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Y oaniii po6omi smma%eui Mce:moau cmpyxkmypro-napa-
Mempuunozo cunme3sy i KiHeMAMU4HO20 aHANi3y napaneiv-
H020 MAHINYASAMOPA 3 MPLOMA CMYNEHAMU C60000U, Wi NPa-
wroe 6 yuninopuuniii cucmemi xoopounam. Ileii napanenvrui
Maninynsmop eidnocumvcs do xaacy RoboMech, ockinviu
6iH NPauloe 3a 3a0AHUMU 3AKOHAMU PYXi6 PoDOH020 Opeany
i npueo0die, wWo CNPowYe cucmemy YnpasaiHHs i NOKPAUYE
ii ounamixy. Iapanenvri maninyasmopu xaacy RoboMech
npaylooms 3 NeGHUMU CMPYKMYPHUMU CXeMamu i zeome-
mpuunumu napamempamu ix aanox. Pozensmymuii napa-
NeNbHUL MAHINYAAMOP POPMYEMbCA WNAAXOM 3’€OHANHS
BUXIONOT MOYUKU 3 OCHOBO10 3 BUKOPUCMAHHAM 00HIET naAcue-
HOi i 080X AKMUGHUX 3AMUKAIOUUX KIHEMAMUMHUX JIAHUI0ZI6
(BKJI). Macuenuii 3KJI mae nyavosy cmynins c60000u i 6in
He HaK1a0ae zeomempunHuil 36 130K HA PYX BUXIOHOT mouKu,
momy zeomempuuni napamempu aanox nacuénozo 3KJI eine-
Ho eapitoromocs. Axkmueni 3KJI maromo axmueni kinemamuy-
Hi napu i 60HU HAKAAOAIOMb 2€0MeMPUIHI 36 A3KU HA PYX
euxionoi mouxu. I'eomempuuni napamempu JaHOK AKMUB-
nux 3KJI suznauaromocs Ha 0CHOBI anpoKCUMAUliHUX 3a0a4
Yebumescokozo i Keadpamuunozo nadauxcens. /s upozo
CKIA0EHO PIBHAHHA 2€0MEMPUHHUX 36 °A3K16 Y 6UNA0L PYHK-
Ul 36ANCEHUX PIZHUUD, AKI NPEOCMABIIEH] Y 6U2A01 Y3A2Alb-
nenux (Yebumescorux) noninomis. Lle npuzeooums do niniii-
HUX imepauiinux 3aoax.

Bupiweni npama i 360pomna 3adaui xinemamuxu 00¢io-
JHCY6AH020 NAPaAIENLHOZ0 Maninyasmopa. Y npamii 3adaui
KiHeMamuku 3a 300aHUMU NOJIONHCEHHAMU GXIOHUX TAHOK
susHaueni Koopounamu 6uxionoi mouxu. Y zeopommiii 3adaxi
Kinemamuxu 3a Koopounamamu 6uxionoi mouxu 6usHa-
4aromocs nonodcenns éxionux aanox. Ilpsma i 36opomna
3a0aui Kinemamuxu 00CAI0IHCYBAH020 NAPANETLHOZ0 MAHINY -
AAMOpPa 3600AMbCA 00 piwiens 3a0ayu NPo NOJNoNCeHHs 0iad
Cunveecmpa. Ilpedcmasaeni wucenvii pesyaivmamu cmpyx-
MypHO-napamempuunozo cunmesy i KiHeMamuuHozo anaii-
3y po3enanymoz0 napasnenviozo mawinyasmopa. Yucenvhi
pe3ynvmamu KineMamuunozo anaizy noKasyiomo, wo Max-
cuMabHe 6I0XUNEHHA PYXY 6UXIOHOT MOUKU 610 OPMO2OHATL-
Hux mpaexmopii cmanosums 1,65 %

Kmouosi crosa: napanenvnuii maninyasmop, RoboMech,
yuninopuuni cucmemu xoopounam, Yeouwescoke i xeaopa-
muHe HAOUNCEHNS
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1. Introduction

Existing methods of designing both serial and parallel
manipulating robots are mainly reduced to solving the
inverse kinematics problem, i.e. determining the laws of
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movements of manipulator actuators according to the speci-
fied laws of movements of end-effectors, followed by the de-
velopment of control systems. At the same time, manipulator
actuators usually operate in controlled modes of intensive
accelerations and decelerations, which worsens their dynam-
ics and reduces efficiency.



Mechanisms, as well as manipulating robots, are de-
signed to move end-effectors according to the specified laws
of movements. However, in mechanisms, unlike manipu-
lating robots, the laws of movements of the actuators are
set (usually monotonously and evenly). Therefore, setting
the laws of movements of the actuators of the designed
manipulators, along with the specified laws of movements
of the end-effectors, improves their dynamics and increases
efficiency. In addition, setting the laws of movements of the
actuators significantly simplifies the control system of the
designed manipulators.

Parallel manipulators, i.e. manipulators with closed
kinematic chains, which possess the property of manipulat-
ing robots as the manipulation of moving output objects in
accordance with their laws of movements and possess the
property of mechanisms as setting the laws of movements of
actuators, are called parallel manipulators of a RoboMech
class [1-3]. In simultaneously setting the laws of movement
of end-effectors and actuators, parallel manipulators of a
RoboMech class work under certain structural schemes and
geometric parameters of the links.

2. Literature review and problem statement

The basis for the structural synthesis of planar mech-
anisms is proposed in Assur [4, 5], according to which the
mechanism is formed by connecting to the input link (ac-
tuator) and the base of structural groups with zero degree
of freedom (DOF). These structural groups are then called
Assur groups. The Assur groups or Assur kinematic chains
based composition principle for planar mechanisms is ex-
tended for spatial mechanisms [6].

The structure of serial manipulators consists of a ma-
nipulator arm, which represents an open kinematic chain
with three DOF, and a wrist mechanism with three DOF.
The arm of the manipulator delivers the wrist mechanism
to the specified position of space, and the wrist mechanism
provides the orientation of the gripper.

In a parallel manipulator, the positioning and orien-
tation of the end-effector are performed by a single mech-
anism, which is a complex closed kinematic chain with
numerous types of kinematic pairs. The simplest and most
common method of structural synthesis of parallel manip-
ulators is to determine their structural schemes (architec-
ture) by a given number of DOF, links, and kinematic pairs
using the Grubler-Kutsbach formula or criterion [7]. This
formula establishes a relationship between the number of
DOF of the manipulator with the number of links, kine-
matic pairs, and their mobility, as well as the dimension of
the space in which the manipulator operates. In general,
the type synthesis of parallel manipulators requires a con-
dition, including the moving characteristics and DOF of
terminal components. Before that, it is essential to have
a mathematical description of the motion of components.
Only in this way, the DOF of the components (or the ma-
nipulator) can be acquired correctly. On this issue, several
systematic mathematical approaches have been proposed
for the type synthesis of parallel manipulators, such as the
methods based on the screw theory, on the theory of differ-
ential geometry, on the theory of linear transformation, on
the displacement group theory, on the single-open-chain
units. A review of research on the synthesis of types of par-
allel robotic mechanisms was made in [8].

In kinematic synthesis (dimensional or parametric
synthesis) of mechanisms, with their known structural
schemes, the geometric parameters of the links are deter-
mined according to the given laws of motions (or discrete
positions) of the input and output links. Depending on the
type of movements of the output links, kinematic synthesis
of mechanisms is divided into the kinematic synthesis of
function-generating, path-generating and motion-gener-
ating mechanisms. The function-generating mechanism
generates a required functional relationship between the
displacements of its input and output links. The path-gen-
erating mechanism generates a given path of its output
point on a floating link. The motion-generating (or rigid
body guidance) mechanism generates the given motion of
the output link.

Generation of the specified movements of output links
can be performed exactly and approximately. Exact re-
production of the required movements of a rigid body by
linkage mechanisms is possible with a limited number of
positions, depending on the structural scheme of the mech-
anism-generator, while the possibility of their approximate
reproduction is not limited to the number of specified
positions.

Exact methods for synthesis of mechanisms or called
geometric methods, for the synthesis of mechanisms
are based on kinematic geometry. The fundamentals of
kinematic geometry for finite positions of a rigid body
in a plane motion were developed by Burmester and for
finite positions of a rigid body in space were developed
by Shoenflies. Burmester in [9] developed the theory of
a moving plane having four and five positions on circles.
Shoenflies in [10] formulated theorems on the geometrical
places of points of a rigid body having seven positions
on a circle and three positions on a line. The graphical
methods of Burmester and Schoenflies theories received
an analytical interpretation, which is summarized in the
monograph [11].

Geometric methods of mechanism synthesis are clarity
and simple. However, these methods are applicable only
for a limited number of positions. Moreover, the algo-
rithms for solving problems using these methods depend
significantly on the number of specified positions, and
their complexity increases with the number of positions.
Approximation (algebraic) methods of mechanism synthe-
sis are devoid of these disadvantages.

Problems of approximation synthesis of mechanisms
were first formulated and solved in [12]. Least-square
approximations are the most widely used in the approxima-
tion synthesis of mechanisms. For the development of this
method, a new deviation function-a weighted difference
with a parametric weight, proposed in [13], was important.
In contrast to the actual deviation, the weighted difference
can be reduced to linear forms (generalized polynomials).
This makes it quite easy to apply linear approximation
methods to the synthesis of mechanisms. This eliminates
the limit on the maximum number of specified positions of
the moving object.

Combining the main advantages of geometric and
approximation methods, a new direction-approximation
kinematic geometry of mechanism synthesis was formu-
lated. It studies a special class of approximation problems
related to the definition of points and lines of a rigid body
describing the constraint of the synthesizing kinematic
chains. In the works [14, 15], the basics of approxima-



tion kinematic geometry of the plane
and spatial movements are present-
ed, where circular square points [14]
and points with approximately spher-
ical and coplanar trajectories [15] are
defined, which correspond to binary
links of the type RR, SS, SPy. Fur-
ther, in the works [16, 17], the concept
of discrete Chebyshev approximations
was introduced for the kinematic syn-
thesis of linkage mechanisms. Theo-
rems characterizing the Chebyshev
circle and straight line in plane mo-
tion [16] and the Chebyshev sphere
and plane in spatial motion [17], as
well as iterative algorithms for deter-
mining Chebyshev circular, spherical
and other points based on minimizing
the limit values of the weighted differ-
ence are formulated.

Similar studies on the kinematic ge-
ometry of the plane and spatial motions
were given in [18]. In [19-21], six-bar
linkages for function motion and path
generation by means of polynomial ho-
motopic continuation algorithms were
synthesized.

The literature review shows that the structural and
kinematic synthesis of the designed manipulator is carried
out separately. At the same time, it is possible that the
geometric parameters of the synthesizing parallel manip-
ulator links of the considered structure may not provide
the required laws of motions of the output object. There-
fore, it is advisable to carry out kinematic synthesis in
conjunction with the structural synthesis of the designed
manipulator.

3. The aim and objectives of the study

The aim of the research is the structural-parametric syn-
thesis of a RoboMech class parallel manipulator with three
DOF, operating in a cylindrical coordinate system.

To achieve this aim, the following objectives are set:

— to develop the method of structural synthesis;

— to develop the method of parametric synthesis;

— to solve the direct and inverse kinematics problems;

— to carry out a numerical experiment to assess the reli-
ability of the results.

4. Structural synthesis

Let be given N and M values of the coordinates Xp; (i=
=1,2,..,N), and Yp; (j=1,2,..., M) of the point P along the
axes X and Y, respectively, and K values of the angle 0, (k=
=1,2,..,K) around the axis Y in a cylindrical coordinate
system (Fig. 1). It is necessary to determine the structural
scheme and geometrical parameters of links of a RoboMech
class parallel manipulator with three DOF, in which each
actuator reproduces these three types of the end-effector
movements.

Fig. 2 shows the block structure of the formed parallel
manipulator.

Fig. 1. Parallel manipulator with 3 DOF

According to the developed principle of the formation
of mechanisms and manipulators [1], this parallel manipu-
lator is formed by connecting the output object (point P) to
the base using three closing kinematic chains (CKC): one
passive ABP and two active CDE and FGH in the following
sequence: firstly, the point P is connected to the base using
the passive CKC ABP, reaching all the specified positions
of the point P along the OX and OY axes, then we connect
the active CKC CDE whose active kinematic pair C repro-
duces the coordinates Yp; along the vertical lines, lastly, we
connect the next active CKC FGH, whose active kinematic
pair F reproduces the coordinates Xp; along the horizontal
lines. The rotation on the angle 0 is carried out by rotating
the entire manipulator around the axis OY.

Output
object (“P”)

Base

Fig. 2. Block structure of the parallel manipulator
with 3 DOF

5. Parametric synthesis

According to the block structure of the formed parallel
manipulator, its parametric synthesis is carried out on the
basis of the parametric synthesis of the CKC in the following
sequence: firstly, the passive CKC ABP, secondly, the ac-
tive CKC CDE, and thirdly, the active CKC FGH. Since the
passive CKC ABP does not impose geometrical constraints



on the movement of the output object (point P), its synthesis
parameters p,=[,;,l;,] are chosen arbitrarily, taking into
account the conditions

|lAB - lBPl < Pmin> lAB + pr = Prnax> (1)

where p is the variable distance between the points A and P,
l4p and [gpare the lengths of the links AB and BP.

For the parametric synthesis of the active CKC CDE,
the coordinate system Cx,y, is fixed to the active joint C,
whose Cx, axis direction shows the angle @,; of rotation
of the input link 3. The coordinate system Bux,y, is fixed
to the point B of the passive CKC ABP, whose Bx, axis
directions coincide with the direction of the link BP. Co-
ordinates X, Y, of the origin B and the direction of the
axis Br, of the coordinate system Br,y, are determined
by the equations

X 5 COSQ 45,
=Ly . ) )
YBI] SINQ 4,
YP _YB
=t -1 [ if , 3
¢, =18 (XPU_XBX/) 3
where
Y, lf\P +l/2m _llzsp
Q. =tg ' —tcos A A8 PP %)
“ XPZ-7 AP, 'ZAB
The signs “+” and “~” in the equation (4) are chosen

depending on the assembly of the CKC ABP. Then the
synthesis parameters of the active CKC CDE are X, Y,
Xy V5 Xy Vi L where X, Y, xp”, vy, ap?, v
are the coordinates of the joints C, D, E in the absolute
coordinate system AXY and in the local coordinate sys-
tems Cx,y, and Bx,y,, respectively, [, is the length of
the link DE.
Let denote these synthesis parameters by the vector

= 3) B ,.(2) L (2) T
Pz_[Xcv Yo, 57, Y5 X5 Y ’ZDE] ,

and write a CDEBC vector loop-closure equation
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Eliminating the unknown angle O pp), from the equa-
tion (5) we obtain

[ReT(0, )18 =Ry ~T(oy )i | =130 ()

Equation (6) is the equation of the geometrical con-
straint imposed by the active CKC CDE on the motion of the
output point P. The problem of determining the geometrical
parameters of the links at which such geometrical constraint
is approximately realized is the problem of parametric syn-
thesis of the active CKC CDE.

The left side of the equation (6) is denoted by Ag,;, which
is a weighted difference function

_ _ 2
AChij = [Rc + F(‘st )rz()g) - RBU _F((pZij )rb('z)] _lzzw- @)

The geometrical interpretation of function (7) is the de-
viation of the trajectories of the joints D and E from circles
with centers in the joints D and E and the radius /,,, and
the minimization of this function is the connection of the
planes Cx,y, and Bx,y, by the binary link DE of type RR,
where R is a revolute joint. After transformation the equa-
tion (7) and the next change of variables
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the function Ag,; is represented as the linear forms by groups

of synthesis parameters p{?
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The linear representability of function (9) allows to
formulate and solve the Chebyshev and least-square approx-



imations for parametric synthesis [11]. In the Chebyshev
approximation problem, the vectors of synthesis parameters
are determined from the minimum of the functional

S (") = max|agi” () > mins® (o). (D)
i=L,N o)

ij
j=1.M

In the least-square approximation problem, the synthesis
parameter vectors are determined from the minimum of the
functional

50()= 3 3 [aa () mins® (ps"”).

=1 j=1

(18)

~

The linear representability of the equations (7) in the
form (9) allows to use the kinematic inversion method,
which is an iterative process, at each step of which one group
of synthesis parameters p$® is determined to solve the Che-
byshev approximation problem (17). In this case, the linear
programming problem is solved. To do this, we introduce a
new variable p’=g¢, where ¢ is the required approximation
accuracy. Then the minimax problem (17) is reduced to the
following linear programming problem: determine the min-
imum of the sum

o=c" x> ming, 19)
with the following constraints

W'} x+hy; 20, K" -x —hy; >0, (20)
where

e=[0...04]", x=[p",p ] by =[-g.05]', 1)

h” = [g;’k)’o'S]T’ By = 8oy (22)

The sequence of the obtained values of the function S®
will decrease and have a limit as a sequence bounded below,
because S®(p{?)=0 forany p.

Let consider the least-square approximation problem (18)
for the synthesis of active CKC CDE. The necessary condi-
tions for the minimum of functions (18) with respect to the

parameters ps?

oS
y —
apék) - (23)
lead to the systems of linear equations
H®. p§k> =h®, (24)
where
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Solving these systems of linear equations for each group
of synthesis parameters for given values of the remaining
groups of synthesis parameters, we determine their values

p;k) — H(k)i1 _h(k), (27)
at det(H®)#0. If det(H®)=0, then the revolute kine-
matic pair is replaced by a prismatic kinematic pair.

It is easy to show that the Hessian of the matrix H® is
positively defined together with the main minors. Then the
solutions of the systems of linear equations (25) correspond
to the minimums of the functions S®. Thus, the least-square
approximation problem (18) can be solved by the linear iter-
ation method, at each step of which one group of synthesis
parameters ps¥ is determined. The sequence of values of
the functions S® will be decreasing and have a limit as a
sequence bounded.

Let consider the parametric synthesis of the next active
CKC FGH. To do this, the coordinate system Fx,y is fixed
to the active joint F whose axis Fx,; shows the angle ¢, of
rotation of the input link 5, and the coordinate system Dx,y,
is fixed to the point D of the first active CKC CDE, whose
axis Dx, is directed along the link DE. Then the synthesis
parameters of the active CKC FGH are X,, Y,, x5, y,
xP, yP, L, where X, Y, x§, 49, 2P, y{P are the
coordinates of the joints F,G,H in the absolute coordinate
system AXY, in the local coordinate systems Fx.ys, Dx,y,,
respectively, /., is the length of the link GH. We denote
these synthesis parameters by the vector

T
— ) () (4 (4)
pB_[XF’YF’xG Yo Xy Yy YIGH] .

Let write an FG HDE vector loop-closure equation

EF +r((p5i)r<§5) +l(GH)l, =RDJ +r((p4i)rf(14)’ (28)

where

T
)

R, :[XF’YF]T’ 1 :[x((f)vy((j)]T’ ED, =[XD,7YD/]

~|

T
Gy, = [l(;u COSQ ), gy sin Pem, :I ,

T
“4) [ 4 (D) (%)
Iy _[XH Yy

r(<|>5i)=[sin(pp

F((p )_ CosQ,,; —sinQ,
W sing,;  cosqy |

COS®P;; —Sin (PSi:|
’

COS Q;;

Eliminating the unknown angle @, from the equation

(28) yields
_ R 2

I:(RF + r((p5i)r(§.)) - RD,/ _r((p4ij)r1(14)] - léu =0. (29)

Equation (29) is the equation of the geometrical con-
straint imposed by the active CKC FGH on the motion of the
output point P. The problem of determining the geometrical
parameters of the links at which such geometrical constraint
is approximately realized is the problem of the parametric
synthesis of the active CKC FGH.

The left side of the equation (29) is denoted by Ag,,;,
which is a function of the weighted difference
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The geometrical interpretation of function (30) is the
deviation of the trajectories of the joints G and H from
circles with centers in the joints G and H and the radius
loy, and the minimization of this function is the connec-
tion of the planes Fr,y, and Dx,y, by the binary link GH
of type RR.

After transformation the equation (30) and the next

change of variables
MR ISRl
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Further, the parametric synthesis of the active CKC FGH
is carried out similarly to the parametric synthesis of the
considered active CKC CDE by the Chebyshev and least-
square approximations.

6. Direct kinematics

In direct kinematics, values of the angles ¢3; and ¢s; of
the manipulator input links 3 and 5 are given, it is necessary
to determine the coordinates X, and YP of the output
point P. In this case, the structural formula of the manipula-
tor has the form

1(5) = 11(6,4) < 1(3)
\2 37)
11(1,2).
Consequently, in the direct kinematics, the position
analysis of the group II (6,4) is first solved, then of

the group II (1,2). To solve the position analysis of the
group 11 (6,4), we derive a GHD vector loop-closure equation

IGHCG,] _lDHe(DH),J _Z(GD),] e(GD),J :0’ (38)
where [ denotes the modules of vectors, and e denotes their
unit vectors. In the equation (38), the module and direction
of the vector GDj; as well as the module of the vector DH
are determined by the expressions

1
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L, :[(XD -X,) +(YDJ—YG,)] : (39)
YD Y(’
Oom, =18 (40)
P XD XG
2 2 1
Lo = + 9 A1)

Coordinates of the joints G and D in the equations (39)
and (40) are determined by the expressions

XG’ = X 4 C?S(Psi —sing;; (5) ’ “42)
Y(;, Y, SInQ;;  COSQs; y(cs)
ij _ X, N c.osq)Sj —sinQ,; x(:) 43)
YD, Y. SINQ;;  COSQP3; ?/E) )

__To determine the unknown direction of the vector
(GH);, we transfer the vector [p,e (om, 10 the right side of
the equation (38) and square its both sides

léH +l(2(;1)),j _2IGHZ(GD)”. COS((P(GD) —Q, ) IDH’ (44)
and obtain
ZCZJH + Z(ZGD) - IIZDH
Ps, = Peeny, +cos T —— (45)

2ZGHI(GD)U

Direction of the vector (ﬁ)” is determined by the

equation
Y, -Y,
— -1 Hy D;
Oomy, =18 XHV _XD/', (46)
where

X X, COS Pg;
H; _| e +l(;1 6ij (47)
Y"U YG[ sin (pGy
Let consider the position analysis of the group II (1,2).
To do this, we derive an ABE vector loop-closure equation

(48)

lABe1U +lBEe(BE)U _Z(AE),J Cun), = 0,

where the module and direction of the vector ( E)l] are
determined by the expressions

1
_(vy2 2 \2
lae, =X, +Y2 )

(49)
Pary, = tg_1i- (50)
(AE); X

E;

Coordinates of the joint E in the equations (49) and (50)
are determined by the expressions



X, X, oS @, o
Y, | |V | " sine,, G
where
W
Qs = Peomy, -tg ' yg;) . (52)

To determine the unknown direction of the vector (E)i].,
we transfer the vector /y.e; to the right side of the equa-
tion (48) and square its both sides

1/213 +I(ZAE)1, _2IABZ(AE)U Cos((p% O, ): I§E -
and obtain
12 4 ]? 12
@1, =Py +Cos’1w .
AB (A]_")

Direction of the vector (BE)ij is determined by the

equation
YE _YB
Qo =t L0, (55)
(BE),/ XEV _XBU
where
X cosQ, .
[YB,J]%B[ , q’"’]. (56)
B, SIN @,

Then the coordinates of the output point P are deter-
mined by the equation

X,,U Xﬁ.j COSQpy,
= | ) (57)
YPU YBU SINQ ),
where
w2
Pwp), = Pese), _tgﬁ~ (58)
E

In the equation (58) x{* and y{» are the coordinates of
the joint E in the local coordmate systems Bx,y,.

7. Inverse kinematics

In inverse kinematics, values of the angles @; and ¢; of
the input links CD and FG are determined on the given coor-
dinates XP , Y, of the manipulator’s output point P. In this
case, the structural formula of the manipulator has the form

11(1,2) — [1(3,4) — 11(5,6). (59)

Therefore, in the inverse kinematics, the position analy-
sis of the group II (1,2), I (3,4), and II (5,6) are successively
solved. To solve the position analysis of the group 11 (1,2), we
derive an ABP vector loop—closure equation

ZABeL] +IBPe2” _I(AP)” €ap), =0, (60)
where the module and direction of the vector (E)l] are
determined by the expressions

Lum, =(X3 +77) (61)
P, =~ (62)
(apy; X,

i

To determine the unknown direction of the vector (AB)l],
we transfer the vector prez to the right side of the equa-
tion (60) and square its both sides

1/2113 + l(ZAP)U - ZZABZ(AP)” COS((PL, _(P(AP),, ): lrzsp (63)
and obtain
Byt 2y, ~ 12
mgmmﬁwfﬁ%%?—f (64)
AB"(AP);

Direction of the vector (BP)Z.]. is determined by the

equation
Y,
F B
¢, =tg—"—7—, (65)
% X, =X,
where
X cos
g, | (66)
YB” sm(pw

To solve the position analysis of the group II (3,4), we
derive a CDE vector loop-closure equation

ICDeSj +lDEe4L, _I(CE),»J e(CE)f, =0, (67)
where the module and direction of the vector (C_E)l/ are
determined by the expressions

2 212
ew, =[(XEV—XC) (v, —YC)] : (68)
Y, -Y,
O, =18 (69)
(CE)V XEXJ —XC

Coordinates of the joint E in the absolute coordinate
system AXY in the equations (68) and (69) are determined

by the expressions
XE” XBU CoSQ,; —sin@,, (2)
= +
Yy Y, Sing@,;  Cos@P,; yf)
To determine the unknown direction of the vector (@)i

in the equation (67), we transfer the vector /,.e,; to the
right side of the equation and square its both sides

(70)

Ie +l(2u:), 2lCDl(CE)U COS((p(CD) (p(ur)v) e (71)
and obtain
2o+, =0
Py, = P, —cos ' 2By DE (72)

2ZCDI(CE),/

Then the angle 0,
the equation

of the input link 3 is determined by

(3)

0y =Py, +8 225 (73)
Xp



Direction of the vector (ﬁ)lj is determined by the

equation
YE _YD
=tg—L—2 74
0, =18 X, X, (74)
where
Xy, [x. N Cos @, .
Y, |y sing, | (75)

To solve the position analysis of the group IT (5,6), we
derive an FGH vector loop—closure equation
(76)

lFGe(FG)‘ +l(GH),je6 _l(FH),je(FH)i, =0,

ij

where the module and direction of the vector (ﬁ)y are
determined by the expressions

1

2 273
l(FH)@, :[(XHU _XF) +(YH,/ _YF) :I ) a7
LYy Y
P, =18 1ﬁ' 78

i

Coordinates of the joint H in the absolute coordinate
system AXY in the equations (77) and (78) are determined
by the expressions

Xy | |X cos@,; —sing,; | [+®
H; - D; + 4ij 4ij |:.7CZ):| (79)
YHU YDJ SinQ,; CosQ, Yy

To determine the unknown direction of the vector (ﬁ)
in the equation (76), we transfer the vector l((,H) €; to the
right side of the equation and square its both sides

l?c + l(ZFH)U - ZZFGZ(FH),/ COS((P(FG),. ~Ocrm, ): léH’ (80)
and obtain
l?{‘ + l(ZFH) _Z(Z;H
Ccrey, = Py, — cos™! T 81
FGhrmy,

Then the angle @ of the input link 5 is determined by
the equation
)

1Yo

@5, =@ r), T8 (5) . (82)

In the equation (82) x¢” and y¢ are the coordinates of
the joint G in the local coordlnate systems Fxys.

8. Numerical results

On the base of the developed methods, the parallel ma-
nipulator of a RoboMech class is synthesized, the output
point P of which reproduces the series of vertical and hori-
zontal lines in a rectangular QRST, lying on the plane of the
absolute coordinate system AXY (Fig. 1). The coordinates of
the points Q, T'and the height QR of this rectangle QRST, as
well as the numbers M and N of the vertical and horizontal
lines, have the following values:

X, =43.00, ¥, =33.00, X, =137.00,

Y, =33.00, QR=99.00,

M=11, N=11.

The obtained values of the parametric synthesis:
1,,=98.67, 1,,=108.69, X, =-0.18,

Y, =-27.54, x = 24.6,
¥ =362, x =23.64,
Yy =585, 1,,=123.75, X, =-31.03,
Y, =49, & =13.54,

Yy =-9.84, x> =13.85,

v =431, 1, = 46.56.

Fig. 3 shows two views of the synthesized parallel manip-
ulator’s 3D CAD model.

Fig. 3. 3D CAD model of the parallel manipulator:
a — view of the left; b — view of the right

The obtained values of the coordinates X B Y, of the
output point P in the given values of the input angles 0,
and ¢ (direct kinematics) are shown in Table 1. Table 2
shows the obtained values of the output angles @s;, ¢,; in
the given values of the input point’s P coordinates X, ng
(inverse kinematics). !

An analysis of the results shows that the maximum devi-
ation of the point P motion from the orthogonal trajectories

is 1.65 %.



The input angles ¢;;,¢,; and output point’s P coordinates

Table 1

I j s, 03, X, Y,

1 2 3 4 5 6

1 1 -95° -16° 43.39 33.04
1 2 -95° -10°30" 44.02 43.01
1 3 -95° -5° 44.14 53.13
1 4 -95° 0 44 62.33
1 5 -95° 5° 43.77 71.51
1 6 -95° 10°30’ 43.53 81.63
1 7 -95° 16° 43.35 91.78
1 8 -95° 21°30’ 43.24 101.99
1 9 -95° 27° 43.2 112.39
1 10 -95° 32.30" 43.23 122.36
1 11 -95° 38° 43.36 132.34
2 1 -91°30" -16° 52.29 32.48
2 2 -91°30" -10°30" 51.79 42.05
2 3 -91°30" -5° 52.5 52.03
2 4 -91°30" 0 52.13 61.38
2 5 -91°30" 5° 52.88 70.77
2 6 -91°30" 10°30’ 52.47 81.22
2 7 -91°30" 16° 53.1 91.68
2 8 -91°30" 21°30’ 52.51 102.13
2 9 -91°30" 27° 52.81 112.53
2 10 -91°30" 32.30" 51.74 122.75
2 11 -91°30" 38° 51.34 132.77
3 1 —88° —-16° 58.88 32.48
3 2 -88° -10°30" 59.74 42.03
3 3 —88° -5° 60.42 51.86
3 4 -88° 0 60.82 61.13
3 5 —88° 5° 61.03 70.6
3 6 -88° 10°30’ 61.07 81.14
3 7 —88° 16° 60.98 91.73
3 8 -88° 21°30’ 60.78 102.3
3 9 —88° 27° 60.53 112.76
3 10 -88° 32.30" 60.29 122.03
3 11 —88° 38° 60.14 133
4 1 -84° -16° 68.65 33.42
4 2 —84° —-10°30" 69.28 42.47
4 3 -84° -5° 69.9 5213
4 4 —84° 0 70.34 61.3
4 5 -84° 5° 70.63 70.72
4 6 —84° 10°30’ 70.77 81.26
4 7 -84° 16° 70.73 91.89
4 8 —84° 21°30" 70.55 102.48
4 9 -84° 27° 70.29 112.96
4 10 —84° 32.30" 70.01 123.2
4 11 —84° 38° 69.81 133.11
5 1 —-80° —-16° 78.8 34,06
5 2 -80° -10°30" 79.15 43.03
5 3 —-80° -5° 79.61 52.56
5 4 -80° 0 80.01 61.64
5 5 -80° 5° 80.3 70.98
5 6 -80° 10°30’ 80.46 81.47
5 7 —-80° 16° 80.45 92.06
5 8 -80° 21°30’ 80.31 102.62
5 9 -80° 27° 80.07 113.04
5 10 -80° 32.30" 79.8 123.21
5 11 -80° 38° 79.61 133.01
6 1 -76° -16° 89.16 34.7
6 2 -76° —-10°30" 89.24 43.75
6 3 -76° -5° 89.52 53.24
6 4 -76° 0 89.82 62.21




Continuation of Table 1

1 2 3 4 5 6

6 5 -76° 5° 90.07 71.43
6 6 —-76° 10°30" 90.22 81.77
6 7 -76° 16° 09.24 92.19
6 8 -76° 21°30" 90.12 102.59
6 9 -76° 27° 89.92 112.82
6 10 —-76° 32.30" 89.7 122.75
6 11 -76° 38° 89.57 133.25
7 1 -72° -16° 99.59 34.7
7 2 —72° —10°30’ 99.44 43.75
7 3 —72° -5° 99.55 53.24
7 4 —72° 0 99.75 62.21
7 5 —72° 5 99.94 71.43
7 6 —72° 10°30’ 100.08 81.77
7 7 —72° 16° 100.1 92.19
7 8 —72° 21°30’ 100.03 102.59
7 9 -72° 27° 99.88 112.82
7 10 —72° 32.30 99.72 122.75
7 11 -72° 38° 99.67 132.25
8 1 —68° -16° 109.95 34.62
8 2 —68° —10°30’ 109.64 43.79
8 3 —68° —-5° 109.62 53.33
8 4 —68° 0 109.73 62.3
8 5 —68° 5° 109.87 71.49
8 6 —68° 10°30’ 109.99 81.76
8 7 —68° 16° 110.04 92.11
8 8 —68° 21°30’ 110.01 102.41
8 9 —68° 27° 109.92 112.53
8 10 —68° 32.30’ 109.85 122.34
8 11 —68° 38° 109.89 131.69
9 1 —64° -16° 120.13 34.32
9 2 —64° —10°30’ 119.73 43.63
9 3 —64° -5° 119.63 53.25
9 4 —64° 0 119.69 62.24
9 5 —64° 5° 119.81 71.42
9 6 —64° 10°30’ 120.02 81.66
9 7 —64° 16° 120.01 91.95
9 8 —64° 21°30’ 120.02 102.17
9 9 —64° 27° 120.01 112.2
9 10 —64° 32.30" 120.01 121.91
9 11 —64° 38° 120.13 131.18
10 1 —60° -16° 130.02 33.88
10 2 —60° —-10°30’ 129.6 43.33
10 3 —60° -5° 129.49 53.05
10 4 —60° 0 129.54 62.09
10 5 —60° 5 129.66 71.29
10 6 —60° 10°30’ 129.81 81.52
10 7 —60° 16° 129.93 91.78
10 8 —60° 21°30’ 130 101.97
10 9 —60° 27° 130.05 111.97
10 10 —60° 32.30 130.1 121.7
10 1 —60° 38° 130.18 131.08
11 1 -56° -16° 139.52 33.39
11 2 -56° —10°30' 139.15 42.99
11 3 —-56° -5° 139.08 52.8
11 4 -56° 0 139.17 61.94
11 5 -56° 5° 139.33 71.14
11 6 -56° 10°30" 139.53 81.46
11 7 —-56° 16° 139.7 91.76
11 8 -56° 21°30’ 139.82 102.01
11 9 —-56° 27° 139.88 112.15
11 10 -56° 32.30" 139.84 12218
11 11 —-56° 38° 139.54 130.02




The input point’s P coordinates and output angles Q5;, @3

Table 2

1 _] Ps; (pSJ XP,.J. va

1 2 3 4 5 6

1 1 -95°11' -16°4’ 43 33
1 2 -95°28' —-10°38’ 43 43
1 3 -95°29' -5°12' 43 53
1 4 -95°23' 0°16’ 43 63
1 5 -95°17 5°46' 43 73
1 6 -9511" 11°14' 43 83
1 7 -95°8' 16°39’ 43 93
1 8 -95°5' 22°3' 43 103
1 9 -95°5' 27°26' 43 113
1 10 -95°6" 32°51" 43 123
1 11 -95°10 38°23' 43 133
2 1 -90°34’ —15°42' 53 33
2 2 -90°58' -9°57’ 53 43
2 3 -91°12’ —4°28' 53 53
2 4 -91°18’ 0°53' 53 63
2 5 -91°19’ 6°11’ 53 73
2 6 -91°17’ 11°27 53 83
2 7 -91°13' 16°42' 53 93
2 8 -91°9' 21°57 53 103
2 9 -91°4' 27°14' 53 113
2 10 -91° 32°36' 53 123
2 11 -90°59’ 38°7 53 133
3 1 -86°17' -16°1" 63 33
3 2 —86°39' -10° 63 43
3 3 —86°56' —4°24' 63 53
3 4 -87°6' 0°59’ 63 63
3 5 -87°11’ 6°15' 63 73
3 6 —87°12' 11°28' 63 83
3 7 -87°10’ 16°39’ 63 93
3 8 -87°5' 21°51" 63 103
3 9 —86°49' 27°6' 63 113
3 10 -86°53' 32°27' 63 123
3 11 -86°17' 37°58' 63 133
4 1 —82°15' -16°27’ 73 33
4 2 -82°29’ —-10°19’ 73 43
4 3 —82°44' —4°35' 73 53
4 4 —82°55' 0°52' 73 63
4 5 —83°2' 6°10’ 73 73
4 6 -83°5' 11°23' 73 83
4 7 —83°4' 16°33' 73 93
4 8 —82°59' 21°45' 73 103
4 9 -82°53' 27° 73 113
4 10 —82°47 32°23' 73 123
4 11 —82°42' 37°57' 73 133
5 1 —78°22' —16°49’ 83 33
5 2 —78°28' -10°38’ 83 43
5 3 —78°38' —4°50" 83 53
5 4 —78°48' 0°41' 83 63
5 5 —78°54' 6°2' 83 73
5 6 —78°58' 11°16’ 83 83
5 7 —78°57' 16°28' 83 93
5 8 —78°54' 21°41" 83 103
5 9 —78°48' 26°59’ 83 113
5 10 —78°42' 32°24' 83 123
5 11 —78°38' 38°3' 83 133
6 1 —74°33' 171 93 33
6 2 —74°31" —10°52’ 93 43
6 3 —74°31' -5°3 93 53




Continuation of Table 2

1 2 3 4 5 6

6 4 —74°44' 0°31" 93 63
6 5 —74°49' 5°54' 93 73
6 6 —74°52' 11°11" 93 83
6 7 —74°53' 16°26' 93 93
6 8 —74°50’ 21°41" 93 103
6 9 —74°45' 27°1" 93 113
6 10 —74°41' 32°31 93 123
6 11 —74°38' 38°15 93 133
7 1 —70°43' —17°4' 103 33
7 2 —70°37' —10°58' 103 43
7 3 —-70°38' -5°10 103 53
7 4 —70°42' 0°25' 103 63
7 5 —70°47' 550" 103 73
7 6 —70°49' 11°9' 103 83
7 7 —-70°50" 16°26’ 103 93
7 8 —70°48' 21°45' 103 103
7 9 —70°45' 27°9' 103 113
7 10 —70°42' 32°43' 103 123
7 11 —70°42' 38°33' 103 133
8 1 —66°51' -16°57" 113 33
8 2 —66°41' -10°57" 113 43
8 3 —66°39' =5°11" 113 33
8 4 —66°42' 0°23' 113 63
8 5 —66°45" 5°49' 113 73
8 6 —66°48' 11°10" 113 83
8 7 —66°49' 16°30" 113 93
8 8 —66°48' 21°51" 113 103
8 9 —66°47' 27°19' 113 113
8 10 —66°46' 32°58' 113 123
8 1 —66°48' 38°54' 113 133
9 1 —62°53' —16°43" 123 33
9 2 —62°42' —10°49" 123 43
9 3 —62°39’ -5°6 123 53
9 4 —62°40' 0°26 123 63
9 5 —62°43' 5°52' 123 73
9 6 —62°46' 11°14’ 123 83
9 7 —62°48' 16°36' 123 93
9 8 —62°49' 21°59' 123 103
9 9 —62°49' 27°30’ 123 113
9 10 —62°50" 33°11" 123 123
9 1 —62°53' 39°10’ 123 133
10 1 —58°47 -16°26' 133 33
10 2 —58°36' -10°37" 133 43
10 3 —58°33' —4°59' 133 53
10 4 —58°35 0°32' 133 63
10 5 -58°38' 5°25' 133 73
10 6 —58°42' 10°47" 133 83
10 7 —58°45' 16°9' 133 93
10 8 —58°48' 21°33' 133 103
10 9 —58°49’ 27°3' 133 113
10 10 —58°50’ 32°42' 133 123
10 11 -58°51" 38°30’ 133 133
11 1 —54°29’ —16°39’ 143 33
1 2 —54°20’ -10°57" 143 43
1 3 -54°19’ -5°23' 143 53
1 4 —54°23' 0°32' 143 63
11 5 —54°28' 527 143 73
1 6 —54°34' 10°46' 143 83
1 7 —54°38' 16°6' 143 93
1 8 —54°41" 21°26' 143 103
11 9 —54°42' 26°48' 143 113
1 10 —54°38' 32°8' 143 123
1 11 -54°19’ 37°4' 143 133




9. Discussion of
the research results

The fulfilled studies show that three types of the out-
put point’s movements of the synthesized parallel manipu-
lator in a cylindrical coordinate system, i. e. movements in
two orthogonal directions and rotations around a vertical
axis are carried out by separate drives. Therefore, in this
case, there is a functionally independent operation of the
drives, which leads to their kinematic and dynamic inde-
pendents. In the existing methods for designing manipu-
lating robots, control of the laws of motions of the drives
is determined by solving the inverse kinematics problem
with the simultaneous operation of all three drives. There-
fore, an approach for the design of parallel manipulators
proposed in this paper simplifies the control system and
improves dynamic characteristics. However, at the same
time, manipulators work with certain structural schemes
and geometrical parameters of links, and this requires
special methods of structural and parametric synthesis.
The developed methods of structural-parametric syn-
thesis allow dividing the problem of synthesis of parallel
manipulators of complex structure into subproblems for
the synthesis of their separate structural modules. The de-

velopment of these methods in relation to spatial platform
parallel manipulators is proposed.

10. Conclusions

1. Method of structural synthesis of a RoboMech class
parallel manipulator with three DOF operating in a cylin-
drical coordinate system has been developed. This manip-
ulator is formed by connecting the output point to the base
using one passive and two active CKC.

2. Active CKC impose geometrical constraints on the
movements of the output point, therefore they work at cer-
tain values of the geometrical parameters of their links. CKC
synthesis parameters are determined on the base of Cheby-
shev and least-square approximations.

3. The direct and inverse kinematics problems of the syn-
thesized manipulator are solved. Numerical results showed
that the maximum deviation of the output point movement
from the orthogonal trajectories is 1.65 %.

4. On the base of the numerical results analysis of the
direct and inverse kinematics problems, it is found that there
are functionally independent drives, i. e. orthogonal trajec-
tories of the output point are reproduced by separate drives.
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