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Busnaueno ymosu nacmanus cmamuunozo aemo-
banancysanns 6 pasi acumMempuuHoz0 pomopa Ha
060X i30MPONHUX NPYICHUX ONOPAX, W0 barancyemn-
€5 NACUBHUM ABMOOANAHCUPOM GYOb-5K020 muny. Y
3a2aNbHOMY 6UNAOKY NJOUWUHA CMAMUYHOT Heepis-
HOoBadMCeHOCMi He 30i2aemvCs 3 NJIOUUHONO ABMO-
oanancupa.

3acmocosano enepeemuunuii memoo 8 npunyuLeH-
Hi, Wo Mmaca eammadicie asmobanancupa nabdazamo
MeHwe macu pomopa.

Bcmanosaeno, wo cmamuune 6anancyeanns po-
mopa agmooanancupom 6yo0v-aK020 Muny MoNcau-
6e y sunaoxax:

— 0062020 pomopa npu 06epmani pomopa 3i weuo-
Kocmamu Minc nepwioro i 0pyz0t0 i HA0 mMpemvoro
xapaxmepHumu weuoKoCmsImu;

— cpepuunozo pomopa npu obepmanni pomopa 3i
WBUOKOCMAMU MIXHC NEPULOTO T OPY2010 XAPAKMEPHUMU
weuoxocmamu;

— KOpOMK020 pomopa Ha wWeuoKoCmsx, wo nepe-
suwyoms 0esKy xapaxmephny weuoKicmv 3a ymoeu,
wo asmobarancup 3Haxo0umvbCs nodausy 6io uenmpy
Mac pomopa.

Acumempis pomopa 30inouye 4uUCIO pe3oHaHC-
Hux weudxocmetl, ane Kiivkicmo o01acmeil HACManHs
a8mo0aNaHCYB8anHs He 3MIHIOENMLCSL.

Heepisnosasicenicmo pomopa i micue ii posma-
WYBAHHA He 6NIUEAIONML HA XAPAKMEPHI WeUOKocmi
obepmannsa pomopa. Aemobanancup ¢ odianasoni
weuoxocmeil obepmanns pomopa, wo 3ade3neuyromo
aemobanNancysants, npazie MaKCUMANLHO 3MEHUUMU
gi0xunenns c60zo uenmpy 6i0 oci obepmanns pomopa.
IIpu nioxo0i weuoxocmi obepmanis 0062020 ado ce-
puuno020 pomopa 0o 0pyzoi xapaxmepnoi weuoxocmi
banancyeanvnoi emnocmi aemobdanancupa nepecmae
eucmauamu 0nsi NOBHO20 YCYHEHHs GIOXUNEHHS UeH-
mpy asmobanancupa 6io oci odepmanns pomopa.

Ompumanuii pe3yivmam Y3azaavHioe pe3yioma-
mu, ompumani paniue 3 3aCMOCYBAHHAM eMNIPUMHO-
20 Kpumepiro Hacmanns aemoéanancyeanns. Enep-
eemuunuil Memoo, Ha GIOMIHY 610 eMNIpU1H020, 00360-
JIUG OUTHUMU 3ATUMKO6T BIOXUTIEHHS NO3006ICHBLOL OCT
pomopa 6i0 oci obepmanna. Ile dossonse ouinroea-
mu 3anac a6o pospaxosysamu 6ANAHCYIOUY EMHICMD
asmobanancupa.

Tun asmobanancupa ne 8paxo6yemvcs 6 MaKUx
docnioscennsx. Tomy ompumani pesyromamu npu-
damui 0ns aemobanancupa 0Yov-1K020 muny, a cam
Memod npudammuii 0ns nody0osu 3azanvioi meopii
nAacueH0z0 asmoOANAHCYEAHHS (3ACMOCOBHOT 05
asmobanancupie 0yov-21020 muny)

Kmouosi crosa: pomop, isomponna onopa, asmo-
banancup, cmauionapnuil pyx, cmiikicmo pyxy, pie-
HAHHS YCMATLEHO20 PYXY
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1. Introduction tomatic balancers find themselves in the positions in which
they balance the rotor.
Passive automatic balancers are used to balance fast-ro- Constructing a theory of the single-plane automatic bal-

tating rotors [1-12]. Under certain conditions, loads in au-  ancing of rotors that execute a spatial motion is a relevant




scientific task as it describes the operation of many rotor
machines with automatic balancers [2—6].

A large number of different types of automatic balanc-
ers [1,4] renders special importance to building a gener-
al theory of passive self-balancing suitable for automatic
balancers of any type. The empirical [9] and energy [10]
methods have been developed for this purpose. The methods
make it possible to answer the question on which conditions
and over which range of rotation velocities can enable the
balancing of a rigid or flexible, fixed in a certain way, rotor
using one or more passive automatic balancers of any type.

It is important to find the analytical conditions for es-
tablishing static self-balancing for an asymmetric rotor on
two isotropic elastic supports for the case when the plane
of the automatic balancer does not coincide with the plane
of imbalance. This is the case most common in practice. On
the other hand, resolving this issue is an important step in
building the theory of a single-plane automatic balancing of
rotors.

2. Literature review and problem statement

It is a relevant scientific task to construct a theory of the
single-plane automatic balancing of rotors that execute a
spatial motion. The attempt to build such a theory involved
an example of balancing by using a single passive automatic
balancer: the impellers of axial fans [2], the drums of wash-
ing machines with a horizontal [3] and vertical [4] rotation
axis, the drums of extractors, centrifuges, separators [5],
CD/DVD discs in the respective drives, etc. Various passive
automatic balancers were considered: ring-, ball-, pendu-
lum-type [1], ball-type [2, 3, 5, 6], liquid-type [4].

It should be noted that taking into consideration the
type of a rotor machine and the type of automatic balancer
significantly complicates the mathematical statement of the
problem. The resulting mathematical model is almost impos-
sible to analyze [2-6]. The basic results are derived when
using numerical methods for the specific system parameters
values. Therefore, the results are of a particular character
and defy generalization.

When applying more general approaches, one considers,
instead of a specific rotor machine, a certain generalized
rotor mounted on two compliant supports. However, the
type of automatic balancer is taken into consideration. Thus,
the single-plane self-balancing using a two-ball automatic
balancer was investigated through numerical modeling for
the case of the anisotropy of supports by both the static and
dynamic imbalance of the rotor [7]. It was established for
specific parameters of the system that the self-balancing is
warranted at the speeds of rotor rotation above the reso-
nance. It should be noted that the numerical methods make
it possible to model and investigate the dynamics of complex
mechanical systems. However, the results are of particular
character as they are obtained at the specific parameters of
the system for a specific automatic balancer. In addition, the
results derived are almost impossible to generalize.

Let us take a closer look at the main analytical results.

The axisymmetric rotor on two isotropic supports was
considered in [8]. The plane of the automatic balancer coin-
cides with the plane of imbalance. The automatic balancer
is of a two-ball type. The stability of all possible steady
motions at which the balls rotate synchronously with the
rotor was investigated. The dynamic system synchronization

method was used. The resulting analytical conditions for the
occurrence of self-balancing are difficult to analyze as they
contain the phase angles that determine the positions of the
balls relative to the rotor. However, it was found that the
conditions for the occurrence of self-balancing significantly
depend on the length of the rotor and the distance from
the center of the rotor mass to the plane of the automatic
balancer.

Let us consider approaches that make it possible to build
a general theory of passive automatic balancers (suitable for
automatic balancers of any type).

An empirical criterion for the occurrence of self-balanc-
ing was proposed in [9]. The criterion examines the rotor’s
response to the sample elementary imbalances located in the
balancing planes. The criterion makes it possible to answer
the question on what conditions and what range of rotation
velocities can enable the balancing of a rigid or flexible, fixed
in a certain way, rotor using one or more passive automatic
balancers of any type.

An asymmetric rotor on two isotropic elastic supports
was considered in [10]. The asymmetry is caused by the
resulting weight of loads in the automatic balancer and the
mass of the rotor’s imbalance. The plane of the automatic
balancer coincides with the plane of imbalance. An automat-
ic balancer can be of any type. The empirical criterion for the
occurrence of self-balancing was used. It was found that for
the case of a long rotor there are three characteristic rotor
rotation velocities, such that the self-balancing is occurred
when the rotor rotates at velocities between the first and sec-
ond and above the third characteristic speeds. For the case of
a short rotor, the automatic balancer should be located near
the center of the rotor mass. Then the self-balancing would
be occurred when exceeding the only characteristic speed.
The spherical rotor is balanced in a narrow range of rotor
rotation velocities between two characteristic speeds. Char-
acteristic speeds are understood to be speeds that limit the
onset of the occurrence of self-balancing. These include both
the resonance rotor rotation velocities and some additional
speeds located between them.

A general theory of passive self-balancing can also be
built using the energy method outlined in [11]. In contrast to
the empirical method, the energy method makes it possible
to take into consideration the type of automatic balancer,
the resulting mass of loads, as well as imbalance. Special fea-
tures in the application of the energy method to construct a
general theory of passive self-balancing are described in [12].

Our review reveals that the analytical conditions for the oc-
currence of self-balancing were only reported in works [8, 10].
At the same time, the case of an originally asymmetric
rotor was not analytically addressed, when the plane of the
automatic balancer does not coincide with the plane of im-
balance. Note that this is the case most common in practice.
In this case, the residual imbalance of the rotor was neither
studied nor evaluated.

3. The aim and objectives of the study

The aim of this study is to determine the analytical con-
ditions for the occurrence of static self-balancing for an asym-
metric rotor on two isotropic elastic supports and to assess the
effect exerted on these conditions by the mismatch between
a non-equilibrium plane and the automatic balancer’s plane.
This would make it possible to find more precise conditions for



the occurrence of self-balancing, which is necessary to design
automatic balancers for specific rotor machines.

To accomplish the aim, the following tasks have been set:

—to find the conditions for the occurrence of static
self-balancing using the modified energy method for the
examined rotor system;

— to assess the residual imbalance of the rotor, the resid-
ual deviations of the rotor’s longitudinal axis from the axis
of rotation.

4. A method for determining the conditions for the
occurrence of self-balancing

4. 1. Description of the system model

The results of works [11, 12] are used to describe the
research methods. Fig. 1 shows the schematic of a rotor on
two supports. Fig. 2 illustrates its motion pattern [12]. The
rotor is balanced, it rotates at a constant angular velocity o
around the axis passing through the longitudinal axis of the
rotor shaft at the undeformed supports. It is rigidly connect-
ed to the masses that create imbalance. A passive automatic
balancer is mounted onto the rotor to balance the imbalance.
The body of the automatic balancer is rigidly connected to
the rotor. Therefore, the body relates to the rotor. The unbal-
anced masses are considered separately from the rotor.

The rotor rests on the isotropic elastic supports whose
rigidity ratios are ky, k9. The action of gravity is not taken
into consideration.

We shall set the rotor into motion using a pair of three
axes OXYZand PEHZ. The PEHZ axes are the main central
axes of rotor inertia. Under a static equilibrium position of the
stationary rotor, these two axis systems are the same (Fig. 1).
In the process of motion, the PEHZ axes move in the follow-
ing way. First, the PEHZ axes move progressively along x, y
relative to the OXYZ axes and, as a result, move to the in-
termediate position PXpYpZp — Fig. 2, a. Next, the PXpYpZp
axes rotate at angles o, B, as shown in Fig. 2, b, they then
merge with the PEHZ axes. Next, the PZHZ and OXYZ
axed rotate around the Z axis at angular velocity .

4XE ]

Note that at steady motion the system rotates as a rigid
whole around the Z axis at constant angular velocity .

4. 2. The generalized potential, dissipative function,
and the equations of stationary motions

Denote the tensor of rotor inertia through J$; the im-
balance with loads — through J¢. The tensor of the system
inertia relative to the axes PEHZ I,=J$+ J”, hence

I.=A+].,, I,=B+],, I?;=C+J§’

Ly=Jow lg=Jo Lye=Jy )
For a passive automatic balancer, J. =const [1]. Thus
I, =C+ J, =const. 2)

Let the system have the center of mass coordinates (G po-
int, not shown in the schematic) &, m,, .. relative to the
PEHZ axes.

Note that the centrifugal moments of inertia I, I, and
the coordinates of the center of mass &, 1, are the parame-
ters that characterize the imbalance of the rotor.

Let us assume that the masses of the imbalance and loads
are much smaller than the mass of the rotor. Given this, we
shall consider the following to be the values of the first order
of smallness:

— the coordinates of the center of mass &, m,, {, and
the components of the inertia tensor J&” of the imbalance
with loads;

— the rotor coordinates o, B, x, y.

With accuracy to the magnitudes of the second order of
smallness inclusive, the generalized potential of the system
at steady motion:

2 b 2, 9
1 |ono” +0,,P +033(x ty )+

H=-= +
2 |2k, (oy —Bor) + 1,0
+|:Inéa_IECB_MZ (XE.»(;JF.Z/H(;)]G)Z, 3)
where

Oy :(B_C)(D2 —kys,

Uy =(A—C)(02 —kys,

Vyy =0, = My =k, ; 4)
by =k +k,

by, =kl —kl,

by, = k> + k2. 5)
Note

by oy, — k2 = Ry (1, +1,) > 0. (6)

It is necessary to investigate the generalized poten-
tial for a conditional extremum (3). The conditions are
the equations of steady motions, which are to be derived
below. At the established steady motions, the generalized
potential (3) should have at least a non-isolated local
minimum.



5. Results of determining the generalized conditions for
the occurrence of static self-balancing

5. 1. The generalized potential at steady motions and
the equations of the rotor steady motions

We believe that the rotor is statically unbalanced. The
static imbalance is created by a point mass located in a plane
located at a distance a; from point P (Fig. 1). In another
plane, which is at distance a, from point P, there is an auto-
matic balancer (Fig. 1). The centers of mass of the automatic
balancer’s loads are moving in this plane. The parameters
of imbalance Iy, I,;, &; m; are then dependent on each
other, and

& :(gsms +éam(1)/ME’ Me =(nm, +nam“)/MZ’

o =(am +a,m )/Mz =const,

a'"a
[t';c = a.x‘&.\\mx +aa§ama’ In§ = a.\\nsms + aunama' (7)

Here: mg is the mass of the imbalance; § , m, are the
coordinates of the mass of the imbalance relative to the
PEHZ; axes; m, is the mass of loads; §,, m, are the coordi-
nates of the common center of mass of the loads relative to
the PEHZ. axes.

A working automatic balancer decreases the deviation
from the rotation axis of its center as hard as it can. The co-
ordinates of the automatic balancer’s center are x, =x+a,
y,=y—a,0. Let us replace the variables

x:xa_aaﬁ’ y:ya+aa(x' (8)

Given (7), (8), the generalized potential (3) takes the
form

1 |d, 0+, + 0y (xj + yﬁ)"’
) +2(ky + a0 ) (0, —Pa, )+ 1,07
+o’m,(a, -a,)(om, —BE,)+

+0’[x,(mE, +m&,)+y,(mn,+nE,)] 9)
where

_ 2 _ 2
d11 - vSSaa + 2aak14 + 011’ d22 - vSBaa + ZaakM + Z)22'

(10)

The equations of the system’s steady motions along the
rotor coordinates

L, =01 /do.=—d, 0.~ (k+a,0,)y, +

+mm,(a,—a,)o” =0,

Lp =dll/ aB = _dzzﬁ"' (k14 + aaviiii)xa -

-mg&, (as - aa)oo2 =0,

Lx,, =0dIl/dx, = (km + aavas)B —Ug3%, —
—(mE,+m&,)w* =0,

L, =oll/dy,= _(km +aa033)a_
11

_033ya _(mana + msns)(oz = 0

It is necessary to investigate the generalized potential (9)
for a conditional extremum. The conditions are four equa-
tions of the rotor steady motions (11). The total of unknowns
is 6: o, B, X4, Ya» Ea» Ne- Given the conditions (11), 2 indepen-
dent unknowns remain. Assume these include the deviations
of the automatic balancer’s center from the axis of rotati-
on x,, y,. We make use of the fact that at the main motions
x,=y,=0, provided the automatic balancer’s balancing ca-
pacity is enough to eliminate the deviation.

5. 2. The transformed generalized potential

The solution to the equation system (11) regarding the
generalized coordinates of the rotor a, B, &,, M, takes the
following form

o= [msns (as - aﬂ)wz —Y. (vsaaa +k, )]/dn )
p= [_m.\-&»s (as - aa)m2 TX, (033% +hy )]/dn )

2
(011033 - kM)xa

= P
o'm,dy,

a

B mg, [(033% + k14)a.\- +0y,+a,ky,

’

m,d.,,

2
N = (011033 _k14)?/a
o — 2 -
) mudii

_m, [(Z)SSau +k, )a_\_ ST auk14:|

(12)

m,d,,

The generalized potential (9), upon substitution (12),
following the transforms, takes the form

o zi (022033 —ka)xj + (011033 —k&)yf —IC(J)Z +
2 d,, dy,

[N 2( & J
+—m;0"(a,-a, |, (13)
prele-a) |y,

The function (13) will have a minimum for x,, y, if

(022033 —ki; )/d22 >0, (011033 — ki, )/du >0.

Check the first condition in (14). Explicitly
f22 (x)z UpyUs3 _k124 = [(A_C)x _k33:|(sz_k11)_k124 =
=M, (A-C)x" [ kyy (A= C)+hyy M, |x+ by oy — k7
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(14)

N_ 2 _
d,y, (0) )— 0yl +2a .k, + 0y, =

=(A-C+Ma})x—ky —k,a+2k,a, 15)

where x=w’.

We introduce the discriminant
2
D, = [kn (A _C)+ k33Mz] —4M, (A _C)(knkss _k124):

= [k (A=C)=kyyM, | +4k: M, (A-C). (16)

We find, from the first equation in (15), the following

squares of the resonance rotor speeds



_ ko hy JD;

MToM, 2(A-C) 2M,(A-C)

ke kg JD,

5T oM, 2(A-c)+ 2M, (A-C)

a7

We find, from the second equation in (15), the following
square of a certain additional rotor speed

1. = k33 +k11a§ _2k14aa _
® A-C+Ma
2 .
(k11aa _km) +(k11k33 _kf/l)

T k(A-ceM) (18)

Analyze the roots derived.

5. 3. The case of a long rotor
For the case of a long rotor A>B>C, the actual rotor
systems

by /My <k [(A-C). (19)

Since

£(0)= 1, (1@*&]: bk, — K, >0,
then

Xy <k /My <k [(A-C)<x,s.

Since

doy () dy (x,5) =

_ {(rgi-a+C)hy+a, [k, (A=C) =M, |} »

M (A=C) |

then

Xy <Xy <X (20)

The first condition in (14) is met over the following range
of the angular rotor rotation velocities

ey, U (Vg o). (1)

Similarly, analyze the second condition in (14). We
find the following squares of the resonance and additional
velocities

_hy JD,

“79oM,  2(B-C) 2M(B-C)’

— k:a:s +k11a3 _2k14au —
27 B-C+Mya>
_ (k1 14, = k14 )2 + (knkss _k124)
k,(B-C+M,a)

Xow = k11 + k33 \/D72 (22)
® 2M, 2(B-C) 2M,(B-C)

where

D, = [ku (B_C)"'kas]\/[z]2 -

—-4M, (B _C)(knksa - k124) =

= [k, (B=C)~kyyM, | +4k: M (B-C) (23)
and

x21<x22 <x23’ (24)

The second condition in (14) is satisfied over the follow-
ing range of the angular rotor rotation velocities

oIl )o(Em=)

Conditions (14) are met over the following range of the
angular rotor rotation velocities

(25)

0e(0,0,)U(0,,+), (26)

where
o, = min(m,@),
®,= max(@,@),
o, = max(Fo 53
are the three characteristic rotor rotation velocities.

If the rotor is symmetrically mounted on the supports,
then k,=0 and

x _ ky
11 =%y = )
MZ
2
ky +kya,

o = by +k a;
» B-C+Ma’
k
k
xQB_ﬁ. (27)

In this case,

Xig = Xy <Xpy <Xyy <Xz <Xy,

so the self-balancing is occurred over the following range of
angular velocities

(28)

oe(fTmT ) \Emi=).

In this case, we managed to find the boundaries of re-

gions where the self-balancing is occurred (characteristic
velocities) in an explicit form.



5. 4. The case of a short rotor
For the case of a short rotor, C>A>B. We check the first
condition in (14). Represent (15) in the following form

Jo (0)2): Upy033 —kiy= _[(C_A)(D2 +k33]><
><(Mzoo2 —le“)—kf4 =

=-M, (C—A)co4 +
+|:k11(C_A)_k33MZ](D2 +hky ky _k12/1;

d,, (“)2) =03, +2a,ky + 0y, =

=—(C-A-M.a})o” —ky,—k,a. +2k,a,. (29)

Let the automatic balancer be located at a distance from
the center of the rotor mass not exceeding
a,<(C-A)/M,. (30)
Then C-A-Ma’>0, d,, ((02)< 0 and the necessary

condition for the occurrence of self-balancing is f,, ((x)2 <0.
We find from (16)

D= [ksst _k11(C_A)]2 +

+AM, (C = A)(ky kg, — k) > 0. (31)
We find from (17)
— kﬂ _ k33 \/61 > 0 (32)

oM, " 2(C-4) " 2M, (C—A)

The necessary condition for the occurrence of self-bal-
ancing

0> T,

Similarly, we find, from the second condition in (15), the
necessary condition for the occurrence of self-balancing

(33)

O> /2, X,= ky + \/32 >0, (34)
2M; 2(C-B) 2M,(C-B)
where
D, =[ky,M, ~k,(C—B)] +
+4M;; (C = B)(ky ks, — k) > 0. (35)

It follows from (33) and (34) that the self-balancing will
be occurred at speeds

0>0, 0= max{Jx“, NE },

where , is the only characteristic rotor rotation velocity.
If a rotor is symmetrically mounted on the supports,
then £, =0 and

(36)

Xy =Xy =k /M. 37
Self-balancing is occurred at speeds
o>k, /M,. (38)

In this case, it was possible to find the boundary of the
region where the self-balancing is occurred (the characteris-
tic speed) in an explicit form.

3. 5. The case of a spherical rotor

For the case of a spherical rotor, C=A=B. In this case, the
first and second conditions in (14) are the same. Represent
(15) in the form

S (x) = UyyU33 — k124 =—kj, (sz - k11)_
_k124 = k11k33 - k124 - ksstx;

2
d22 (x) =0pa,+ Zaaku T0y =

=M,a’x -k, —k,a’+2k,a, (39)
where x =’
We find from (39)
by + by jaq — 2k, ,a,
oy ==
Zaa
¥ = ki ks, _k124 _ (kﬂaa _k14)2 +(k11k33 _k124) (40)
1 ks M y kyMa; .
We find from (40)
Xy =X =(k11aa—k14)2/(k33M2a3)>(). 41)

Thus, spherical rotors are balanced over a range of ve-
locities

oc({mm)

In this case, there are two characteristic rotor rotation
velocities and they were found in an explicit form.
By bringing the plane of the automatic balancer to the

(42)

center of the rotor mass (a, —0), this range can be made

(above) as large as possible (\/Z - +°°).

5. 6. Estimating the residual deviation of the rotor’s
longitudinal axis from the axis of rotation

When the conditions for the occurrence of self-balancing
are met, the coordinates of the automatic balancer’s center
X4 Ya approach the values that are the smallest by the mod-
ule. We find from the last two equations (12)

2
X =— w'm,d,,
a k2
011033 = Ryy

mg, [(033% + k14)as T 0y + aak14]
x4&, + J ;
m,dy,y
2

w'md,,

a

2
0y,05 — ki

X{m + mm; [(033aa +hy, )as +oy +aak14]}.

m,d,,

(43)

We find from (43) that the complete elimination of the
deviation of the automatic balancer’s center from the axis of
rotation creates the following imbalance



g, =-mg, [(vssaa +hy, )as +toytak, ]/madzz )

n, =-mm; [(vssaa +hky )as +o +aky, ]/madﬂ . (44)

It follows from (44) that when the speed of rotation of a
long or spherical rotor approaches the second characteristic
speed, the balancing capacity of the automatic balancer ceas-
es to be enough to completely eliminate the deviation of the
automatic balancer’s center from the rotor’s rotation axis as,
in this case, d,,,d,, —0. Equalities (44) can be used both to
assess the reserve and to calculate the balancing capacity of
the automatic balancer.

Substituting (44) in the first two equalities in (12), we
find the residual angular deviation of the rotor’s longitudinal
axis from the axis of rotation

o= (DQmST]S (as - aa )/dﬂ ) B = _mzmsns (as - arz )/dZQ N (45)

Note that the empirical criterion for the occurrence of
self-balancing does not make it possible to assess the balanc-
ing capacity of the automatic balancer, the residual devia-
tions of the rotor’s longitudinal axis from the axis of rotation.

6. Discussion of the obtained conditions for the
occurrence of static self-balancing

Our study suggests that an asymmetrical rotor that exe-
cutes spatial motions and is mounted on two isotropic elastic
supports can be statically balanced by a single automatic
balancer of any type in the following case:

—a long rotor when the rotor rotates at velocities be-
tween the first and second and above the third characteristic
speeds (26) or (28);

—a spherical rotor when the rotor rotates at velocities
between the first and second characteristic speeds (42);

—a short rotor at velocities exceeding a certain charac-
teristic speed provided that the automatic balancer is close
to the center of the rotor mass (36) or (38).

As it follows from (17), (18), and (22), the rotor asym-
metry increases the number of resonant and additional
speeds but the number of regions where the self-balancing is
occurred does not change.

This result coincides with the result reported in [10]
where an empirical criterion for the occurrence of self-bal-
ancing was applied (provided that the planes of the imbal-
ance and the automatic balancer coincide). This confirms
the correctness of the results obtained when using the
energy and empirical methods. It should be noted that our
study has made it possible to arrange the characteristic
rotor rotation velocities in ascending order in an expli-
cit form.

It is clear from (13) that the imbalance of the rotor and
its location do not affect the characteristic rotor rotation
velocities. An automatic balancer in the range of rotor
rotation velocities that ensure the self-balancing tends
to minimize the deviation of its center from the rotor’s
rotation axis. It is clear from (44) that when the rotation
velocity of a long or spherical rotor approaches the second

characteristic speed, the balancing capacity of the auto-
matic balancer ceases to be enough to completely eliminate
the deviation of the center of the automatic balancer from
the axis of rotor rotation.

The energy method, in contrast to the empirical method,
has made it possible to estimate the residual deviation of
the rotor’s longitudinal axis from the axis of rotation. That
allows the estimation of the reserve or the calculation of the
automatic balancer’s balancing capacity.

The type of automatic balancer is not taken into consid-
eration in such studies. Therefore, the results obtained are
suitable for automatic balancers of any type, and the method
itself is suitable for building a general theory of passive
self-balancing.

The method has flaws inherent in approximate meth-
ods. The method produces the approximate boundaries of
the regions where the self-balancing is occurred. In ad-
dition, the method does not make it possible to study the
non-stationary steady motions of the system and transition
processes.

In the future, it is planned to use the modernized energy
method to investigate the impact of damping in the supports
on the conditions for the occurrence of single-plane self-bal-
ancing for a rotor on two isotropic supports.

7. Conclusions

1. An asymmetric rotor that executes spatial motion and
is mounted on two isotropic elastic supports can be statically
balanced by a single automatic balancer of any type in the
following cases:

—a long rotor when the rotor rotates at velocities be-
tween the first and second and above the third characteristic
speed;

— a spherical rotor when the rotor rotates at velocities
between the first and second characteristic speeds;

—a short rotor at velocities exceeding a certain charac-
teristic speed provided that the automatic balancer is close
to the center of the rotor mass.

The imbalance of the rotor and its location do not affect
the characteristic rotor rotation velocities.

2. An automatic balancer in the range of rotor rotation
velocities that enable the self-balancing tends to minimize
the deviation of its center from the axis of rotor rotation.
When the rotation velocity of a long or spherical rotor
approaches the second the automatic balancer ceases to be
enough to completely eliminate the deviation of the center of
the automatic balancer from the axis of rotor rotation.

The energy method, in contrast to the empirical method,
makes it possible to assess the residual deviation of the ro-
tor’s longitudinal axis from the axis of rotation, to estimate
the reserve, or to calculate the balancing capacity of an
automatic balancer. In this case, the type of automatic bal-
ancer is not taken into consideration. Therefore, the results
obtained are suitable for automatic balancers of any type,
and the method itself is suitable for building a general theory
of passive self-balancing (applicable for automatic balancers
of any type).

References

1. Thearle, E. L. (1950). Automatic dynamic balancers (Part 2 — Ring, pendulum, ball balancers). Machine Design, 22 (10),

103-106.



10.

11.

12.

Filimonikhin, G., Olijnichenko, L. (2015). Investigation of the possibility of balancing aerodynamic imbalance of the impeller
of the axial fan by correction of masses. Eastern-European Journal of Enterprise Technologies, 5 (7 (77)), 30-35. doi: https://
doi.org/10.15587 /1729-4061.2015.51195

Chen, H.-W., Zhang, Q. (2017). Design of horizontal axis washing machine with ball balancer and MR dampers. International
Journal of Precision Engineering and Manufacturing, 18 (12), 1783-1793. doi: https://doi.org/10.1007 /s12541-017-0207-0
Royzman, V., Drach, 1., Tkachuk, V,, Pilkauskas, K., Cizauskas, G., Sulginas, A. (2019). Operation of Passive Fluid Self-Balanc-
ing Device at Resonance Transition Regime. Mechanics, 24 (6), 805-810. doi: https://doi.org/10.5755/j01.mech.24.6.22469
Chen, H.-W.,, Zhang, Q.-J. (2016). Dynamic Analysis and Design of a Balancer for a Three-Column Centrifuge. Shock and
Vibration, 2016, 1-13. doi: https://doi.org/10.1155/2016/7957821

Chao, P. C.-P, Sung, C.-K., Wu, S.-T., Huang, J.-S. (2006). Nonplanar modeling and experimental validation of a spindle—disk
system equipped with an automatic balancer system in optical disk drives. Microsystem Technologies, 13 (8-10), 1227—1239.
doi: https://doi.org/10.1007 /500542-006-0337-2

Rodrigues, D. J., Champneys, A. R., Friswell, M. 1., Wilson, R. E. (2011). Experimental investigation of a single-plane auto-
matic balancing mechanism for a rigid rotor. Journal of Sound and Vibration, 330 (3), 385-403. doi: https://doi.org/10.1016/
1.i5v.2010.08.020

Sperling, L., Ryzhik, B., Duckstein, H. (2004). Single-Plain Auto-Balancing of Rigid Rotors. Technische Mechanik, 24 (1),
1-24.

Filimonikhin, G., Filimonikhina, 1., Dumenko, K., Lichuk, M. (2016). Empirical criterion for the occurrence of auto-balancing
and its application for axisymmetric rotor with a fixed point and isotropic elastic support. Eastern-European Journal of Enter-
prise Technologies, 5 (7 (83)), 11-18. doi: https://doi.org/10.15587/1729-4061.2016.79970

Gorbenko, A. N., Shmelev, S. Kh. (2018). Necessary Self-Balancing Robustness Conditions for a Two-Bearing Rotor Taking
Unbalance Mass into Account. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering,
5 (122), 36-50. doi: https://doi.org/10.18698,/0236-3941-2018-5-36-50

Filimonikhin, G., Filimonikhina, I., Ienina, I., Rahulin, S. (2019). A procedure of studying stationary motions of a rotor with
attached bodies (auto-balancer) using a flat model as an example. Eastern-European Journal of Enterprise Technologies,
3 (7 (99)), 43-52. doi: https://doi.org/10.15587/1729-4061.2019.169181

Filimonikhin, G., Filimonikhina, I., Pirogov, V., Rahulin, S., Sadovyi, M., Strautmanis, G. et. al. (2020). Establishing conditions
for the occurrence of dynamic auto-balancing in a rotor on two elastic-viscous supports. Eastern-European Journal of Enter-
prise Technologies, 1 (7 (103)), 50-57. doi: https://doi.org/10.15587 /1729-4061.2020.192598



