in [10]. The asymmetry is caused by the 
resulting weight of loads in the automatic balancer and the 
mass of the rotor’s imbalance. The plane of the automatic 
balancer coincides with the plane of imbalance. An automat-
ic balancer can be of any type. The empirical criterion for the 
occurrence of self-balancing was used. It was found that for 
the case of a long rotor there are three characteristic rotor 
rotation velocities, such that the self-balancing is occurred 
when the rotor rotates at velocities between the first and sec-
ond and above the third characteristic speeds. For the case of 
a short rotor, the automatic balancer should be located near 
the center of the rotor mass. Then the self-balancing would 
be occurred when exceeding the only characteristic speed. 
The spherical rotor is balanced in a narrow range of rotor 
rotation velocities between two characteristic speeds. Char-
acteristic speeds are understood to be speeds that limit the 
onset of the occurrence of self-balancing. These include both 
the resonance rotor rotation velocities and some additional 
speeds located between them.

A general theory of passive self-balancing can also be 
built using the energy method outlined in [11]. In contrast to 
the empirical method, the energy method makes it possible 
to take into consideration the type of automatic balancer, 
the resulting mass of loads, as well as imbalance. Special fea-
tures in the application of the energy method to construct a 
general theory of passive self-balancing are described in [12]. 

Our review reveals that the analytical conditions for the oc-
currence of self-balancing were only reported in works [8, 10]. 
At the same time, the case of an originally asymmetric 
rotor was not analytically addressed, when the plane of the 
automatic balancer does not coincide with the plane of im-
balance. Note that this is the case most common in practice. 
In this case, the residual imbalance of the rotor was neither 
studied nor evaluated.

3. The aim and objectives of the study

The aim of this study is to determine the analytical con-
ditions for the occurrence of static self-balancing for an asym-
metric rotor on two isotropic elastic supports and to assess the 
effect exerted on these conditions by the mismatch between 
a non-equilibrium plane and the automatic balancer’s plane. 
This would make it possible to find more precise conditions for 
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the occurrence of self-balancing, which is necessary to design 
automatic balancers for specific rotor machines.

To accomplish the aim, the following tasks have been set:
– to find the conditions for the occurrence of static 

self-balancing using the modified energy method for the 
examined rotor system; 

– to assess the residual imbalance of the rotor, the resid-
ual deviations of the rotor’s longitudinal axis from the axis 
of rotation.

4. A method for determining the conditions for the 
occurrence of self-balancing

4. 1. Description of the system model
The results of works [11, 12] are used to describe the 

research methods. Fig. 1 shows the schematic of a rotor on 
two supports. Fig. 2 illustrates its motion pattern [12]. The 
rotor is balanced, it rotates at a constant angular velocity ω 
around the axis passing through the longitudinal axis of the 
rotor shaft at the undeformed supports. It is rigidly connect-
ed to the masses that create imbalance. A passive automatic 
balancer is mounted onto the rotor to balance the imbalance. 
The body of the automatic balancer is rigidly connected to 
the rotor. Therefore, the body relates to the rotor. The unbal-
anced masses are considered separately from the rotor.

The rotor rests on the isotropic elastic supports whose 
rigidity ratios are k1, k2. The action of gravity is not taken 
into consideration.

We shall set the rotor into motion using a pair of three 
axes OXYZ and .PΞΗΖ  The PΞΗΖ  axes are the main central 
axes of rotor inertia. Under a static equilibrium position of the 
stationary rotor, these two axis systems are the same (Fig. 1).  
In the process of motion, the PΞΗΖ  axes move in the follow-
ing way. First, the PΞΗΖ  axes move progressively along x, y  
relative to the OXYZ axes and, as a result, move to the in-
termediate position PXPYPZP ‒ Fig. 2, a. Next, the PXPYPZP 
axes rotate at angles α, β, as shown in Fig. 2, b, they then 
merge with the PΞΗΖ  axes. Next, the PΞΗΖ  and OXYZ 
axed rotate around the Z axis at angular velocity ω.

Fig. 1. Schematic of a rotor on two elastic-viscous supports

Note that at steady motion the system rotates as a rigid 
whole around the Z axis at constant angular velocity ω.

4. 2. The generalized potential, dissipative function, 
and the equations of stationary motions

Denote the tensor of rotor inertia through ( );r
PJ  the im-

balance with loads ‒ through ( ).S
PJ  The tensor of the system 

inertia relative to the axes PΞΗΖ  ( ) ( ),r S
P P P= +I J J  hence

,I A Jξ ξ= +  ,I B Jη η= +  ,I C Jζ ζ= +  

,I Jξη ξη=  ,I Jξζ ξζ=  .I Jηζ ηζ= 	  (1)

For a passive automatic balancer, constJζ =  [1]. Thus

const.I C Jζ ζ= + =  				    (2)

Let the system have the center of mass coordinates (G po- 
int, not shown in the schematic) ,Gξ  ,Gη  .Gζ  relative to the 
PΞΗΖ  axes.

Note that the centrifugal moments of inertia ,Iξζ  Iηζ  and 
the coordinates of the center of mass ,Gξ  Gη  are the parame-
ters that characterize the imbalance of the rotor. 

Let us assume that the masses of the imbalance and loads 
are much smaller than the mass of the rotor. Given this, we 
shall consider the following to be the values of the first order 
of smallness:

– the coordinates of the center of mass ,Gξ  ,Gη  Gζ  and 
the components of the inertia tensor ( )S

PJ  of the imbalance 
with loads; 

– the rotor coordinates α, β, х, у.
With accuracy to the magnitudes of the second order of 

smallness inclusive, the generalized potential of the system 
at steady motion:

( )
( )

( )

2 2 2 2
11 22 33

2
14

2

1
2 2

,G G

v v v x y

k y x I

I I M x y

ζ

ηζ ξζ Σ

 α + β + + + Π = − + 
+ α − β + ω  

 + α − β − ξ + η ω   	 (3)

where

( ) 2
11 33,v B C k= − ω −  

( ) 2
22 33,v A C k= − ω −  

2
33 44 11;v v M kΣ= = ω −  	 (4)

11 1 2,k k k= +  

14 1 1 2 2,k k l k l= −  

2 2
33 1 1 2 2 .k k l k l= +  	 (5)

Note

( )22
11 33 14 1 2 1 2 0.k k k k k l l− = + >  	 (6)

It is necessary to investigate the generalized poten-
tial for a conditional extremum (3). The conditions are 
the equations of steady motions, which are to be derived 
below. At the established steady motions, the generalized 
potential (3) should have at least a non-isolated local 
minimum.

 

  
 
 

 
 

  
 
 

 
 

                      a                                                 b

Fig. 2. A rotor motion scheme
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5. Results of determining the generalized conditions for 
the occurrence of static self-balancing 

5. 1. The generalized potential at steady motions and 
the equations of the rotor steady motions

We believe that the rotor is statically unbalanced. The 
static imbalance is created by a point mass located in a plane 
located at a distance аs from point P (Fig. 1). In another 
plane, which is at distance аa from point P, there is an auto-
matic balancer (Fig. 1). The centers of mass of the automatic 
balancer’s loads are moving in this plane. The parameters 
of imbalance ,Iξζ  ,Iηζ  ,Gξ  Gη  are then dependent on each 
other, and

( ) ,
S sG a am m MΣξ + ξξ =  ( ) ,sG s a am m MΣη + ηη =  

( ) const,s s aG aa m a m MΣ =ζ +=

,s s s a a aI a m a mξζ = ξ + ξ  .s s s a a aI a m a mηζ = η + η 	 (7)

Here: mS is the mass of the imbalance; ,
S

ξ  sη  are the 
coordinates of the mass of the imbalance relative to the 

;PΞΗΖ  axes; ma is the mass of loads; ,aξ  aη  are the coordi-
nates of the common center of mass of the loads relative to 
the .PΞΗΖ  axes. 

A working automatic balancer decreases the deviation 
from the rotation axis of its center as hard as it can. The co-
ordinates of the automatic balancer’s center are ,a ax x a= + β  

.a ay y a= − α  Let us replace the variables

,a ax x a= − β  .a ay y a= + α 		  (8)

Given (7), (8), the generalized potential (3) takes the 
form

( )
( )( )

( )( )
( ) ( )

2 2 2 2
11 22 33

2
14 33

2

2

1
2 2

,

a a

a a a

s a s s s

a a a s s a a a s s

d d v x y

k a v y x I

m a a

x m m y m

ζ

 α + β + + + Π = − + 
+ + α − β + ω  

+ω − αη − βξ +

 +ω ξ + ξ + η + η ξ  	  (9)

where

2
11 33 14 112 ,a ad v a a k v= + +  2

22 33 14 222 .a ad v a a k v= + + 	 (10)

The equations of the system’s steady motions along the 
rotor coordinates

( )
( )

11 14 33

2

/

0,

a a

s s s a

L d k a v y

m a a

α = ∂Π ∂α = − α − + +

+ η − ω =

( )
( )

22 14 33

2

/

0,

a a

s s s a

L d k a v x

m a a

β = ∂Π ∂β = − β + + −

− ξ − ω =

( )
( )

14 33 33

2

/

0,
ax a a a

a a s s

L x k a v v x

m m

= ∂Π ∂ = + β − −

− ξ + ξ ω =

( )
( )

14 33

2
33

/

0.
ay a a

a a a s s

L y k a v

v y m m

= ∂Π ∂ = − + α −

− − η + η ω =  	 (11)

It is necessary to investigate the generalized potential (9) 
for a conditional extremum. The conditions are four equa-
tions of the rotor steady motions (11). The total of unknowns 
is 6: α, β, xa, ya, ξa, ηa. Given the conditions (11), 2 indepen-
dent unknowns remain. Assume these include the deviations 
of the automatic balancer’s center from the axis of rotati- 
on xa, ya. We make use of the fact that at the main motions

0,a ax y= =  provided the automatic balancer’s balancing ca-
pacity is enough to eliminate the deviation.

5. 2. The transformed generalized potential
The solution to the equation system (11) regarding the 

generalized coordinates of the rotor α, β, ξa, ηa takes the 
following form

( ) ( )2
33 14 11 ,s s s a a am a a y v a k d α = η − ω − + 

( ) ( )2
33 14 11 ,s s s a a am a a x v a k d β = − ξ − ω + + 

( )

( )

2
11 33 14

2
22

33 14 22 14

22

,

a

a
a

s s a s a

a

v v k x

m d

m v a k a v a k

m d

−
ξ = − −

ω

 ξ + + + −

( )

( )

2
11 33 14

2
11

33 14 11 14

11

.

a

a
a

s s a s a

a

v v k y

m d

m v a k a v a k

m d

−
η = − −

ω

 η + + + − 	  (12)

The generalized potential (9), upon substitution (12), 
following the transforms, takes the form

( ) ( )

( )

2 2 2 2
22 33 14 11 33 14* 2

22 11

2 2
22 4

22 11

1
2

1
.

2

a a

s s
s s a

v v k x v v k y
I

d d

m a a
d d

ζ

 − −
Π = + − ω +   

 ξ η
+ ω − +  

	 (13)

The function (13) will have a minimum for xa, ya if

( ) ( )2 2
22 33 14 22 11 33 14 110, 0.v v k d v v k d− > − > 	 (14)

Check the first condition in (14). Explicitly

( ) ( ) ( )
( ) ( )

2 2
22 22 33 14 33 11 14

2 2
11 33 11 33 14;

f x v v k A C x k M x k k

M A C x k A C k M x k k k

Σ

Σ Σ

 = − = − − − − = 
 = − − − + + − 

( )
( )

2 2
22 33 14 22

2 2
33 11 14

2

2 ,

a a

a a a

d v a a k v

A C M a x k k a k aΣ

ω = + + =

= − + − − + 		  (15)

where 2.x = ω
We introduce the discriminant

( ) ( )( )
( ) ( )

2 2
1 11 33 11 33 14

2 2
11 33 14

4

4 .

D k A C k M M A C k k k

k A C k M k M A C

Σ Σ

Σ Σ

 = − + − − − = 

 = − − + −  (16)

We find, from the first equation in (15), the following 
squares of the resonance rotor speeds
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( ) ( )
111 33

11 ,
2 2 2

Dk k
x

M A C M A CΣ Σ

= + −
− −

 

( ) ( )
111 33

13 .
2 2 2

Dk k
x

M A C M A CΣ Σ

= + +
− −

 		  (17)

We find, from the second equation in (15), the following 
square of a certain additional rotor speed

( ) ( )
( )

2
33 11 14

12 2

2 2
11 14 11 33 14

2
11

2

.

a a

a

a

a

k k a k a
x

A C M a

k a k k k k

k A C M a

Σ

Σ

+ −
= =

− +

− + −
=

− +
 		  (18)

Analyze the roots derived.

5. 3. The case of a long rotor
For the case of a long rotor A≥B>C, the actual rotor 

systems

( )11 33 .k M k A CΣ < −  	 (19)

Since

( ) 211 33
22 22 11 33 140 0,

k k
f f k k k

M A CΣ

 
= + = − > − 

 

211 33
22 22 14 0,

k k
f f k

M A CΣ

   = = − <    − 

then

( )11 11 33 13.x k M k A C xΣ< < − <

Since

( ) ( )
( ) ( ){ }

( )

22 11 22 13

2
2

14 11 33
0,

a a

d x d x

M a A C k a k A C k M

M A C
Σ Σ

Σ

⋅ =

 − + + − − = − <
−

then

11 12 13.x x x< <  		  (20)

The first condition in (14) is met over the following range 
of the angular rotor rotation velocities

( ) ( )11 12 13, , .x x xω ∈ ∪ +∞  		  (21)

Similarly, analyze the second condition in (14). We 
find the following squares of the resonance and additional 
velocities

( ) ( )
211 33

21 ,
2 2 2

Dk k
x

M B C M B CΣ Σ

= + −
− −

( ) ( )
( )

2
33 11 14

22 2

2 2
11 14 11 33 14

2
11

2

,

a a

a

a

a

k k a k a
x

B C M a

k a k k k k

k B C M a

Σ

Σ

+ −
= =

− +

− + −
=

− +

( ) ( )
211 33

23 ,
2 2 2

Dk k
x

M B C M B CΣ Σ

= + +
− −

 		  (22)

where

( )
( )( )

( ) ( )

2

2 11 33

2
11 33 14

2 2
11 33 14

4

4

D k B C k M

M B C k k k

k B C k M k M B C

Σ

Σ

Σ Σ

 = − + − 
− − − =

 = − − + −   	 (23)

and

21 22 23.x x x< <  		  (24)

The second condition in (14) is satisfied over the follow-
ing range of the angular rotor rotation velocities

( ) ( )21 22 23, , .x x xω ∈ ∪ +∞ 	  		  (25)

Conditions (14) are met over the following range of the 
angular rotor rotation velocities

( ) ( )1 2 3, , ,ω ∈ ω ω ∪ ω +∞ 	  (26)

where 

( )1 11 21min , ,x xω =  

( )2 12 22max , ,x xω =  

( )3 13 23max ,x xω =  

are the three characteristic rotor rotation velocities. 
If the rotor is symmetrically mounted on the supports, 

then 14 0k =  and

11
11 21 ,

k
x x

MΣ

= =
 

2
33 11

12 2 ,a

a

k k a
x

A C M aΣ

+
=

− +

2
33 11

22 2 ,a

a

k k a
x

B C M aΣ

+
=

− +
 

33
13 ,

k
x

A C
=

−
 

33
23 .

k
x

B C
=

−
	 (27)

In this case,

11 21 12 22 13 23,x x x x x x= < < < <  

so the self-balancing is occurred over the following range of 
angular velocities

( ) ( )11 22 23, , .x x xω ∈ ∪ +∞ 	  		  (28)

In this case, we managed to find the boundaries of re-
gions where the self-balancing is occurred (characteristic 
velocities) in an explicit form.
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5. 4. The case of a short rotor
For the case of a short rotor, C>A≥B. We check the first 

condition in (14). Represent (15) in the following form

( ) ( )
( )

( )
( )

2 2 2
22 22 33 14 33

2 2
11 14

4

2 2
11 33 11 33 14;

f v v k C A k

M k k

M C A

k C A k M k k k

Σ

Σ

Σ

 ω = − = − − ω + × 
× ω − − =

= − − ω +

 + − − ω + − 

( )
( )

2 2
22 33 14 22

2 2 2
33 11 14

2

2 .

a a

a a a

d v a a k v

C A M a k k a k aΣ

ω = + + =

= − − − ω − − +  		  (29)

Let the automatic balancer be located at a distance from 
the center of the rotor mass not exceeding

( ) .aa C A MΣ< −  			   (30)

Then 2 0,aC A M aΣ− − >  ( )2
22 0d ω <  and the necessary 

condition for the occurrence of self-balancing is ( )2
22 0.f ω <  

We find from (16)

( )
( )( )

2

1 33 11

2
11 33 144 0.

D k M k C A

M C A k k k

Σ

Σ

 = − − + 
+ − − >  		  (31)

We find from (17)

( ) ( )
111 33

11 0.
2 2 2

Dk k
x

M C A M C AΣ Σ

= − + >
− −

 	 (32)

The necessary condition for the occurrence of self-bal-
ancing

11 .xω > 		  (33)

Similarly, we find, from the second condition in (15), the 
necessary condition for the occurrence of self-balancing

12 ,xω >  ( ) ( )
211 33

12 0,
2 2 2

Dk k
x

M C B M C BΣ Σ

= − + >
− −

 	 (34)

where

( )
( )( )

2

2 33 11

2
11 33 144 0.

D k M k C B

M C B k k k

Σ

Σ

 = − − + 
+ − − >  	 (35)

It follows from (33) and (34) that the self-balancing will 
be occurred at speeds

{ }1 1 11 22, max , ,x xω > ω ω =  	 (36)

where 1ω  is the only characteristic rotor rotation velocity. 
If a rotor is symmetrically mounted on the supports, 

then 14 0k =  and

11 21 11 .x x k MΣ= =  	 (37)

Self-balancing is occurred at speeds

11 .k MΣω >  	 (38)

In this case, it was possible to find the boundary of the 
region where the self-balancing is occurred (the characteris-
tic speed) in an explicit form.

5. 5. The case of a spherical rotor
For the case of a spherical rotor, C=A=B. In this case, the 

first and second conditions in (14) are the same. Represent 
(15) in the form

( ) ( )2
22 22 33 14 33 11

2 2
14 11 33 14 33 ;

f x v v k k M x k

k k k k k M x

Σ

Σ

= − = − − −

− = − −

( ) 2
22 33 14 22

2 2
33 11 14

2

2 ,

a a

a a a

d x v a a k v

M a x k k a k aΣ

= + + =

= − − +  		  (39)

where 2.x = ω
We find from (39)

2
11 33 14

1
33

,
k k k

x
k MΣ

−
=  

( ) ( )

2
33 11 14

2 2

2 2
11 14 11 33 14

2
11

2

.

a a

a

a

a

k k a k a
x

M a

k a k k k k

k M a

Σ

Σ

+ −
= =

− + −
=  	 (40)

We find from (40)

( ) ( )2 2
2 1 11 14 33 0.a ax x k a k k M aΣ− = − >  	 (41)

Thus, spherical rotors are balanced over a range of ve-
locities

( )1 2, .x xω ∈ 	  (42)

In this case, there are two characteristic rotor rotation 
velocities and they were found in an explicit form. 

By bringing the plane of the automatic balancer to the 
center of the rotor mass ( )0 ,aa →  this range can be made  
 
(above) as large as possible ( )2 .x → +∞

5. 6. Estimating the residual deviation of the rotor’s 
longitudinal axis from the axis of rotation

When the conditions for the occurrence of self-balancing 
are met, the coordinates of the automatic balancer’s center 
xa, ya approach the values that are the smallest by the mod-
ule. We find from the last two equations (12)

( )

2
22

2
11 33 14

33 14 22 14

22

,

a
a

s s a s a
a

a

m d
x

v v k

m v a k a v a k

m d

ω
= − ×

−

  ξ + + +  × ξ + 
  

( )

2
11

2
11 33 14

33 14 11 14

11

.

a
a

s s a s a
a

a

m d
y

v v k

m v a k a v a k

m d

ω
= − ×

−

  η + + +  × η + 
  

 		 (43)

We find from (43) that the complete elimination of the 
deviation of the automatic balancer’s center from the axis of 
rotation creates the following imbalance
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( )33 14 22 14 22 ,a s s a s a am v a k a v a k m d ξ = − ξ + + + 

( )33 14 11 14 11 .a s s a s a am v a k a v a k m d η = − η + + +   	 (44)

It follows from (44) that when the speed of rotation of a 
long or spherical rotor approaches the second characteristic 
speed, the balancing capacity of the automatic balancer ceas-
es to be enough to completely eliminate the deviation of the 
automatic balancer’s center from the rotor’s rotation axis as, 
in this case, 11 22, 0.d d →  Equalities (44) can be used both to 
assess the reserve and to calculate the balancing capacity of 
the automatic balancer. 

Substituting (44) in the first two equalities in (12), we 
find the residual angular deviation of the rotor’s longitudinal 
axis from the axis of rotation

( )2
11 ,s s s am a a dα = ω η −  ( )2

22 .s s s am a a dβ = −ω η −  	(45)

Note that the empirical criterion for the occurrence of 
self-balancing does not make it possible to assess the balanc-
ing capacity of the automatic balancer, the residual devia-
tions of the rotor’s longitudinal axis from the axis of rotation.

6. Discussion of the obtained conditions for the 
occurrence of static self-balancing

Our study suggests that an asymmetrical rotor that exe-
cutes spatial motions and is mounted on two isotropic elastic 
supports can be statically balanced by a single automatic 
balancer of any type in the following case:

– a long rotor when the rotor rotates at velocities be-
tween the first and second and above the third characteristic 
speeds (26) or (28); 

– a spherical rotor when the rotor rotates at velocities 
between the first and second characteristic speeds (42); 

– a short rotor at velocities exceeding a certain charac-
teristic speed provided that the automatic balancer is close 
to the center of the rotor mass (36) or (38).

As it follows from (17), (18), and (22), the rotor asym-
metry increases the number of resonant and additional 
speeds but the number of regions where the self-balancing is 
occurred does not change. 

This result coincides with the result reported in [10]  
where an empirical criterion for the occurrence of self-bal-
ancing was applied (provided that the planes of the imbal-
ance and the automatic balancer coincide). This confirms 
the correctness of the results obtained when using the 
energy and empirical methods. It should be noted that our 
study has made it possible to arrange the characteristic 
rotor rotation velocities in ascending order in an expli- 
cit form. 

It is clear from (13) that the imbalance of the rotor and 
its location do not affect the characteristic rotor rotation 
velocities. An automatic balancer in the range of rotor 
rotation velocities that ensure the self-balancing tends 
to minimize the deviation of its center from the rotor’s 
rotation axis. It is clear from (44) that when the rotation 
velocity of a long or spherical rotor approaches the second 

characteristic speed, the balancing capacity of the auto-
matic balancer ceases to be enough to completely eliminate 
the deviation of the center of the automatic balancer from 
the axis of rotor rotation.

The energy method, in contrast to the empirical method, 
has made it possible to estimate the residual deviation of 
the rotor’s longitudinal axis from the axis of rotation. That 
allows the estimation of the reserve or the calculation of the 
automatic balancer’s balancing capacity. 

The type of automatic balancer is not taken into consid-
eration in such studies. Therefore, the results obtained are 
suitable for automatic balancers of any type, and the method 
itself is suitable for building a general theory of passive 
self-balancing. 

The method has flaws inherent in approximate meth-
ods. The method produces the approximate boundaries of 
the regions where the self-balancing is occurred. In ad-
dition, the method does not make it possible to study the 
non-stationary steady motions of the system and transition 
processes.

In the future, it is planned to use the modernized energy 
method to investigate the impact of damping in the supports 
on the conditions for the occurrence of single-plane self-bal-
ancing for a rotor on two isotropic supports.

7. Conclusions

1. An asymmetric rotor that executes spatial motion and 
is mounted on two isotropic elastic supports can be statically 
balanced by a single automatic balancer of any type in the 
following cases:

– a long rotor when the rotor rotates at velocities be-
tween the first and second and above the third characteristic 
speed; 

– a spherical rotor when the rotor rotates at velocities 
between the first and second characteristic speeds; 

– a short rotor at velocities exceeding a certain charac-
teristic speed provided that the automatic balancer is close 
to the center of the rotor mass.

The imbalance of the rotor and its location do not affect 
the characteristic rotor rotation velocities.

2. An automatic balancer in the range of rotor rotation 
velocities that enable the self-balancing tends to minimize 
the deviation of its center from the axis of rotor rotation. 
When the rotation velocity of a long or spherical rotor 
approaches the second the automatic balancer ceases to be 
enough to completely eliminate the deviation of the center of 
the automatic balancer from the axis of rotor rotation.

The energy method, in contrast to the empirical method, 
makes it possible to assess the residual deviation of the ro-
tor’s longitudinal axis from the axis of rotation, to estimate 
the reserve, or to calculate the balancing capacity of an 
automatic balancer. In this case, the type of automatic bal-
ancer is not taken into consideration. Therefore, the results 
obtained are suitable for automatic balancers of any type, 
and the method itself is suitable for building a general theory 
of passive self-balancing (applicable for automatic balancers 
of any type).
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