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1. Introduction

Plates of different outlines and thicknesses are widely 
used in modern technical devices as structural elements 
operating in variable mode. In this regard, one should note 
the frequently mentioned elements related to construction 
sites, instrumentation and engineering structures, aerospace 
units. These elements include building floors, foundation 
slabs, the bottoms of tanks and pistons in the internal com-
bustion engines, as well as aircraft empennage components. 
Examples of the latest applications include wind turbines [1], 
turbojet engines, and navigation water vessels [2]. In the lat-
ter case, specific plate devices are used to increase the ship’s 
velocity, which control the resistance of the water environ-
ment [2]. Issues concerning the important scope of applica-
tion, relevance, and practical demand for the results from 
studying and calculating plate oscillations are addressed 
in many literary sources, for example, in [3‒7]. Earlier, pa- 
per [8] outlined the essence of the problem and gave a brief 
overview of how to solve it, as regards round plates of vari-

able thickness. It is noted, in particular, that the problem of 
the oscillations of solid plates of variable thickness remains 
unresolved. At best, calculating the oscillations of such 
plates employs numerical methods for determining their 
natural frequencies. The relevance of the task to calculate 
the oscillations of a solid plate of variable thickness is due 
to the practical demand for plate elements. Therefore, it is 
an actual issue to develop an estimation model, which would 
produce an analytical solution to the eigenvalue problem, 
suitable for the subsequent calculation of frequencies and the 
construction of shapes of natural oscillations. In addition, 
there is also the possibility to determine the cyclical stresses 
that occur in the plate when it is deformed.

2. Literature review and problem statement

Our analysis of current publications [1, 2, 9‒15] leads 
to the conclusion that solving the problem about bending 
oscillations of circular plates is in high demand for research-
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This paper reports an analytical solution to one of the problems 
related to applied mechanics and acoustics, which tackles the anal-
ysis of free axisymmetric bending oscillations of a circular plate of 
variable thickness. A plate rigidly-fixed along the contour has been 
considered, whose thickness changes by parabola h(ρ)=H0(1+µρ)2. 
For the initial assessment of the effect exerted by coefficient μ on the 
results, the solutions at μ=0 and some μ≠0 have been investigated. 
The differential equation of the shapes of a variable-thickness plate's 
natural oscillations, set by the h(ρ) function, has been solved by a 
combination of factorization and symmetry methods. First, a prob-
lem on the oscillations of a rigidly-fixed plate of the constant thick-
ness (μ=0), in which h(1)/h(0)=η=1, was solved. The result was 
the computed natural frequencies (numbers λi at i=1...6), the con-
structed oscillation shapes, as well as the determined coordinates of 
the nodes and antinodes of oscillations. Next, a problem was con-
sidered about the oscillations of a variable-thickness plate at η=2, 
which corresponds to μ=0.4142. Owing to the symmetry method, an 
analytical solution and a frequency equation for η=2 were obtained 
when the contour is rigidly clamped. Similarly to η=1, the natural 
frequencies were calculated, the oscillation shapes were construct-
ed, and the coordinates of nodes and antinodes of oscillations were 
determined. Mutual comparison of frequencies (numbers λi) shows 
that the natural frequencies at η=2 for i=1...6 increase significant-
ly by (28...19.9) % compared to the case when η=1. The increase in 
frequencies is a consequence of the increase in the bending rigidity of 
the plate at η=2 because, in this case, the thickness in the center of 
both plates remains unchanged, and is equal to h=H0. The reported 
graphic dependences of oscillation shapes make it possible to com-
pare visually patterns in the distribution of nodes and antinodes for 
cases when η=1 and η=2. Using the estimation formulae derived from 
known ratios enabled the construction of the normalized diagrams 
of the radial σr and tangential σθ normal stresses at η=1 and η=2. 
Mutual comparison of stresses based on the magnitude and distri-
bution character has been performed. Specifically, there was noted 
a more favorable distribution of radial stresses at η=2 in terms of 
strength and an increase in technical resource
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ers and specialists in applied acoustics and mechanics. This 
judgment is supported by the presence of a huge number of 
technical applications of circular plates and various ways to 
solve the relevant eigenvalue problem. However, most of the 
methods and algorithms considered in [1, 2, 9‒15] are specific 
and focus on iterative numerical approaches. In addition, the 
results reported in the cited papers typically refer to plates 
of constant thickness. As regards plates of variable thickness 
with a parabolic profile, no mathematical apparatus has been 
found for the analytical calculation of bending oscillations.

In work [9], an analysis of oscillations for bending and 
shear deformation of the continuous thickness circular 
plate was carried out on the basis of the numerical iterative 
method of dynamic softening in combination with a finite 
difference method. In essence, judging by the above calcula-
tions, expressions for calculating displacements and stresses 
are artificial since they are tied to solving a “numerical” 
code based on an iterative method. However, the given rec-
ommendations cannot be used in the analysis of the curved 
oscillations of a variable-thickness plate.

In paper [10], the authors emphasize the need for ac-
curate analysis of circular elastic plates. Cylindrical coor-
dinates are used to represent expressions for calculating 
natural frequencies and shapes of oscillations, but only for 
plates of constant thickness based on Mindlin’s theory. 
However, it is not possible to adapt the reported results for 
variable-thickness plates, given the lack of an appropriate 
mathematical apparatus in the cited paper.

Article [11] examines the physical basis for the propaga-
tion of curved edge waves over the surface of a thin circular 
plate. The authors separately investigated the effect exerted 
by the values of the Poisson coefficient on the wave shapes 
observed at the surface of the plate. An analysis of the article 
reveals that the object of the authors’ research is only a plate 
of constant thickness. The results reported in the article are 
not applicable to the problem of bending oscillations of a 
variable-thickness plate.

Work [12] considers a ceramic circular plate of the 
constant thickness (h=1 cm), exposed to thermal loads at 
the surface. A simplex method is recommended to analyze 
the dynamic thermal bend of the plate. Under conditions of 
temperature deformation, expressions were obtained to cal-
culate oscillation shapes, their natural frequencies were de-
termined. However, it follows from the formulated statement 
of the problem that those expressions concern not the plate 
but the thermal membrane. Therefore, is not advisable to use 
the results reported in the work for a solid plate of variable 
thickness under normal temperature regimes.

In articles [12, 13], the object of the study is a circular 
metallic-ceramic plate of constant thickness, which is sub-
ject to increased temperature loads. However, in contrast to 
work [12], it is suggested to use a free grid method of inter-
polation for a bend analysis. Under conditions of considering 
the surface temperature of the plate (from 20 °C to 200 °C) 
and the associated change in the thickness of the plate, the 
reported theory and results are not possible to use for the 
analysis of free axisymmetric oscillations of a continuous 
circular plate of parabolic profile.

Based on four analytical functions and a generalized “En-
glish” method, work [14] provides a solution to the equation 
of the shapes of a plate’s natural oscillations. However, when 
the problem is examined in detail, it turns out that the plate 
of constant thickness is under the influence of the transverse  
load p(r, θ). In a given statement of the problem, a force in the 

radial direction is expressed through the Fourier series using 
a biharmonic function. Therefore, the results derived on the 
basis of a 3D analytical solution under a biharmonic load can-
not be applied for the problem of free bending oscillations for a 
plate with a parabolic profile of thickness change. In addition, 
the proposed “English” method is based on a 3D theory of 
elasticity and implies that the coefficient of a plate’s material 
(Poisson coefficient) can arbitrarily change along the radial 
profile of the plate. This feature also imposes restrictions on 
the solution to the problem of a solid plate of variable thickness.

In article [15], the authors considered a plate with 
variable thickness, stiffness, and density using the pa-
rameter p. However, it should be noted that the authors 
artificially create in their study a function of changing the 
E elasticity module, density ρ, thickness h along the radius 
of the plate: E=E0(1+p(r/R)2)n+0,5; ρ=ρ0(1+p(r/R)2)n-0,5; 
h=h0(1+p(r/R)2)0,5. These parameters are selected in such 
a way that they correspond to the original equation of the 
oscillation shapes. In this case, this equation is easily solved 
by traditional methods. If one accepts p=0, one obtains a 
problem for a plate of constant thickness. As a result, we are 
dealing with an artificial approach and therefore conclude 
that there is no progress towards solving a problem of calcu-
lating plates of variable thickness.

Thus, a review of the above literature allows us to con-
clude that there are no publications addressing the analytical 
solution to the problem of bending free oscillations of a cir-
cular plate of a parabolic profile. The reason, of course, is not 
the lack of interest in the possibility of solving the problem 
but apparently is the difficulties of a mathematical nature, 
in the absence of a correct solution method. The works cited 
above [14, 15] are indicative in this respect. These studies 
apply a “new approach” to achieve the goals stated, the 
essence of which is to treat absolutely arbitrarily the elas-
tic and physical constants of a material, considering these 
constants to be variables. Paper [14] introduces a “material’s 
coefficient”, variable along the radius of the plate, instead of 
the Poisson coefficient. Work [15] introduced the elasticity 
module E(r) and the density ρ(r), variable along the radius. 
As a result of this “method”, work [15], for example, “con-
verts” the constant thickness of the plate into a variable and 
a simple problem turns into a problem about the oscillations 
of a plate of variable thickness. Our analysis suggests that 
it is appropriate to conduct a study on the construction of 
an analytical solution to the problem of free oscillations of a 
circular plate of the parabolic profile. In this case, it would 
be possible to expand the range of profiles of solid plates of 
variable thickness, which are subject to calculation within 
the framework of Kirchhoff’s theory. In turn, as the review 
suggests, this has scientific and applied importance.

3. The aim and objectives of the study

The aim of this study is to analytically solve the ei-
genvalue problem using an example of examining free ax-
isymmetric oscillations of a rigidly fixed circular plate. The 
thickness of the plate varies according to the parabolic law 
h(ρ)=H0(1+µρ)2. For the initial assessment of the effect ex-
erted by μ on the results, it is advisable to consider solutions 
at μ=0 and some μ≠0.

To accomplish the aim, the following tasks have been set:
– it is required to use the factorization method in order 

to move from the original differential equation of the fourth 
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order for a plate of the predefined thickness to a system of 
two equations of the second order;

– to solve the problem about a plate’s oscillations at μ=0, 
which corresponds to η=h(1)/h(0)=1, by determining the 
natural frequencies, cyclical deflections, as well as the coor-
dinates of nodes and antinodes of oscillations;

– to solve a similar problem using the symmetry method 
at μ≠0, by selecting μ=0.4142, which corresponds to η=2. 
Compare the results of the calculation of oscillations at η=1 
and η=2;

– to construct diagrams of the radial and tangential 
normal stresses, which occur during the cyclical deformation 
of plates of constant (η=1) and variable (η=2) thickness. 
Compare the results by establishing the impact exerted by 
the parameter μ on them.

4. The original differential equation and its 
transformation

A differential equation of the shapes of a circular plate’s 
natural axisymmetric oscillations with the thickness that 
changes according to the law h=H0H(ρ) is obtained if one 
separates the time multiplier cos(ωt) in a known equation, 
given, for example, in work [8]. As a result, this equation for 
the deflections W(ρ) can be written in the form

( ) ( ) ( ) ( )

( )

3 3 6 3
4

3 3 6 3

3 4
3

3 2

2

1
0,

H H H
W W W

H H H

H
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+ n

′ ″ ′ r  + + + +′′′ ′′ r   
′  λ

+ n − − =′ r r 
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where

( )22
2

0

12 1
;

R
H gE

− n gw
λ =  		 (2)

ρ=r/R; r, R is the relative, variable, and constant radii; H(ρ), 
H0 is the variable and constant of thickness; ω=2πf, f are 
the circular and linear frequencies; ν, E, γ is the Poisson co-
efficient, the elasticity module, and the specific weight of a 
material; g is the acceleration of gravity. 

We accept the value of the Poisson coefficient to be 1/3, 
which is acceptable for most structural metallic materials. 
Under the law h=H0(1+µρ)2, equation (1) can be rewritten 
in a symbolic form:

( ) ( )
2
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Such a representation, in accordance with the factoriza-
tion method, makes it possible to replace the equation of the 
fourth order (3) with two equations of the second order

( )2
2 4 42 4 0.

H
HW W W W

H

′
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+ − m ± λ + m =′′ ′
r

	  (4)

In this case, a general solution to equation (3) will be 
derived as the sum of the solutions to these two equations, 
that is, W=W1+W2, where W1 is the solution to equation (4) 
at a plus sign before the square root, and W2 ‒ at a minus sign. 

Once we introduce expression H=(1+µρ)2 to (4), we 
obtain

( )
( ) ( )

4
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4 2

1
0,
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′
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 		  (5)

where

( )42 2 4 4 22 4 2 / 4 .k∗
 = − m ± λ + m = m − ± λ m +  

Equations (5) cannot be analytically solved at µ≠0; 
however, solutions to such equations can be built using the 
symmetry method [16]. 

In accordance with the purpose of the current work, 
and for the sake of certainty, we further consider two types 
of plates of thickness h=H0(1+µρ)2: at µ=0 (h=H0=const) 
and at η=2, where η=h(ρ=1)/h(ρ=0) is the ratio of the 
thickness on the contour h(1)=H0(1+µ)2 to the thickness 
in the center of the plate h(0)=H0. For the case η=2, we 
obtain µ=0.4142.

5. Solving the problem for a plate of constant thickness, 
rigidly fixed along the contour

At µ=0, we obtain h=H0, and, in this case, equations (5) 
take the form of Bessel equations
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W
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Solutions to these equations, written in a detailed form
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produce, in sum, a solution for deflections (oscillation shapes) 
in the form
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where A, B are the constants of the integration, dependent on 
boundary conditions.

When the contour is rigidly fixed (ρ=1), the boundary 
conditions take the form

( ) 1
0;W
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=  ( )

1
0.Wr r=

= 		   (8)

After introducing (7) to (8), we obtain two equations
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based on which it is possible to determine the relationship of 
amplitude coefficients 
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and to obtain an equation of frequencies 
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( ) ( ) ( ) ( )0 0 1 1/ / 0.J I J Iλ λ + λ λ =  		  (10)

The results of the calculation of oscillations of a rigidly 
clamped plate of constant thickness are given in Table 1.

Table 1 

The results of oscillation calculation at η=1

η λi B/Ai

Oscillation 
node  

coordinates ρ0i

Oscillation 
antinode  

coordinates ρmi

1

3.19622 0.05571 1 0

6.306437 –0.00253
0.379 0

1 0.616

9.439499 0.00011

0.255 0

0.583 0.406

1 0.782

12.57713 –4.83096∙10-6

0.191 0

0.439 0.305

0.687 0.59

1 0.812

15.716438 2.09655∙10-7

0.153 0

0.351 0.244

0.551 0.456

0.749 0.64

1 0.85

18.856545 –9.08545∙10-9

0.128 0

0.293 0.203

0.459 0.391

0.625 0.542

0.791 0.71

1 0.88

The deflections, that is, the oscillation shapes for the first 
three eigen numbers λ1, λ2, λ3 (Table 1), are shown in Fig. 1 
by graphical dependences.

Fig. 1. Graphic image of deflections on the first three 
oscillation shapes

Fig. 1 and Table 1 provide complete information about 
the parameters of a freely oscillating rigidly clamped plate of 
constant thickness.

6. Solving the problem for a variable-thickness plate by 
symmetry method

Transform equations (5) by replacing the variable ρ=ρ(x) 
to the form, that is, expressed through the variable x(ρ)

2 0.x
xx x

F
W W k W

F
+ + =  		  (11)

Assuming x=ln(1+µρ), find 

( ) ( )2 4 3 ;x xF x D x e e= = −
4

2 2 4 .k
  λ = − ± +  m 
 

	 (12)

A solution to equation (11) at D2(x)=e4x–e3x is unknown, 
so D(x) needs to be approximated by such D1(x) function 
at which such a solution is possible. Because, as noted in 
chapter 4, at the plate’s thicknesses ratio η=h(1)/h(0)=2, 
µ=0.4142 was obtained, then, in this case, according to the 
dependence x=ln(1+µρ), the limits ρ=0÷1 are matched with 
the limits to the new variable x=0÷ln2/2=0÷0.347. 

For a given interval x, we shall choose the following ex-
pression as an approximating function

( )1 01 0 ,D D xI nx= 		   (13)

where D01=1.1; n=4.64.
The plot of function (13) within the required interval is 

shown in Fig. 2. Fig. 2 also shows, for comparison, the graph-
ic image of the original function D(x).

Fig. 2. Graphic image of approximation functions

Equations (11) for function (13) will be written in  
the form
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( )
4
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( )
4

2 24 2 .n
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The exact solutions to equations (14), ob-
tained by the symmetry method, are

( ) ( )
( )

0 0
1

0

;
AJ x BY x

W
I nx

a + a
=

 

( ) ( )
( )

1 0 1 0
2

0

.
A I x B K x

W
I nx

β + β
=  	 (16)

The overall solution W to the original equa-
tion of the fourth order is the sum of the solu-
tions W1 and W2. Given that Y0(αx) and K0(βx) 
at x=0 tend to infinity, these functions, in order 
to ensure the resulting deflections in the cen-
ter of the plate (at x=0), need to be excluded 
from solutions (16), adopting the coefficients 
B=B1=0. The overall solution to equation (3), 
expressed through the variable x, should be 
written in the form

( ) ( )
( )

( ) ( ) ( )

0 1 0

0

1
0 0

0 1

.

AJ x A I x
W

I nx

A A
J x I x

I nx A
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= =

 
= a + β 
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	 (17)

If a plate is rigidly clamped along the contour ρ=1 (x=x1= 
=ln2/2), then it is necessary to meet the conditions

( )
1

0;
x x

W
=

=  

( ) ( )
11

0.x x x xx x
x W Wr ==

= =  		  (18)

After introducing function (17) and its derivative to (18), 
we obtain a frequency equation

( )
( )

( )
( )

1 1 1 1

0 1 0 1

0,
J x I x

J x I x

a β
a + β =

a β
 		  (19)

and equivalent ratios to calculate the amplitude coefficients

( )
( )

( )
( )

0 1 1 1

1 0 1 1 1

.
I x I xA

A J x J x

β β β
= − =

a a a
 			   (20)

The roots of frequency equation (19) for the first six ei-
genvalues of the problem are given in Table 2.

The character of change in deflections, that is, the form 
of oscillation shapes, for the first three eigenfrequenci- 
es λ1÷λ3 (Table 2), is illustrated by the graphic dependences 
shown in Fig. 3.

Fig. 3 and Table 2 provide a clear pattern of the free 
oscillations of a circular rigidly clamped plate of variable 
thickness.

Fig. 3. Graphic image of deflections on the first three 
oscillation shapes

7. Stresses at oscillations of a rigidly clamped circular plate

To analyze the stressed-strained state of a circular plate 
at axisymmetric bending or axisymmetric oscillations, we 
shall use known ratios to calculate the radial σr and tangen-
tial σθ normal stresses, maximal for thickness.

2

6
;r rr r

D
W W

h r
n s = − +  

 2

6 1
.rr r

D
W W

h rq
 s = − n +  

	 (21)

Here, Wr, Wrr are the derivatives for radius r=0÷R, where 
R is the radius of a plate; D=Eh3/12(1–ν2) is the cylindrical 
rigidity. 

After the transition to the relative variable ρ=r/R, 
adopting ν=1/3, h=H0, and omitting a minus sign due to 

Table 2

Results of oscillation calculation at η=2

η αi βi λi A/A1i

Oscillation 
node coor-
dinates ρ0i 

Oscillation 
antinode 

coordinates 
ρmi 

2

8.9389853 10.841 4.11502 31.47856 1 0

18.1179444 19.128 7.71665 545.59803
0.341 0

1 0.561

27.2008023 27.884 11.40923 11273.20989

0.222 0

0.54 0.36

1 0.755

36.26957009 36.785 15.13035 –2.45681∙105

0.165 0

0.396 0.267

0.649 0.54

1 0.812

45.3349641 45.748 18.86406 5.47859∙106

0.131 0

0.313 0.212

0.508 0.388

0.717 0.576

1 0.828

54.39937355 54.744 22.60442 –1.23637∙108

0.109 0

0.257 0.175

0.416 0.354

0.585 0.537

0.761 0.745

1 0.838
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the stress cyclic nature, expression (21)can be rewritten in 
a modified form.

0
2

0
2

9 1
;

16 3

9 1 1
.

16 3

r

EH
W W

R

EH
W W

R

rr r

q rr r

  
s = +  r 


 s = +  r 

   (22)

If a plate has a constant thickness h=H0, then, according 
to (6), we obtain

( ) 2
2 1 ,

W
W W W r

rr = − λ −
r

where

( ) ( )1 1 .W AJ BIr  = λ − λr + λr 

Using these expressions and omitting the intermediate 
mathematical calculations, we shall obtain the estimation 
formulae from (22)
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where σ0=(9EH0)/(16R2); B/A corresponds to dependenc-
es (9). Note that since it follows from the recurrent formulae 
for the Bessel functions that
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then, for σr and σθ at ρ=0, we shall obtain the resulting val-
ues, that is,
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If one accepts σr(0)=σθ(0)=1, then A=3/2σ0λ2(B/A–1). 
With the help of (23) and data from Table 1, we built dia-
grams of the radial and tangential cyclical stresses (Fig. 4) 
for the main shape of oscillations of a circular plate of con-
stant thickness with a rigid attachment of the contour.

For a plate of the variable thickness h=H0(1+µρ)2, at the 
thickness ratios η=2 and µ=0.4142, we derived the solutions 
to (17), expressed through the variable x=ln(1+µρ). It is ad-
visable therefore to rewrite ratios (21) depending on a given 
variable x(ρ).

After the necessary transformations, we shall obtain
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Fig. 4. Graphic image of the radial and tangential normal 
stresses σr, σθ at the first shape of oscillations, if η=1

For the convenience of subsequent calculations, let us 
express Wxx through Wx and W=W1+W2 by using equa-
tions (14) and the solutions to (17). We obtain
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In the end, we shall obtain the estimation formulae 
from (24)
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With the help of formulae (25), after the transition to 
the variable ρ=r/R, we built diagrams of the radial and 
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tangential cyclical stresses (Fig. 5) for the main shape of 
oscillations of a solid plate of variable thickness with a rigid 
attachment of the contour.

Fig. 5. Graphic image of the radial and tangential normal 
stresses σr, σθ at the first shape of oscillations, if η=2

Fig. 4, 5 show the differences in the distribution of stress-
es σr and σθ, arising in the plates of constant and variable 
thickness when oscillating in the first shape.

8. Discussion of results of solving a problem for  
a solid variable-thickness plate

The fourth-order equation (1) cannot be solved under 
an arbitrary law of change in the thickness of a plate h(ρ). 
The current paper shows that the considered case for the 
thickness h=H0(1+µρ)2 makes it possible to apply a factor-
ization method to this equation. According to this method, 
the desired function W(ρ) is represented as the sum of the 
solutions to two second-order equations (5). This is an 
important result because the second-order equations are 
in any case easier to solve than a fourth-order equation at 
least by the series method. It is clear from the analysis of 
these equations that the possibility to solve them analyti-
cally is limited only to the case μ=0. In order to establish 
patterns of changes in the characteristics of oscillations de-
pending on the relative thickness of the plate η=h(1)/h(0), 
which is in turn dependent on the parameter μ, it is nec-
essary to solve the problem for a series of different values 
of μ. As an example, to compare such characteristics, the 
current paper has considered two cases, at μ=0 (η=1) and 
μ=0.4142 (η=2). 

First, the problem was solved about the oscillations of a 
rigidly clamped plate of the constant thickness (μ=0; η=1). 
The result was the calculated eigen numbers λi (i=1...6), 
the constructed oscillation shapes for λi (i=1,2,3), and 
the determined coordinates of the nodes and antinodes 
of oscillations. To compare the variants of the solutions, 
we next considered the problem of a variable-thickness 
plate’s oscillations at η=2, which corresponds to μ=0.4142. 
The symmetry method was used to solve equations at a giv-
en μ≠0. According to the method, replacing the variable 
coefficient D(x) with the equivalent function D1(x) over 
the required interval (Fig. 2) makes it possible to derive 
an exact solution to equations (5). It should be noted that 
because of the flexibility of the symmetry method, there 
are no rigid restrictions to select the D1(x) function. It 
can be expressed, for example, not only through the Bessel 
functions [18]. It is owing to the method of symmetry that 
an analytical solution and a frequency equation for η=2 
were obtained when the plate is rigidly clamped. Similarly 

to η=1, we calculated the eigen numbers λi (i=1...6), built 
the oscillation shapes for λi (i=1,2,3), and determined the 
coordinates for the nodes and antinodes of oscillations.

Based on the calculation of the oscillations for cases η=1 
and η=2, given in Tables 1, 2, and shown in Fig. 1, 2, one 
can note the following. The mutual comparison of fre-
quencies (numbers λi) shows that the natural frequencies 
at η=2 for i=1...6 increase significantly compared to the 
case of η=1, starting at 28 % (i=1) and gradually falling to 
19.9 % (i=6). The increase in the natural frequencies is a 
consequence of the increased rigidity for bending the plate 
at η=2, given that in this case the thickness in the center 
of both plates remains unchanged and is equal to h=H0. 
When comparing the oscillation shapes (Fig. 1, 3), one can 
see their similarity but the coordinates of the oscillation 
nodes (at i>1), given in the tables and visible in the figures 
indicate their quantitative difference. It consists, as one can 
see, of the differences in the length of the gaps between the 
nodes, respectively, at η=1 and η=2. The shorter this gap 
at the equal values of W(ρ), the greater the curvature of 
this function, and the greater, therefore, the curved radial 
stresses σr in the antinode between these nodes. One can 
see that the gaps between the nodes at η=2 are smaller 
than those at η=1, which is why one should expect such 
stresses to exceed, at η=2, the stresses at η=1. In addition 
to the above general considerations regarding the stresses, 
we analyzed the plate’s stressed state at η=1 and η=2 for the 
principal shape of oscillations. Using the estimation formulae 
derived from known ratios, we built the normalized diagrams 
of the radial σr and tangential σθ cyclic stresses (Fig. 4, 5). 
The mutual comparison of the σr, σθ values at ρ=0 and ρ=1 
shows the following.

There is an inequality σr(1)/σr(0)>1 in the plate of the 
constant thickness (η=1). In this case, the ratio is 1.02. If a 
plate is axisymmetrically thickened from the center to the 
clamped contour (ρ=1), the ratio σr(1)/σr(0) decreases, in 
particular, at η=2 (Fig. 5), it is 0.86. Since the main effect 
on the strength of the plate elements is exerted by σr, which 
is known from the experiments reported in [19, 20], con-
trolling the value of σr(1)/σr(0) by changing η is of practical 
importance. First, the possibility of a reasonable reduction 
of this value makes it possible to successfully study the 
strength of materials at the ratio of the principal stresses  
of σr(1)/σr(0)=1, because the destructive stresses would 
occur in the center. Comparing the course of the curves  
for σr in Fig. 5 for η=2 shows that, in comparison with Fig. 4, 
for η=1 there is a smoother change in σr the area adjacent to 
the attachment. This indicates a more favorable distribution 
of stresses in the case of η=2 because, in terms of strength, 
a danger zone, which is the attachment, is no longer sharply 
concentrated along the edge, as is the case for η=1. There-
fore, such a plate is more rational in terms of reliability and 
technical resource.

The procedure considered to solve the problem about 
the axisymmetric natural oscillations of a parabolic-profile 
plate with a rigid attachment imposes special conditions for 
the choice of the parameter η. A change in the magnitude of 
η may require a change in the approximation function (13). 
However, given the flexibility of the symmetry method, this 
procedure is feasible.

Further advancement of the current study may relate to 
a change in the boundary conditions along the contour of 
the plate and to extending the range for the parameter η≠1, 
which determines the concaveness of the plate.
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9. Conclusions

1. Through the factorization method, the original differ-
ential equation of the fourth order for the oscillation shapes 
of a variable-thickness circular plate has been reduced to 
a system of two second-order equations. The thickness of 
the plate changes according to the parabolic law h(ρ)= 
=H0(1+µρ)2. This intermediate result is crucial because, giv-
en the limited capabilities of the noted method, it cannot be 
implemented for any thickness h(ρ).

2. A problem about the oscillations of a rigidly fixed plate 
at μ=0, which corresponds to η=h(1)/h(0), has been solved. 
We have computed the eigen numbers λi (i=1...6), built the 
oscillation shapes for λi (i=1...3), and gave the coordinates of 
the nodes and antinodes of displacements.

3. A similar problem has been solved at μ≠0 for the case 
of η=2. We have computed and determined the oscillation 
parameters, similar to the case of η=1. The method of sym-
metry has been used to produce reliable results in an analyt-
ical form since, after the proper approximation of variable 
coefficients in the equations of the second order, a solution 
is obtained in a closed form. The oscillations parameters, 

established at η=1 and η=2, were compared. It was found, in 
particular, that the natural frequencies λi at η=2 for i=1...6 
essentially, by (28...19.9) %, increase compared to the case 
of η=1. It was noted that this increase is associated with an 
increase in the curved stiffness of the plate at η=2 compared 
to the stiffness at η=1 because the thickness at ρ=0 remains 
unchanged. We also performed a mutual comparison of the 
coordinates of nodes and antinodes of oscillations.

4. Based on our calculations, the diagrams of the radial σr 
and tangential σθ normal stresses arising in the plate at ax-
isymmetric oscillations on the principal shape have been built. 
A comparative analysis of the stressed state of the plate at η=1  
and η=2 was performed. For a plate of the constant thick- 
ness (η=1), it has been established that σr(1)/σr(0)=1.02>1; 
for a plate of variable thickness at η=2,  this ratio is 0.86<1. 
Since, as we established, the main effect on the strength of 
round plates is exerted by the radial stresses σr, controlling  
the value of σr(1)/σr(0) by changing η is of practical impor-
tance, for example, when testing materials for durability. 
There are also some qualitative differences in the course of the 
σr and σθ curves, respectively, at η=1 and η=2, which can affect 
operational reliability and technical resource.
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