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Pose’sazano 3adauy npo eusHauenHs 3aKoHy
pyxy Qponmy xpucmanizauii i mepmomexaniu-
H020 cmany 060xX(a3n020 cmepicHs Yy 6unaoxy
63AEMHO020 6NUCY MEMNEPAMYPHUX | MeXaHiu-
Hux nonie. /[nsa po3e’szanns 3adaui 0yao 6uxo-
PUCMAHO HAOIUNCEHUT aHATMUMHUIL MemoO, 6
CYKYnHoCmi 3 MemoooM noCai006HUX THMEPBANi6 i
sapiauitinum npunuunom Tié6ca. Ileit memoo mae
noxasamu w0 <euzioniwes> npupooi npu 3aoa-
HUX 30HIWHIX 6NAUGAX — 3MIHUMU MmeMnepa-
mypy Qixcosanoeo enemenma mina a6o nepese-
cmu yeil eemenm 3 00HO20 AzpezamHozo cmamy
6 inwuii. Came maxuil nioxio 003601u6 6paxy-
eamu 6naue memnepamypu HA HANPYHCEHO-
depopmosanuii cman 6 mini i nasnaxu uepes
3aKon pyxy meici po3diny Pasz, wo eusnanacmo-
csi. Ompumano cnisiOHOWEHHS 0N 6U3HAMEHHS.
3axony pyxy medci po3odiny a3, memnepamyp-
HO020 N0JsL i HANPYIHCEHO-0ePopMOBanozo cmany 6
cmepoichi. Pesynomamu npedcmaeneni y euzasnoi
epacpixie 3anexcnocmi memnepamypu i Hanpy-
Jcend 610 acy i Koopounamu.

Ananiz ompumanux pesyasmamié noxasye,
Wo 3MiHA YMO8 MenaooOMinY 3 HABKOIUMHIM
cepedosumem i 2e0MeMPUMHUX PO3MIPIE POOAAMD
BU3HAUAILHULL 6NJIUE HA NPOUeC Kpucmanizauii,
a, omiice, i HA MemnepamypHi i MEXAHIMHI NOA.
Ocnognuii pe3ynvmam noJiseae 6 HACMYynHOMY:
PO3pO6IeHo HabAUdCeHUTl AHATIMUMHUTL MemOoO
i aneopumm po3e’a3anns 3a0aui mepmos’a3Ko-
npyscHocmi O min, wo pocmymov (min 3 pyxo-
MO10 gpanuyero) npu HaseHocmi pazos0zo nepexo-
0y 3 Ypaxyeannam mennooominy 3 HAGKOIUWHIM
cepedosuwem. Ha niocmaei po3pob.ienozo memo-
0y 3axon pyxy epanuui po3oiny ¢as, memnepa-
myphe noJe i Hanpyxceno-depopmosanuii cman
BU3HAMAIOMBCSL 8 X00i PO36’A3AHHS MAK 36aHOT
K6a3i36'43aH0i 3a0a4i MepmOo6’A3KONPYIHCHOCMI.
Ompumano HAOIUNCEHU AHATTMUMHUNL PO36 5~
30K, axuil modce Oymu euxopucmanui 6 Hay-
K080-00CJOHUX 1 NPOEKMHUX Op2aHI3aUiAX Npu
MO0eNI06aHHI PI3HUX MEXHOJI02MHUX NPoUecis, 6
Mawunobyoyeanni, memanypeii, paxemno-Koc-
Miuniti mexniui, 6 oyoienuymei

Knouoei cnosa: mepmomexaniunuii cman,
sapiauitmuil npunuun Ti66ca, Pponm xpucmani-
3auii, HAOIUINICEHUT AHATTIMUMHUL MemoO
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1. Introduction

Recently, the linear theory of thermal conductivity
can no longer meet the requirements of both new fields
of technology and traditional industrial sectors, such as
heat generation, machine building, and, especially, met-
allurgy. Modern practical tasks require taking into con-
sideration the essential non-stationarity, heterogeneity,
non-linearity, and other features to which mathematical
methods developed in the classical (linear) theory of ther-
mal conductivity are hardly applicable. Such problems can
only be solved through the use of non-linear mathematical
modeling.
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It is known that thermomechanical processes are in-
herently non-linear. Examples include a series of problems
related to modern technology. The aerodynamic heating
and destruction of bodies when moving in the atmosphere
are considered in [1]; high-temperature processes in rocket
engines — in work [2]. Accounting for temperature stresses
in the structural elements at high-temperature heat loads
is necessary for the development of a new class of small
solid-fuel rocket engines [3]. New technologies of ther-
mocyclic destruction of rocks were considered in [4]; the
radiation heating in metallurgical furnaces — in [5]. Paper
[6] examines technologies that use phase transitions; the
movements of elastic waves in variable-length ropes for
machines that lift and lower weights using ropes — in [7].



The specified processes are associated with a significant
change in heat-physical characteristics over a wide range
of temperature changes. All these are non-linearities of
the I, II, and III kinds; it is impossible to further improve
modern technologies without considering them. Mathe-
matical difficulties often force a researcher to approach the
direct linearization of thermomechanics equations (ther-
mal conductivity and thermoelasticity). In many cases, re-
searchers turn to numerical methods that make it possible
to derive approximate solutions to the non-linear problems
of mechanics. In particular, work [8] considers the numer-
ical modeling of nonlinear processes in the mechanics of
continuous media; [9] solves a non-linear thermal problem
in the presence of phase transitions. Paper [10] proposes a
numerical procedure to solve the problem of deforming a
polymeric crystallizing environment, taking into consid-
eration large deformations. Work [11] reports the results
of computer simulations of casting crystallization. Despite
the versatility of numerical methods, the results of such
studies are approximate, they often involve the lineariza-
tion of equations and boundary conditions, and are not
always convenient for analysis.

An effective way to study the non-linear problems of
mechanics is the use of approximate-analytical approach-
es. The relevance of this scientific issue is predetermined
by that the improvement of thermal technologies in order
to preserve energy resources, the design of better struc-
tures of industrial machines, the choice of their optimal
operational modes is an important industrial task. It is im-
possible to resolve it without careful and complete math-
ematical modeling of the crystallization process. This is
due to the fact that experimental studies into the features
of metal crystallization, for example, in the laypoint of a
centrifugal machine are typically complicated (high melt
temperatures, the presence of rotation, a gassed mold
cavity, etc.).

The proposed scientific research should be carried out
to ensure that their results could be used in research and
design organizations in the simulation of various techno-
logical processes in machine building, metallurgy, rocket
and space technology, construction, as well as in the train-
ing process.

2. Literature review and problem statement

Study [12] addresses the construction of research meth-
ods only for contact problems involving the elements of
structures for casting, taking into consideration phase
transitions. The authors consider an associated problem
of thermoelasticity in the form of a system of differential
equations in particular derivatives and inequalities, which
comes down to variational inequalities. However, the issues
related to determining the change law of an interphase
boundary and taking into consideration the viscoelastic
properties of material remained unresolved. The problem
of a semi-space with microstructural transformations, ex-
posed to the influence of thermal and mechanical pulses,
was considered in [13]. The problem is solved numerically
by the method of step-by-step implicit integration over
time. There are quantitative estimates of temperature
effects of thermostructural mechanical bonding. Howev-
er, the issue of phase transition was not addressed at all.
The initial and boundary-value problems describing the

thermomechanical behavior of alloys with a shape memo-
ry were investigated in work [14]. Some issues related to
non-linearity problems in metallurgical thermomechanics
were considered in [15]; the approaches to solving them
were outlined. In addition, the cited paper notes the need
to develop and construct analytical procedures to study
the nonlinear thermal processes; however, no specific an-
alytical methods were considered. Work [16] derived the
defining equations for growing zero-thickness surfaces and
their spatial discretization using a finite element method.
Issues related to the reciprocal influence of mechanical and
temperature fields were not addressed. Paper [17] tackles
the construction of linear models for thin plates made from
polymer gels. A multi-scale approach to modeling the hard-
ening process in magnetic-sensitive polymer materials was
proposed in [18]. Work [19] gives a one-dimensional for-
mulation of the finite elements for temporal analysis of geo-
metrically nonlinear frames associated with viscoelastic
viscoplastic materials, including mechanical destruction.
The issues of numerical modeling of the interaction among
inclusions in a flat element of the elastic heterogeneous
environment, depending on their orientation, shape, size,
and rigidity characteristics, were considered in [20]. The
safest options for their mutual location were established. In
order to analyze significantly heterogeneous stresses [21],
associated with the presence of foreign structures in bodies
in the form of inclusions, cracks, pores, etc., the projection
and iterative schemes of the implementation of network
methods are effective [22].

Thus, one should note that the issue of determining the
stressed-strained state of a body, which is in a phase transi-
tion, has not yet been considered or addressed comprehensive-
ly. Namely, there is no proposed approach, which would make
it possible to determine not only the tense-deformed state
of a body taking into consideration the mutual influence of
temperature and mechanical fields but also to define, based on
this relation, the motion law of a crystallization front.

3. The aim and objectives of the study

The aim of this study is to determine the stressed-
strained state in a rod at crystallization, taking into
consideration the mutual influence of temperature and
mechanical fields.

To accomplish the aim, the following tasks have been set:

—to build an approximate analytical method and an
algorithm to solve the quasi-related problem of thermovis-
coelasticity for growing bodies in the presence of a phase
transition, taking into consideration the heat exchange with
the environment;

— to define, based on the constructed method, the motion
law of an interphase boundary, a temperature field, and the
stressed-strained state in a rod from the solution to the qua-
si-related problem of thermoviscoelasticity.

4. The stressed-strained state of a rod at crystallization,
taking into consideration the relatedness between
the temperature and mechanical fields

4. 1. Problem statement
Consider a rectilinear rod of length [ Introduce a
Cartesian coordinate system (xy, X9, x3) in an undeformed



configuration, with the x3=x axis directed along the rod
axis. One end of the rod x=0 is tightly pinched, and the
other, x=/, is free. Suppose that the rod substance exists in
two phases — high-temperature and low-temperature. The
behavior of a rod’s material in the low-temperature phase is
described by the equations of state of a non-uniformly aging
viscoelastic body, and in the high-temperature — of an elastic
body. Denote the temperature of a phase transition through
00: at 0,<0°, the material’s element is in the low-temperature
phase, at 0;>0° — in the high-temperature one. For certainty,
we believe that before a deformation, the substance of a rod
in the low-temperature phase occupies region wy(¢)={ly<x<l},
and the substance in the high-temperature phase — region
01(t)={0=<x<lp}. The thermal interaction between the lateral
and end surfaces of the low-temperature phase of the rod
with the environment is characterized by convective heat
release coefficients o4, conss 02, cons (respectively), and the ra-
diation. In this case, the high-temperature phase is supposed
to be heat-isolated.

At time point =0, a longitudinal distributed compress-
ing load of intensity P(¢) is applied to the rod; the heat
is released into the environment from the free end of the
rod x=L After this, part of the rod material enters the
low-temperature phase (material buildup) so that its length
changes according to the law x=a=a(¢).

It is required to define, under the assigned law of change
in the external load P=P(t), the motion law of an interphase
boundary a=a(t), the temperature 0;=0;(¢,x) (i=1,2) and the
stressed-strained state in the rod for the case of a single-axial
strained state.

A mathematical statement of the formulated problem
of thermoviscoelasticity for a rod, growing under the phase
transition conditions, implies finding the enumerated un-
knowns from the joint solution to the following equations:
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where E;j(t—t*(x)) is the elastically instantaneous defor-
mation modulus; R(t—t*(x), 1—1*(x)) is the relaxation
core of a viscoelastic material; t*(x) is the moment when
a body element enters a solid aggregate state; p;, ¢;,
Ai=%i(0;), a;=0;(0) is the density, heat-conductivity, the
thermal conductivity factor of the material, the reduced
heat release factor [23], which characterizes the intensity
of convective and radiant heat exchange with the envi-
ronment; 0;(¢, x) is the distribution of temperature in the
corresponding phase of the rod,;

o
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the power of internal sources (stock) of heat in the low-tem-
perature phase, which also takes into consideration the con-
vective and radiant heat exchange between the side surface
of the rod and the environment; g, is the degree of a mate-
rial’s blackness in a solid phase; o, is the Stefan-Boltzmann’s
constant; 2=s/p, s is the cross-sectional area of the rod; p is
perimeter; 0., is the temperature of the environment.

In ratios (1), (2), and hereafter, the index “1” refers to the
parameters of a substance in the high-temperature phase, the
index “2” —in the low-temperature phase.

The boundary and initial conditions of the problem take
the form
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where p is the heat of the phase transition.

4. 2. The method and algorithm to solve the problem

Ratios (1) to (5) are the statement of the thermovisco-
elasticity problem for a growing two-phase rod in a closed
form. The difference between this statement and those
considered in [24] is that the thermal conductivity prob-
lem (2), (4), (5) takes into consideration the non-linearity of
the first kind due to the dependence of the thermal-physical
characteristics of material on temperature. One approach
to solving non-linear thermal conductivity problems is the
method of successive intervals [25], which implies splitting
the entire process into finite intervals, in each of which the
material’s characteristics and the internal heat sources are
constant. In such a statement, the non-linear problem of
thermal conductivity is reduced to solving a set of linear
problems with different initial and boundary conditions for
each time interval. Therefore, to solve problem (1) to (5), it
is proposed to use the approximate analytical method, sug-
gested in [24], in combination with the method of successive
intervals and a Gibbs variation principle in the following
interpretation.



The time interval [0, ¢7,], within which we investigate
the stressed-strained state in body Q, is divided by points
ty=kA, A=tfi,/N, k=0, 1,.., N into sub-intervals, so that the
continuous gain process is replaced with the following dis-
crete process. At moment #;, the surface efforts f®, massive
forces F® are applied to the body Q; the amount of thermal
energy equal to ©® is removed from the body. Let the quan-
tities @, (displacement vector), 0, (temperature field), and
a=a(ty) (an interphase boundary position) fully describe the
true state of the body at each time period. When external
conditions change, the body exits the thermodynamic equi-
librium ( gD, (}H)) the state it was in at moment ¢,
and instantly enters a new equilibrium state (@ O(k),a(k))
In the time interval (¢, t;+1), a body Q is in the state of
thermodynamic equilibrium (z®,6®,a®).

The state (2", 0", a(kg is a kinematically possible equi-
librium state of the body € at moment #;,+0 (that is, at £>ty).
The true state of the body Q (implemented in reality) at mo-
ment #;,+0 shall be denoted through (u(k) o, a (k)z

The inner energy of body Q in the states (u(k o, a(k))
and @®, 0%, a®) is equal to V¥ and V¥, respectively.
These quantities are bound by the law of energy conservation
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The true equilibrium state (ﬁfk),eik),afk)) is character-
ized by the fact that it delivers the maximum value of a body
entropy among all possible equilibrium states determined by
equality (6).

In order to fulfill the principle formulated above and thus
ensure that mechanical and temperature fields are inter-
connected, the problem of thermal conductivity (2), (4), (5)
must first be solved at each time ¢,. Its solution takes the
following form:
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Next, we shall determine the field of displacement from
the solution to the elastic contact problem of two bodies
1(t;) and wy(¢y). In this case, let us assume that a substance
in the liquid phase occupies region o1(¢;) ={0<x<a(t;)}, in the
solid phase — wo(t) ={a(ty)<x<l}.

In this case, the contact problem for two bodies w{(¢;) and
o(fr) at moment 7, is reduced to solving the following system
of equations (the bar means a derivative for coordinate x)

o (¢, x)—p,P(t,)=0, ©)
under boundary conditions

o,(t,0)=0,

o, (¢pa(s)),
=u,(t,a(4,))- ®)

A solution to problem (7), (8) takes the following
form [24]:
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Calculate the work of external forces A**? when movin
from a thermodynamical equilibrium state (E(k),e(k),a(k)ﬁ
at moment ¢; to a thermodynamical equilibrium state

(ﬁ(k”),e(k“),a(k”)) at moment ¢41:
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By substituting expressions (11), (12) in ratio (13) and
integrating, we obtain
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Find the inner energy V* of a rod in a thermodynamical
equilibrium state at moment #; (k=1,2,...,N). To this end, let
us assume the following:

1. At overheating, there are intense streams of heat in
the liquid phase due to convection; temperature changes in
it are almost absent. Therefore, following [26], a temperature
difference along the length of the liquid part of the rod is
taken as AOy.

2. According to the law of energy conservation, the dif-
ference between the amount of heat that is released by the
side surface and the end of the rod by convection and radia-
tion to the environment is equal to the heat accumulated by
a given body:

czs(l—a(t))pzé;” ()=

1
= Sq_p(x2 _[ [92 (t’x)_ecnv:l dx’ (15)
a(t)

where sis the cross-sectional area of a rod; p is perimeter; 0} (t)
is the incremental temperature per unit of time in a body;

06, (t,x)
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x=alty)

—the amount of heat accumulated in a body when heat
spreads in the axial direction;

I
poL, I [6,(t.x)-86,, ] dx
a(t)

— the amount of heat that the side surface of the rod releases
to the environment.

Equation (15), taking into consideration the solution for
04(2,x), can be converted to the following form

p.c,(I—a(t)) 6y (t)=ppa(t)-
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Then, under the assumptions made, the internal energy
will be calculated from the following formula

a(ty) 2
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where V. =p, [y!+p,(I-1,)y5 is the inner energy of a
body in its natural state; y? (i=1,2) is the specific internal
energy of a substance in the liquid and solid phases, respec-
tively, in its natural state. In a given example, assume y! =0.

We substitute expressions (9), (10) into relation (17),
and perform integration over the variable x. We obtain
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Determine the entropy S® in
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The entropy S* in a transition from the thermody-
namic equilibrium state ™ g® gt )) at time ¢, to the ther-
modynamic equilibrium state 7tk e("”),a(k”)) at moment
tr+1 will take the following form

0’ 0’

Then, in accordance with a Gibbs variation principle,
the point a®**D=a(ty), which characterizes the position of
an interphase boundary at time #;+1, delivers the maximum
value of function F(a®*)=s*"_s® 1t follows from the
condition for an extremum of the function that

dF(a®")

da® =0.

19

Substituting ratios (14), (18) and function 0,(¢, x)
into (19), we obtain
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Believing that the a(t), P(t), 0;(t, x) functions are
continuous and are differentiated for ¢ over the exam-
ined time period, we assume

alty)=a(t,)+a(t)A+...
P(t,,,)=P(t,)+P(t,)A+..., 1)

where the ellipsis denotes terms of the A2 order.
Substituting (21) into 0;(¢,x) and (20), by moving
to the limit at N—oo, A—0, ¢,—t, we obtain

0, (z,x)z%lB(e"—em,)x
o,—B B
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where functions

E( ()) hmF( k”)

t,—t
A=0

Ratios (16), (22) to (24) are a system of non-linear equa-
tions to determine the temperature field in a rod and the
position of an interphase boundary.

Transform equations (16), (24). To this end, differ-
entiate equation (24) for ¢; substitute Gg’(t) from (16)
into the result. As a result, we shall have the following
system of differential equations to determine the motion
law of a crystallization front and the mean temperature

in a rod:
o (0 -B)H,
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Once the function a=a(f) is determined, a temperature
field in the rod is determined from formulae (22), (23), and
the stressed-strained state — from formulae (9) to (12).

Thus, one can build the following algorithm to determine
the stressed-strained state in a body Q during the phase
transition. At moment ¢:

1) fix the interphase surface a(ty); determine, from a
solution to the stationary problem of thermal conductivity,
the temperatures 8%(x) (i=1,2) in a body ©;

2) solve the contact problem for two bodies occupying
the regions w(¢;) and w9(z), and determine the displacement
field z®:

3) for available values E(k),e(k),y(k) , determine the in-
ternal energy V® and the entropy S® of a body Q;

4) from the first law of thermodynamics and the condi-
tion for a maximum of entropy S® of the body Q, find the
true position of an interphase boundary a®;

5) when one found the position of an interphase bound-
ary surface ! determine the true temperature 6% and the
true displacement field 7z";

6) at the next time #;-4, the initial temperature and the
position of an interphase boundary correspond to those
found at moment ¢, that is

+ (26)

R+l k
o =0,

a(k+1) — a£/e).

In this case, the proposed algorithm for solving the asso-
ciated problem of thermoviscoelasticity takes into consider-
ation the backstory of the entire process at each point of time
t, in the motion law of an interphase boundary, determined
from a Gibbs variation principle.

5. Solving the quasi-related problem of
thermoviscoelasticity for a rod at crystallization

To illustrate the applicability of the proposed method,
let us consider specific examples: the crystallization (build-

up) of a rod with a heat-insulated side surface; the problem
of building up a rod when interacting with the environment
taking into consideration a phase transition.

3. 1. Solving the problem of crystallization (build-up)
of a rod with a thermally insulated side surface

For the case of crystallizing a rod with a heat-insulated
side surface(0,¢ono=02=0) in problem (1) to (5) the expres-
sions defining the motion law of an interphase boundary, as
well as a temperature field in the solid phase, are simplified
and take the following form

f2p§P(t)(l—a(t))[£—;:|+

2

LB, 120
)

. 20?
+a(t)(2p§ +2p,p, +§‘J

a(t) A, =

(6° —em)[uij—xJ
+0

A
J+ 52
+oc1 a(t)

6, (a(t),x)z

n (o) B0 =al)
0, (a(t)) o n I +1700,

and the stressed-strained state is determined from formu-
lae (9) to (12).



The numerical results are obtained at the following val-
ues of the basic parameters:
1=0.5m, [=0.4 m, E,~1.4101"kg/m?, 69=1,765 K,
00ne=293 K, /=1,800 K, p=2.4 MJ/kg, p1=7,000 kg /m3,
097,800 kg /m3, ¢,=837 J /(kg-K), ¢,=565 J /(kg-K),
M=23.3 W/(mK), ba=48.1 W/(mK), £,=0.8;
they are shown in Fig. 1-6.
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Fig. 1. The effect of rod surface cooling intensity on
the motion law of an interphase boundary
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Fig. 2. The effect of cooling intensity on the temperature of
the rod end surface. The bottom part of the chart illustrates
the highlighted color-filled fragment
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Fig. 3. Temporal dependence of the mean mass temperature
of the solid phase for the rod of length /=0.5 m (4 =0.4 m) at
different values of heat release factor

Fig. 1-3 show the motion law of an interphase boundary,

achange in the temperature of the end surface of the rod over
time, and temporal dependence of the mean mass solid phase
temperature for the rod of length /=0.5 m.
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Fig. 4. The effect of rod length on the motion law of an
interphase boundary
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Fig. 5. The effect of rod length on the temperature of the end
surface of the rod
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Fig. 6. Temporal dependence of the mean mass temperature
of the solid phase of the rod at o con, =40-103 W /(m?K) for

different values of its length

Fig. 4—6 show the dependences a(¢), 02(¢,0), 05 (¢) at the
heat release factor oy ¢on,=40-10° W/(m?K) for a rod of vary-
ing lengths, but at [y=0.4 m.



5. 2. Solving the problem of building up a rod in ther-
mal interaction with the environment, taking into consid-
eration the phase transition

For the case of crystallization (build-up) of a rod in
thermal interaction between the lateral and end surfaces
and the environment taking into consideration the phase
transition, the results of solving the equations (25), (26)
are shown in Fig. 7, 8.

—O— 01, comv = 02, comy = 4000
2 0L, comv = O, conv = 40000

—5— 1, comy = Ot come = 400000

T T T T T T T T T  t/ thn
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Fig. 7. The motion law of the growing rod crystallization
front at different values of the heat release factor
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Fig. 8. The effect of conditions for heat exchange with

the environment on the crystallization process in a rod.

The bottom part of the chart illustrates the highlighted
color-filled fragment

The results of the problem solving showed that both the
geometric dimensions of a body and the conditions of heat
exchange with the environment exert a significant impact on
the hardening process.

6. Discussion of results obtained in solving
the quasi-related problem of thermoviscoelasticity for
arod at crystallization

An analysis of our results demonstrates that cooling
intensification, first, reduces the hardening time, and,
second, increases the size of the solid phase at a fixed time
value (Fig. 1).

Fig. 2 show that the increase in heat release factor leads
to a sharp drop in the temperature 04(¢, /) at the initial mo-

ment in time. Thereafter, this temperature changes not so
dramatically and, throughout the entire hardening process,
it is a monotonously descending function. At high heat
release factor values, the end surface is instantly cooled to
a temperature close to ambient temperature and remains
constant until the end of the process.

The charts shown in Fig. 4 demonstrate that changing
the initial length of the solid phase has a significant impact
on the crystallization process. This is confirmed by the re-
sults shown in Fig. 5, 6.

Thus, it has been established that both the geometric di-
mensions of a body and the conditions of heat exchange with
the environment have a determining influence on the hard-
ening process, which is consistent with known experimental
and estimated data [27, 28].

Fig. 7 shows that if there is a heat exchange between the
side surface and the environment, it significantly reduces the
time of the hardening of the material.

The charts shown in Fig. 8 demonstrate that the heat
exchange from the side of a rod has a greater impact on the
crystallization process than that from the end surface, as ev-
idenced by known experimental and estimated data [27, 28].

The results obtained are explained by the statement of
the problem and the method of solving it.

One of the features of the proposed method is that the
motion law of an interphase boundary is determined ana-
lytically from the joint solution to the contact problem and
the problem of thermal conductivity, rather than set from
the outside or determined from the experiment. The second
feature is that the combined application of the method of
successive intervals and a Gibbs variation principle makes
it possible to take into consideration the mutual influence
of mechanical and temperature fields not only on each other
but also on the motion law of an interphase boundary.

All functions that are part of the defining ratios should
be continuous.

It should be noted that the issue of solving the related
(rather than quasi-related) problem of thermoviscoelasticity
remains open. Under a classical statement, the boundness of
the fields requires that either the temperature should be part
of the mechanical equations of state or vice versa. This point
has not yet been taken into consideration in this paper but it
is the subject of further research.

One of the options for advancing the current study could
tackle the need to take into consideration the dependence of
heat-physical characteristics on time. However, it might be
difficult to derive an analytical solution.

7. Conclusions

1. An approximate analytical method and an algorithm
have been constructed for solving the quasi-related problem
of thermoviscoelasticity for growing bodies in the presence
of a phase transition considering heat exchange with the
environment. This method makes it possible to assess the
influence of both geometric and physical parameters of the
problem on the formation of the stressed-strained state of
a body taking into consideration the connection between
thermomechanical fields, as well as analytically determine
the motion law of a crystallization front.

2. Based on the developed method, two applied problems
have been solved: the crystallization (build-up) of a rod with
a heat-insulated side surface; the problem of building up a rod



when interacting with the environment, taking into consider-
ation the phase transition. The results of solving these prob-
lems have shown that both the geometric dimensions of a body
and the conditions of heat exchange with the environment
have a significant impact on the hardening process. Namely,
a change in the initial length of the solid phase affects the

process of crystallization and, as a result, the stressed-strained
state of the body. The presence of heat exchange between a
side surface and the environment significantly reduces the
hardening time of a material. In this case, the heat exchange
from the side surface of the rod has a greater impact on the
crystallization process than from the end surface.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

References
Dron, M., Dreus, A., Golubek, A., Abramovsky, Y. (2018). Investigation of acrodynamics heating of space debris object at reentry to
earth atmosphere. 69th International Astronautical Congress, IAC-18-A6.1.5. Bremen, 7.
Yemets, V., Harkness, P, Dron’, M., Pashkov, A., Worrall, K., Middleton, M. (2018). Autophage Engines: Toward a Throttleable Solid
Motor. Journal of Spacecraft and Rockets, 55 (4), 984-992. doi: https://doi.org/10.2514,/1.a34153
Yemets, M., Yemets, V., Dron, M., Harkness, P,, Worrall, K. (2018). Caseless throttleable solid motor for small Spacecraft. 69th In-
ternational Astronautical Congress, TAC-18.C4.8-B4.5A.13. Bremen, 10.
Dreus, A. Y., Kozhevnykov, A. A,, Liu, B., Sudakova, D. A. (2019). Approximate analytical model of rock thermal cyclical disintegra-
tion under convective cooling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 42—47. doi: https://doi.org/10.29202/
nvngu/2019-4/5
Opitz, F, Treffinger, P, Wéllenstein, J. (2017). Modeling of Radiative Heat Transfer in an Electric Arc Furnace. Metallurgical and
Materials Transactions B, 48 (6), 3301-3315. doi: https://doi.org/10.1007 /s11663-017-1078-6
Sudakov, A., Dreus, A., Ratov, B., Delikesheva, D. (2018). Theoretical bases of isolation technology for swallowing horizons using
thermoplastic materials. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical
Sciences, 2 (428), 72-80.
Syasev, A., Zelenskaya, T. (2015). Lengthwise movement dynamic boundary-value problem for trailing boundary ropes. Met-
allurgical and Mining Industry, 3, 283-287. Available at: http://www.metaljournal.com.ua/assets/Journal /english-edition/
MMI_2015_3/036%20Syasev.pdf
Kravets, E. (2019). Determining the structure of a laminar detachable current in an open cavity. Eastern-European Journal of En-
terprise Technologies, 6 (8 (102)), 28—37. doi: https://doi.org/10.15587 /1729-4061.2019.183811
Kozhevnikov, A. A., Sudakov, A. K., Dreus, A. Yu., Lysenko, Ye. Ye. (2014). Study of heat transfer in cryogenic gravel filter during its
transportation along a drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 49—54.
Kulikov, R. G, Kulikova, T. G. (2014). Numerical methods for solving the problem of polymer crystallizing media deformation taking into
account finite deformations. Computational Continuum Mechanics, 7 (2), 172—180. doi: https://doi.org/10.7242,/1999-6691,/2014.7.2.18
Kul’bovskiy, I. K., Karelin, S. V., Ilyushkin, D. A. (2008). Komp’yuternoe modelirovanie protsessa kristallizatsii massivnyh otlivok
vtulok tsilindrov sudovyh dizeley. Vestnik BGTU, 2 (18), 16—19.
Tkachuk, A. N. (2008). Issledovaniya termouprugih kontaktnyh zadach elementov press-form dlya lit’ya pod davleniem s uchetom
fazovyh prevrashcheniy v otlivke. Vestnik NTU «KhPI», 2, 144—158.
Senchenkov, I. K., Oksenchuk, N. D. (2013). An estimation of effects of thermostructural mechanical coupling under pulse loading
of half-space. Bulletin of Taras Shevchenko National University of Kyiv Series: Physics & Mathematics, 3, 217-219.
Bonetti, E., Frémond, M., Lexcellent, C. (2005). Global Existence and Uniqueness for a Thermomechanical Model for
Shape Memory Alloys with Partition of the Strain. Mathematics and Mechanics of Solids, 11 (3), 251-275. doi: https://
doi.org/10.1177,/1081286506040403
Rao, A., Srinivasa, A. R. (2014). A three-species model for simulating torsional response of shape memory alloy components using
thermodynamic principles and discrete Preisach models. Mathematics and Mechanics of Solids, 20 (3), 345-372. doi: https://
doi.org/10.1177,/1081286514545917
Holland, M. A., Kosmata, T., Goriely, A., Kuhl, E. (2013). On the mechanics of thin films and growing surfaces. Mathematics and
Mechanics of Solids, 18 (6), 561-575. doi: https://doi.org/10.1177,/1081286513485776
Paroni, R., Tomassetti, G. (2017). Linear models for thin plates of polymer gels. Mathematics and Mechanics of Solids, 23 (5),
835-862. doi: https://doi.org/10.1177/1081286517698740
Hossain, M., Chatzigeorgiou, G., Meraghni, F, Steinmann, P. (2015). A multi-scale approach to model the curing process in mag-
neto-sensitive polymeric materials. International Journal of Solids and Structures, 69-70, 34—44. doi: https://doi.org/10.1016/
j.ijsolstr.2015.06.011
Carniel, T. A., Mufioz-Rojas, P. A., Vaz, M. (2015). A viscoelastic viscoplastic constitutive model including mechanical degradation:
Uniaxial transient finite element formulation at finite strains and application to space truss structures. Applied Mathematical Mod-
elling, 39 (5-6), 1725—1739. doi: https://doi.org/10.1016/j.apm.2014.09.036
Gudramovich, V. S,, Gart, E. L., Strunin, K. A. (2017). Modeling of the Behavior of Plane-Deformable Elastic Media with Elongated
Elliptic and Rectangular Inclusions. Materials Science, 52 (6), 768—774. doi: https://doi.org/10.1007 /s11003-017-0020-z
Hart, E. L., Hudramovich, V. S. (2016). Projection-iterative modification of the method of local variations for problems with a
quadratic functional. Journal of Applied Mathematics and Mechanics, 80 (2), 156—163. doi: https://doi.org/10.1016/j.jappmath-
mech.2016.06.005
Hart, E. L., Hudramovich, V. S. (2014). Projection-Iterative Schemes for the Realization of the Finite-Element Method in
Problems of Deformation of Plates with Holes and Inclusions. Journal of Mathematical Sciences, 203 (1), 55-69. doi: https://
doi.org/10.1007 /s10958-014-2090-x



23.  Lykov, A. V. (1967). Teoriya teploprovodnosti. Moscow: Vysshaya shkola, 560.

24. Syasev, A. V. (2001). Priblizhenniy analiticheskiy metod rascheta rastushchih tel s uchetom fazovogo perehoda. Visnyk Dnipropetr.
un-tu. Seriya: Mekhanika, 1 (5), 125-137.

25. Karnauhov, V. G. (1982). Svyazannye zadachi termovyazkouprugosti. Kyiv: Naukova dumka, 250.

26. Lyubov, B. Ya. (1975). Teoriya kristallizatsii v bol’shih obemah. Moscow: Nauka, 256.

27. Nikitenko, N. 1. (1978). Issledovanie protsessov teplo- i massoobmena metodom setok. Kyiv: Naukova dumka, 213.

28.

Arutyunyan, N. H., Drozdov, A. D., Naumov, V. E. (1987). Mehanika rastushchih vyazkouprugoplasticheskih tel. Moscow: Nauka, 472.

u| 0

Y cmammi euoxpemneno ocobaueocmi 3acmocyeéanns
3A2a71bHUX PIGHAHL MAMEMAMUUHOT QI3UKU eIINMUMHO20 MUNY 6
3a0auax mMo0e06anHs cCneuuQpiuHuUx A6UN, 63AEMO0TT eleKmpo-
MazHimHux nosie 3 eleMeHmamu i HaCMUHKamMu HeoOHOPiOH020
ducnepcrozo cepedosuwa. Taxi seuwa maromv micue 6 ycma-
HOBKAX cenapauii opeaniunoi ma MiHepanbHoi cuposunu a6o
enlexmpomaziimnoi 06podKu 3epna, HaciHna ma in. 3asnavene
€ aKxmyansHuM, 0CKLIbKYU 36unainuil nioxio 0o gpopmymosanns
Mamemamunnux mooeJiell y HagedeHux 3aoanax, wo 6asyemo-
Cs1 nepesaricno Ha OudepenyianvHux piHAHHAX Mmeopii noas y
cnpoweniii popmi, ne 3ae6dxcou adexsamimo 6idodparncae Qizun-
HYy cymuicmo 32adanux seuuy. Tomy 6in o6medicye moxcausocmi
noznuoaenozo 00CniONcenHa enaugy bazamvox Qaxmopis, saxi
00yYM06I010MYb KiHUES pe3ybmamu npouecié cenapauii ma
enexmpomaziimnoi o6pooxu (EMO). B pobomi 3anpononosa-
HO anvmepHamueHuii nioxio, no6y0oeanuil Ha 6UKOPUCTAHHL
iHmezpanvHUX pieHAHbL Meopii noas, aKuil 0a3yemvcs Ha KOH-
yenuii nepeuHHUX i 6MOPUHHUX 0XCepeJl RO i 00360JI5€ 3HAMHO
3MeHuumu NoPs00K CUCMmeMU PiGHAHD NPU YUCEAbHIU peaniza-
yii aneopummie po3e’szannsa 3adaw EMO ma 3azanvnuii o6csie
nompionux oéuucnosanviux pecypcie. Ilpu marxomy nioxooi
BUABNAIOMBCA QOCMYNHUMU 051 00PAXYBAHHS JIOKANLHI napa-
Mempu noas y 63aeMooii 3 OKpeMUMU YACMUHKAMU MA IXHbO-
20 enaugy oone Ha 00He. 3a3HaAuUEHULl ACNEKM € CYMMEGUM
O/l BUBHAMEHHS MEXHON0ZIMHUX XAPAKMEPUCTUK 6UPOOHU-
uux ycmanosox EMO. IIpedcmasaena mamemamuuna mooens,
Ha 6I0MIHY 610 NOWUPEHUX CNPOUeHUX Ni0X00i6 00 6uU3HaUeH-
HSL napamempie nons i NOHOEPOMOMOPHUX CUL, WO Oilomb Y
nosi HA MACMUHKU pevosunu, adexeamno 6idobpascae Qizun-
Hi 3aKOHOMIpHOCMI PO3N00iy nomeHuianie i HanpysiceHocmi
eNeKMpUUHO20 NOJIA PEAIbHUX 3APA0ie ma tHOYKoeanux 0xice-
pei. 3a60KuU UbOMY 60HA HAOMHO 6I0MEOPIOE Mexanizm op-
MYBAHHS 207I06HUX CKAAD0BUX MEXAHIMHUX 3YCUNb, WO OitOMb
Ha noaspuzosamne miio 3 GOKY eleKmpuuHoz0 nois 6 uilomy,
yepe3 WiaAbHICMb eJleMEHMAPHUX 3YCUNb, KL CNPABJISE noJie Ha
noeepxmesi 3apaou, wo iHOYKY1OMvCsl 6 OieeKMmpUHUX minax
y 3oni 0ii nonie. Taxa mamemamuuna mooenv € ynisepcaio-
HUM 1 KOMRAKMHUM THCMPYMEHMOM ananizy, npoexmyean-
HS MA ONMUMI3AUTT PISHOMAHIMHUX YCMAHOBOK i NPUCMPOis, Y
AKUX BUKOPUCMYBYEMCSL eJleKmpurHe noJie ma iozo eieKmpome-
xXanitna 63aemo0is 3i cepedosumiem i oKpeMuMu miiamu

Kmouosi cnoga: enexmpomaznimua o6podra, oucnepci
Mamepianu, mamemamuine MOOEN0BAHHS, eJleKmpuiHe noJe,
yacmunKu, pe1osuna, cuia
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1. Introduction

In recent years, in agricultural production for the puri-
fication, separation and processing of cereals, seeds, fruits
and other bulk materials, technologies using electric and
magnetic fields have spread [1-5]. On a large amount of
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This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by,/4.0)

experimental data, the effectiveness of the effect of an ar-
tificial electromagnetic field for stimulating the vital and
growth processes of plants has been proved [4, 5]. Therefore,
the use of electrophysical methods of processing biological
objects is a good alternative to using it in agricultural pro-
duction to increase crop yields of chemicals and genetically



