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1. Introduction

In the last few decades, cancer is one of the most critical 
and deadly diseases all over the world. Cancer starts in the 
cell, which is the building block that forms tissues. Tissues 
can be found in any portions of the human body, involving 
the breast. Generally, cells are created and split each time 
the body needs them, for growing and surviving. When the 
normal cell becomes old, it shrivels until die, then new cells 
will be created. Occasionally, this process does not follow a 
normal way, some new cells are created when they are not 
needed anymore, and old cells don’t die to let the new cells 
to replace them. This uncommon creation of cells forms a 
chunk of tissue, also called a tumor, lump, or growth. Cancer 
formed in breast tissues is called breast cancer [1]. Because 
cancer leads to death, most of the countries around the 
world, especially the industrialized countries, have directed 
the efforts to the early detection of breast cancer, which will 
improve the chances of successful treatment. According to 
the World Health Organization (WHO), in 2015, there were 
(8.8 million) deaths of cancer. Furthermore, 27 million cases 
of cancer are expected before 2030. The recent existing stud-
ies assured that breast cancer represents 18 % of all kinds of 
female cancers and the 5th cause of death worldwide [2].

The exclusive rescue for reducing the fatality of breast 
cancer is concentrated on early detection and proper di-
agnosing. Within the medical field, finding an accurate 
tumor classification is a very significant responsibility. The 
techniques of machine learning are widely employed to de-
tect and classify various kinds of cancers since they provide 
accurate and high-performance results. These techniques 
can be vastly utilized for disease diagnosis in the medical 
field [3]. Therefore, the studies they are devoted to are of 
scientific relevance.

2. Literature review and problem statement

Breast cancer is a fatal disease that influences a con-
siderable proportion of females around the world. Early 
detection of this disease helps in healing as well as decreas-
ing the chance of death. X-ray mammogram is classified as 
the easiest and widespread technique for early detection of 
cancer. The radiologists might miss 10 % to 15 % of breast 
cancer tumors, so computer-aided diagnosis systems are 
used to take accurate decisions with reduced cost and time. 
The computer systems use various techniques and methods 
involving databases, machine learning, image processing 

6

INFORMATION AND CONTROLLING SYSTEM

Received date 09.06.2020

Accepted date 17.07.2020

Published date 31.08.2020

Copyright © 2020, Taha Mohammed Hasan, Sahab Dheyaa Mohammed, Jumana Waleed   

This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0)

DEVELOPMENT OF BREAST 
CANCER DIAGNOSIS 

SYSTEM BASED ON 
FUZZY LOGIC AND 

PROBABILISTIC NEURAL 
NETWORK

T a h a  M o h a m m e d  H a s a n
PhD	of	Computer	Science,		

Assistant	Professor,	Head	of	Department*
E-mail:	dr.tahamh@sciences.uodiyala.edu.iq

S a h a b  D h e y a a  M o h a m m e d
PhD	of	Computer	Science-Security,	Lecturer

University	of	Information	Technology	and	Communications	
Baghdad,	Iraq

E-mail:	sahab7dia@gmail.com
J u m a n a  W a l e e d

PhD	of	Computer	Science,	Assistant	Professor*
E-mail:	jumanawaleed@sciences.uodiyala.edu.iq

*Department	of	Computer	Science,	College	of	Science
University	of	Diyala

Diyala,	Iraq

Breast cancer is one of the most common kinds of 
cancers that infect females in the whole world. It has 
happened when the cells in breast tissues start to grow in 
an uncontrollable way. Because it leads to death, early 
detection and diagnosis is a very important task to save 
the patient's life. Due to the restriction of human observ-
ers, computer plays a significant role in detecting early 
cancer signs. The proposed system uses a multi-resolu-
tion analysis and a top-hat operation for detecting the 
suspicious regions in a mammogram image. The dis-
crete wavelet transform feature analysis is utilized for 
extracting features from the region of interest. Fuzzy 
Logic (FL) and Probabilistic Neural Network (PNN) 
are utilized for classifying the tumor into normal or 
abnormal. The differences between the proposed sys-
tem and other researches are the use of adaptive thresh-
old value depending on each image, by using Discrete 
Wavelet Transform (DWT) in both segmentation and 
feature extraction phases, which decrease complexity 
and time. Additionally, the detection of more than one 
tumor in the breast mammogram image and the utiliza-
tion of FL and PNN work on increasing the system effi-
ciency that led to raising the accuracy rate of the system 
and reducing the time. The obtained results of accura-
cy, sensitivity, and specificity were equal to 99 %, 98 %, 
and 47 %, respectively, and these results showed that 
the proposed system is more accurate than the other 
previous related works
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and data analysis tools to detect and diagnose breast cancer 
with high accuracy.

There are many researches that have been introduced in 
the breast cancer diagnosis field, some of them are described 
briefly as follows. In [4], an optimized Neural Network (NN) 
approach was proposed for classifying breast cancer tumors 
as benign or malignant. New processes of crossover and muta-
tion have been presented for reducing the devastating nature 
of these processes. This approach may represent a suitable 
approach only when the preferable structure of the NN is 
not known, or it is tough to reach the preferable structure 
utilizing the process of trial-and-error. The obtained accuracy  
was 98.52 % using the dataset of fine-needle aspiration. In [5],  
a technique of breast cancer detection using the models of 
image processing was proposed based on Artificial Neu-
ral Networks (ANN). Gray Level Co-Occurrence Matrix 
(GLCM) feature extraction is utilized for training ANN. The 
experiments were implemented on only forty-two mammo-
gram images, and the obtained accuracy was 87.5 %. In [6], 
an auto-detection technique depending on ANN was pro-
posed in which preprocessing is firstly done on the dataset of 
breast cancer, then, the obtained data are utilized as an input 
to the ANN for classifying the tumor as a cancerous or not. 
The results have achieved more than 90 % accuracy. In [7], a 
technique based on a Convolutional Neural Network (CNN) 
was presented to speed up the process of diagnosis for helping 
the specialists in abnormality detection. CNN is trained via 
enhanced mammogram images, then, the classifier presented 
a system for detecting the cancerous tumor, and this model re-
quired a few days to retrain. This technique was tested using 
322 mammogram images and provided a fast diagnosis time 
with 82.73 % accuracy. In [8], a breast cancer detection system 
based on the Law’s Texture Energy Measure (LTEM) meth-
od was presented. Backpropagation Artificial Neural Net- 
work (BPANN) algorithm is utilized for classifying the ma-
lignant, benign and normal tissue region. This technique pro-
vided accuracies of 94.4 %, 91.7 % and 66.66 % for normal-ab-
normal and benign-malignant classification, respectively. 
Further improvement should be satisfied in this technique by 
modifying the architecture and the number of nodes in the 
hidden layer. The study in [9] utilized the model of Bayesian 
Network (BN) and concentrated on utilizing the most signif-
icant features when collecting data, and this indirectly assists 
breast cancer oncologists to deal with a few features but may 
lead to losing some important features. The experiments were 
performed on datasets of clinical ultrasound and fine-needle 
aspiration cytology, and the highest achieved accuracies were 
92.98 % and 98.87 %, respectively. In [10], a knowledge-driv-
en feature learning and integration framework was proposed 
for distinguishing between malignant and benign lesions of 
the breast by utilizing multiple sequences of Magnetic Res-
onance Imaging. In this framework, several deep networks 
were constructed for extracting different subsequence fea-
tures. Additionally, a module of weighting was used to provide 
the integration for these extracted features. The experiments 
were performed on one hundred images, and the achieved 
accuracy was 85 % and according to the obtained result, the 
construction of this framework needs to be improved.

3. The aim and objectives of the study

The aim of this study is to introduce a hybrid approach 
for breast cancer diagnosis based on FL and PNN to help 

the specialists to specify suspicious regions in the breast 
mammogram images. 

To achieve this aim, the following objectives are set:
– enhance the mammogram image by removing the noise 

and increasing the brightness of suspicious regions;
– extract the important features to be beneficial in the 

stage of classifying the pattern;
– utilize the machine learning techniques to efficiently 

classify the masses in digital mammogram images;
– develop a model for diagnosing these masses as normal 

and abnormal for reducing the number of falsely classified 
cancers and increasing the accuracy of cancer detection and 
diagnosis.

4. Proposed system

This paper works on developing an efficient system that 
can accurately detect the tumors and classify them as normal 
(benign), or abnormal (malignant) from mammogram imag-
es. Fig. 1 shows the proposed system block diagram.

Fig.	1.	Proposed	system	block	diagram

As shown in Fig. 1, the first stage in this proposed system 
is preprocessing and enhancement, which involve removing 
the extraneous objects and noise, adjusting of contrast, and 
edge-enhancement. The second stage is segmentation, which 
is applied to detect suspicious regions. After that, the fea-
tures are extracted and selected by using Wavelet Transform 
feature analysis. The last stage is the classification process, a 
hybrid fuzzy inference system and PNN algorithm are used 
to determine the normal, benign, or malignant regions in 
the breast. 

4. 1. Preprocessing
This stage aims to decrease the number of objects in the 

mammogram image by extracting the relevant breast region 
and minimizing the area of the image to be examined. This 
stage starts with transforming the image into a binary image 
by using a global threshold to remove the extraneous objects 
(such as labels and wedges) from the digital mammogram 
image. In order to remove the labels and wedges, the physical 
area in a binary image of each object is calculated, and an 
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object with the largest area is considered the breast profile. 
Then all the objects are removed except the largest one. Af-
ter that, the area of the image is reduced by ignoring the sur-
rounding dark area to reduce the time taken for operations. 
The pectoral muscle part can be removed by utilizing a tech-
nique of modified region growing. The technique of seeded 
region growing is worked depending on the value of the cho-
sen pixel location and based on the selected seed point that 
can be chosen either adaptively or manually. In this system, 
the seed point is chosen automatically by taking into consid-
eration the mammography orientation. This process defines 
the neighboring pixels of the seed point and examines if the 
next pixels should be combined with the region or not. This 
process is repeated until completely extracting the ROI. 
Fig. 2 shows the main steps of the preprocessing stage.

Fig.	2.	Preprocessing	stage	block	diagram

The steps of the preprocessing stage can be summarized 
as follows:

– Step 1: Input mammogram image of breast cancer and 
calculate the global threshold (level), which can be utilized 
for converting the mammogram image to the binary image;

– Step 2: Count on the threshold, the mammogram im-
age is converted to a binary image;

– Step 3: Examine the set of areas associated with each 
connected object in the binary image;

– Step 4: Replace all pixels with zero except those in the 
range of the above index;

– Step 5: Multiply every pixel in the original image by 
the corresponding pixel in the resulted image;

– Step 6: After the removal of all extraneous objects, 
ignore all the dark areas by calculating the sum for ev-
ery column; if this sum equals “0”, do not transform the 
column to the new image; apply this process to all rows 
as well;

– Step 7: Remove pectoral muscle, and finally, the mam-
mogram image (breast profile) is obtained.

4. 2. Enhancement
To enhance the mammogram image, the noise should 

be removed and the brightness of suspicious regions 
should be increased. Fig. 3 shows the main steps of the 
enhancement stage.

This stage includes two steps: 
Step 1. Apply a Wiener filter of 3×3 mask and SNR equal 

to 0.2. The Wiener filtering is based on the consideration of 
images and noise as a random process and the function is to 
obtain an estimated f̂  of the uncorrupted image f in such a 

manner that the mean square error among them is reduced. 
The error measure is provided as follows: 

( ) ( ){ }22 , , ,e E f x y f x y = −  .    (1) 

Here, E{…} represents the predictable value of the ar-
gument. It is supposed that the image and noise are uncor-
related; that one or the other holds “0” mean; and that the 
gray levels in the estimation are levels linear function in the 
degraded image. 

( ) ( ) ( ) ( ), , , , ,g x y h x y f x y n x y= ∗ +    (2) 

( ) ( ) ( ), , , .x y w x y g x y= ∗    (3) 

Fig.	3.	Enhancement	stage	block	diagram

Since we have assumed that H is linear shift invariant 
and f is stationary, applying Fourier transform leads to 

   (4)

where Su is the noise power spectrum and Sx is the signal 
power spectrum.

Step 2. The process of Contrast Limited Adaptive His-
togram Equalization (CLAHE) is applied to the results of 
the first step. In this process, excessive amplification and 
noise amplification will overcome it by cutting the spikes 
and also improving the speed of calculation. The steps of 
CLAHE are: 

1. Divide the image into blocks. 
2. Calculate the intensity histogram of each contextual 

region. 
3. The derived graph to every block is cut and re-nor-

malized. 
4. The function of desired mapping is computed only in 

a sample of pixels and the function of mapping to the other 
pixels is found via approximating the functions of mapping 
related to the four adjacent blocks. 

5. The functionality of mapping is performed to obtain 
an improved image contrast.

4. 3. Segmentation
In this stage, the image is partitioned into a number of 

objects that have similar characteristics regarding a set of 
predefined criteria, or into constituent regions. Fig. 4 shows 
the main steps of the segmentation stage.

There are several steps in the segmentation stage:
– Step 1: Input the enhancement mammogram image 

and choose the global-local minima;
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– Step 2: The size of the image is standardized into a 
multiple of 4;

– Step 3: Applying a 2D wavelet decomposition;
– Step 4: Using the wavelet decomposition-based his-

togram-thresholding, and the threshold value is selected 
via applying 1D wavelet-based analysis of the histogram of 
wavelet transformed image at various channels;

– Step 5: Obtain the results from the binary image ac-
cording to the threshold segmentation image;

– Step 6: Obtain the results of the amplifier;
– Step 7: Utilize morphological filtering enhancement  

(top-hat operation) for reducing the occurrence of false objects;
– Step 8: Open operation is applied;
– Step 9: Return the fine segmentation results (suspi-

cious lesions region).

Fig.	4.	Segmentation	stage	block	diagram

4. 3. 1. Coarse segmentation
1) Wavelet Transforms: since tumor regions are mostly 

denser than normal surrounding tissue regions, in this work, 
the detection of suspicious regions is done by using adaptive 
thresholding based on the multi-resolution analysis in mam-
mogram images. The low-frequency sub-images at different 
resolutions can be obtained by applying the Daubechies 
wavelet (DB6) transforms two times. The detection is ob-
tained from the coarsest resolution to the finest resolution 
by utilizing the techniques of adaptive thresholding. A 
combination of two thresholding segmentation techniques 
(coarse and fine) is utilized for segmenting suspicious re-
gions in multi-scale images. Firstly, the coarse segmentation 
is used to obtain a rough representation of the localization 
of suspicious regions and, secondly, the fine segmentation is 
utilized for improving the rough representation to generate 
more accurate segmentation results.

2) Wavelet-based thresholding: the transformation of 
Daubechies wavelet is performed on the preprocessed image. 
A scaling channel is selected appropriately by utilizing the 
prior information related to the probable size of the target. 
The histogram is obtained after performing the wavelet 
transform. After that, a scale 1D db10 wavelet transform is 
performed. The local minima of the 1D wavelet transformed 
histogram at the chosen scale are calculated. The threshold 
value is chosen via utilizing the obtained local minima value. 
The next segmentation is given via utilizing the threshold 
value for obtaining the coarse segment ranges.

4. 3. 2. Fine segmentation
A mass pattern-dependent enhancement approach is 

designed by using an algorithm based on the properties of 

morphological filters. The algorithm is performed by dual 
morphological top-hat operations after subtraction takes 
place. These processes can be described as follows:

– Step 1: A top-hat operation is used to extract the tex-
tures that do not contain the information pattern of interest.

( ) ( ) ( )( )( )1 1, maximum 0, , , ,r i j f i j foB i j = −    (5) 

where f(i, j) indicates the original image, and r(i, j) indicates 
the residue image between the opening of f(i, j) via a certain 
structuring element “B1” and f(i, j). The size of this should be 
selected minimal than the suspicious regions size;

– Step 2: Make r2(i, j) become the mass model enhanced 
(via background correction) image: 

( ) ( ) ( )( )( )2 2, maximum 0, , , ,r i j f i j foB i j = −    (6) 

where B2 represents a chosen structuring element, which 
possesses a bigger size compared to the suspicious region;

– Step 3: Derive the enhanced image f1(i, j) as follows: 

( ) ( ) ( )( )1 2 1, maximum 0, , , .f i j r i j r i j = −     (7)

The Dual-morphological operation can be utilized for 
removing the noises of background and structure within the 
suspected mass patterns, enhancing the mass pattern, and 
also removing some structural noise inside the mass region, 
which in turn can improve the results of mass segmentation.

4. 4. Feature extraction
In this stage, a Wavelet Feature Extraction method is 

used to find the suspicious region that might contain a tu-
mor. Fig. 5 shows the feature extraction stage.

Fig.	5.	Feature	extraction	stage	block	diagram

The DWT is performed for the segmented parts obtained 
from the previous stage for extracting the features, which 
would be beneficial in the next stage. There are two filters 
that are used on the image along the rows and columns, a 
high-pass filter for high frequency (H) and a low-pass filter 
for low frequency (L).

4. 5. Classification 
PNN is presented in [9, 10] as an instance of the radial 

basis function-based model efficiently utilized for the 
problems of data classification. As a data classifier, it was 
drawn the researchers’ concentration in the data mining 
domain. It is possible to be applied in image classification 
and recognition, digital image watermarking, medical 
prediction and diagnosis, etc. PNN is a complex structure 
of a feed-forward neural network. It includes an input 
layer, a pattern layer, a summation layer, and an output 
layer. In spite of the complexity of PNN, it has a single pa-
rameter of training. This is a smoothing parameter for the 
probability density functions (PDFs), which are used for 
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the neuron’s activation in the pattern layer. Fig. 6 shows a 
PNN structure [11].

The input layer indicates the input vector and dimension 
for the number of features of the problem. The pattern layer 
(hidden layer) includes a neuron to every observation in the 
training dataset. The pattern neuron computes the Euclide-
an distance from the training sample (indicated via neuron) 
and the input feature vector, which is indicated as the feature 
vectors centroid of the class. The summation layer includes 
a neuron to every class the dataset indicates. The neurons 
in the summation layer compute the sum of the pattern 
layer neuron’s output for the particular class they represent 
(encompasses an average depending on the number of ob-
servations for the class). The output layer (decision layer) 
performs a winner-takes-all approach: it identifies the class 
neuron in the summation layer with the largest value. Then, 
this class indicates the predicted class for the input vector. 
The main advantage of the PNN represents the robustness 
to noisy images. PNN works on removing or adding training 
samples to the algorithm, also it gives examples of training 
that can be included with no extensive retraining [12].

Classification is an important step in the proposed 
system, in which the tumor is classified into benign or ma-
lignant. A Fuzzy Logic is used to give a label to an input 
image. PNN is a model of data classification that performs 
the Bayesian decision rule. This rule can be given by; When 
suppose that: 

1) there is a data pattern x∈Rn that is involved in one of 
the predefined classes g=1,..., G;

2) the x probability of belonging to the class g equals pg;
3) the cost of classifying x into the class g is cg; 
4) PDFs y1(x), y2(x),..., yG(x) for all classes are known. 

Then, regarding the Bayes theorem, when g≠h, the vector 
x is classified to the class g, if Pg Cg Yg(x)>PhCh Yh(x). 
Usually pg=ph and cg=ch, thus if yg(x)>yg(x), the vector x 
is classified to the class g. The main steps of this stage are 
shown in Fig. 7.

The steps of the classification stage are as follows:
– Step 1: Input the image with the tumor and extract 

features by applying the DWT. The tumor image is decom-
posed into four sub bands (LL sub band, HH sub band, LH 
sub band, HL sub band). Where apply DWT four times on 
the image and in each time select the LL and ignore the rest, 
the result is a feature of the image;

– Step 2: Apply the fuzzy logic system to give the label 
of the input image; from the beginning until the count of 
the shape; 

( ) ( ) ( )/ ,A j I Bi I Bi = ∪ ∩ ∑ ∑   (8)

where I denotes the input shape and B is the shape 
saved in the knowledge base;

( )maximum ,I Aµ =     (9)

where the result enters in the probabilistic neural 
network;

– Step 3: Apply the results of the fuzzy system 
as an input to PNN to be used for classification 
(normal, benign, and malignant).

– Step 4: Build the PNN and load the feature 
extraction data for NN training.

– Step 5: Compute the estimated PDF for each 
hidden node in the pattern layer.

– Step 6: Compute the sum of each node in the 
summation layer (summation of estimated PDF to 
every class).

– Step 7: Compute the probability to every class by di-
viding the sum of estimated PDF to every class over the sum 
of all estimated PDFs.

– Step 8: Compute the reference in the feature ex-
traction file.

– Step 9: Repeat from Step 5 until the end of the file, to 
obtain case is normal, benign, malignant.

Fig.	7.	Classification	stage	block	diagram

5. Experimental results

The dataset used in this proposed system is the Mam-
mographic Image Analysis Society (MIAS) Database (in-
cludes breast images for both sides (arranged in pairs films, 
where each pair represents the right mammograms (odd file 
name numbers) and left (even file name numbers) of a single 
patient) belonging to 81 patients, which means 163 images 
of size 1,024×1,024, each one belongs to one of normal, 
benign or malignant and distributed as: 80 normal images, 
40 benign images, and 43 malignant images. Furthermore, 
this dataset has adequate information for all mammography 
images wherever a class of the abnormality, character and 
location of the background tissue. 

The input mammogram image includes: a dark area 
(background), a label which is an extraneous object, a pecto-
ral muscle, and a breast profile, as shown in Fig. 8.

At the first step, the extraneous objects (labels) in the 
image must be removed, this is done by converting the mam-
mogram image to a binary image and calculating the area of 
each object. The breast profile will represent the largest ob-

 
 

 
 
 
 
 

  

Input Layer 

Pattern Layer        

Summation Layer 

                                                                     y1     y2           yn  

Output Layer                                     * = argmaxmum lL x y x 

x1   x2                          xn 

Fig.	6.	PNN	structure	[11]

 
  

Feature from 
mammogram image 

 
Applying fuzzy 

inference system 

 

PNN algorithm 

 
Diagnosis result (normal, 

benign, malignant) 



11

Information and controlling system

ject, so all the objects except the largest one are removed. Fi-
nally, the binary image resulting from the previous operation 
multiplies with the original image, as illustrated in Fig. 9.

Fig.	8.	Architecture	of	mammogram	image

 
 
 
 
 

a                                                b 
 
 
 
 
 
 
 

c                                                d 
 

Fig.	9.	Process	of	removing	labels:		
a	–	original	image, b	–	binary	image,		

c	–	extract	breast	profile,	d	–	multiplied	images,	c	with	a

To decrease the time of processing required for the stage 
of segmentation, the second step is to reduce the area of the 
mammogram image. This is done by extracting a region of 
interest from the image, this operation is performed by ig-
noring the dark areas (background).

Using the modified region growing technique assists in 
auto-selecting of the seed point for removing the pectoral 
muscle as shown in Fig. 10. The traditional selection of the 
seed point is adjusted depending on the image orientation. 
The dataset of mini-MIAS includes either right oriented 
images or left-oriented. Thus, the seed point is either right 
topmost or left topmost first non-zero pixel. The orientation 
of the image is obtained via dividing the image into half and 
calculating the non-zero pixels if left-oriented, the left part 
involves more pixels’ else the right part involves more pixels.

The mammogram image must be enhanced to remove 
the noise and to increase the brightness of the suspicious 
region. To achieve that, a number of methods should be used. 
Firstly, smoothing the image by applying a Wiener filter to 
remove noise, and, secondly, applying CLAHE for adjusting 
the brightness, as shown in Fig. 11.

The segmentation process performed on a suspicious 
region is presented on a (2) size of image scale since this can 
be more effectively used in detecting tumors in the mam-
mogram images, then for overcoming problems encountered 

when using wavelet transform mask the size is normalized 
to be a multiple of (4). Then a 2D wavelet transform is per-
formed on the normalized mammogram image for obtaining 
a robust edge and identifying strong variations included in 
the mammogram images as shown in Fig. 12.

a                                                 b 

Fig.	10.	Process	of	removing	background	and	pectoral	
muscle:	a	–	image	after	the	background	deletion,		

b	–	after	pectoral	muscle	suppression

                            a                                               b

Fig.	11.	Resultant	image	after	applying:		
a –	Wiener	filter;	b	–	CLAHE

Fig.	12.	Applying	2D	Wavelet	Transform

In this system, an automatic threshold value is chosen 
by using a 1D wavelet to select the global-local minima as 
shown in Fig. 13. Then the mammogram image is converted 
to a binary image according to this adaptive threshold.

Morphological filtering enhancement (top-hat opera-
tion) is used to achieve the fine segmentation, after that, an 
open operation is applied. Fig. 14 shows the obtained image 
after applying the coarse and fine segmentation.

In the feature extraction stage, the 2D DWT is imple-
mented for two levels to extract the important feature. The 
size of the image is reduced to 16×16, which contains the 
details of the tumor. And at the classification stage, a PNN 
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and fuzzy logic were devised, which, depending on the input 
variables, assists the prediction of the breast cancer type. 
To implement the network, 60 % of the data were exploited 
in the phase of network training, while the remaining 40 % 
were exploited in the phase of network testing.

Fig.	13.	Sample	of	the	adaptive	threshold

a 

b 
Fig.	14.	Image	after	applying:		

a	–	coarse;	b	–	fine	segmentation

Generally, the confusion matrix can be utilized for inves-
tigating the success and applicability degree of disease diag-
nosis and classification system. Four possible results can be 
obtained from the analysis of confusion matrices of disease 
diagnosis and classification: “TP” True Positive, “TN “ True 
Negative, “FP” False Positive, and “FN” False Negative, as 
illustrated in Table 1. 

Table	1

Confusion	matrix

Terms Result

TP 96

TN 85

FP 0

FN 2

Total 183

This confusion matrix supplies three indices that are uti-
lized for assessing the classification performance, as shown 
in Table 2.

Table	2

Classification	performance

Terms Eq. Result

Accuracy (TP+TN)/Total 0.99

Sensitivity TP/TP+FN 0.98

Specificity TN/TN+FP 0.47

Here, sensitivity indicates the precision of the system 
in diagnosing the malignant type, specificity indicates the 
precision of the system in diagnosing the benign type, and 
accuracy is the proportion of all truly diagnosed cases.

6. Discussion of the proposed system

The proposed system was based on the available data of 
183 cases of patients with breast cancer that were stored in 
UCI DBSM. 9 clinical variables were exploited as the net-
work inputs, wavelet transform resulted in 16×16 size of the 
image, and the initial weight was determined by the fuzzy 
logic system.

The classification and pattern recognition represents 
the main stage in the proposed system, where 60 % of the 
data (110 cases) were utilized for neural network training. 
In order to perform PNN in Matlab, an input matrix was 
generated consisting of 16×16 rows and 110 columns, and 
another matrix was generated as the target matrix with 
two rows (two kinds) of benign and malignant tumors and  
110 columns. 

The data inputting to the network were normalized 
by the linear method for representing the binary values 
of zero and one. Two classes were included in the target 
matrix: benign and malignant. When the type of cancer 
matched the class of the column in the query, the value 
that corresponds to the row would be one, and the other 
would be zero. Within the proposed PNN, only one epoch 
was utilized to train the network, which represents the 
usefulness of neural networks compared to the other types 
of networks. Furthermore, 40 % of the data (73 cases), 
and these data had not been utilized in the phase of train-
ing, were implemented as a vector to the implemented NN 
in the software.

In the proposed system, one of the major causes for 
obtaining high sensitivity and specificity for the network 
could be related to the normalization of the input vector 
and the suitable chosen of the network for the functional 
purposes of the research. The proposed system results have 
been compared with several previous related works, as 
shown in Table 3.

From the above comparison, we found that the proposed 
system is more accurate than the other related works. 

For future works, several improvements can be carried 
out in this work, such as the implementation of the proposed 
system on different datasets from different resources, and 
the utilization of a hybrid of multi-resolution analysis with 
unsupervised learning for improving the performance of the 
segmentation step.
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8. Conclusions

1. To enhance mammogram images, the winner filter 
is used, which represents so efficient filter to remove noise 
from the image, also, the CLAHE is used to deal with the 
low contrast images. 

2. Extracting significant features by using the Discrete 
Wavelet Transform method represents an important stage, 
where the results of this stage assist in classifying the mass 
efficiently.

3. Choosing effective classifying techniques, supervising 
the experiments and observing the results of the techniques 
that are used in this paper played a very significant role in 
increasing the efficiency of the system that led to raising the 
system accuracy. 

4. Owing to the good generalizability and high process-
ing speed of PNN, it seems to be more effective than other 
NN systems, wherein this network, the process of training 
includes only one epoch and no other replication is required 
for modifying the weights.

Table	3
Comparison	with	some	related	works

Author/(s) name,  
Ref., Year

Classification  
Techniques

Datasets
Training – 

Testing Ratio
Accuracy

A. Bhardwaj et al.,  
[4], 2014

Genetically Optimized 
Neural Network (GONN)

Wisconsin breast cancer dataset available  
(699 instances) from the UCI Machine Learning 

Repository
90–10 % 98.52 %

Saini and R. Vijay,  
[5], 2015

ANN
42 Mammogram samples obtained from a consultant 

radiologist
90–10 % 87.5 %

S. Naranje,  
[6], 2016

ANN 51 Digital Mammogram X-ray Images Dataset (MIAS) 50–50 % 90 %

Y. J. Tan et al.,  
[7], 2017

CNN
Mini-Mammographic Image Analysis Society  

(mini-MIAS) database
– 82.73 %

I. Routray, and  
N. P. Rath, [8], 2018

ANN MIAS database 70–30 % 84.25 %

Shuo Liu et al.,  
[9], 2018

Bayesian Network (BN)
Clinical ultrasound and Fine-needle aspiration  

cytology datasets
60–40 %

92.98 % and 
98.87 %

Hongwei Feng et al.,  
[10], 2020

Deep Networks
100 MRI images for female patients at a high risk of 

breast cancer
60–40 % 85 %

Proposed system FL and PNN Mini-MIAS database 60–40 % 99 %
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