- 18. Наказ Міністерства транспорту України від 05.02.2001 № 65 «Про затвердження Методичних рекомендацій з формування собівартості перевезень (робіт, послуг) на транспорті».
- 19. Шинкаренко В.Г., Жарова О.М. Экономическая оценка нововведений на автомобильном транспорте. Киев, 1999. 160 с.
- 20. Украинский бухгалтерский еженедельник «Дебет кредит» [Электронный ресурс]: Шевердина Е. // Школа бухгалтера. Урок 41. 2003. № 29. Режим доступа: http://www.dtkt.com.ua/school/rus/2003/29/29sc4.html Название с экрана.

У статті розглянуті питання, пов'язані з роботою логістичної системи міста, а саме організації руху вантажного транспорту із застосуванням методів організації дорожнього руху. Представлено модель транспортного обслуговування учасників логістичної системи в місті

Ключові слова: дорожній рух, логістична система, транспорт

В статье рассмотрены вопросы, связанные с работой логистической системы города, а именно организации движения грузового транспорта с применением методов организации дорожного движения. Представлена модель транспортного обслуживания участников логистической системы в городе

Ключевые слова: дорожное движение, логистическая система, транспорт

This article the questions connected with work of logistical system of city, namely the organization of movement of a truck transport with application of methods of the organization of traffic are considered. The model of transport service of participants of logistical system in city is presented

Keywords: traffic, logistical system, transport

УДК 656.13:658

ИСПОЛЬЗОВАНИЕ МОДЕЛЕЙ ДОРОЖНОГО ДВИЖЕНИЯ ПРИ РЕШЕНИИ ЗАДАЧ ЛОГИСТИЧЕСКОЙ СИСТЕМЫ

А.Н. Горяинов

Кандидат технических наук, доцент* Контактный тел.: 8-067-257-92-16, 8 (057) 707-32-61 E-mail: goryainov@ukr.net

Ю.В. Бугаев

Ассистент*

*Кафедра транспортных систем и логистики Харьковская национальная академия городского хозяйства

ул. Революции, 12, г. Харьков, Украина, 61002 Контактный тел.: 8-093-941-84-91

1. Введение

В Украине и за рубежом продолжаются интенсивные исследования, цель которых заключается в детальном изучении взаимодействия между отдельными составляющими системы «Дорожные условия – транспортные потоки» и в разработке наиболее эффективных методов для ее усовершенствования [1], не смотря на то, что вопросам организации движения грузового транспорта уделяется недостаточно внимания. В тоже время, объемы грузовых перевозок, выполняемых автомобильным транспортом, растут с каждым годом. Это обусловлено, прежде всего, интенсивностью развития производственной и торговой сети города, что, в свою очередь, каждый год приводит к росту объемов

грузовых перевозок. Одновременное увеличение числа легковых транспортных средств в транспортном потоке усугубляет без того сложную дорожную ситуацию и затрудняет решение задач логистической системы.

В настоящее время в период всеобщей глобализации дальнейшее успешное развитие экономики невозможно без хорошо налаженного транспортного обслуживания. Четкая и надежная работа транспорта во многом определяет трудовой ритм предприятий промышленности, строительства и сельского хозяйства, а также сферы заготовок сырья и продвижения готовой продукции, настроение людей и их работоспособность [2]. Поэтому использование существующего потенциала методов организации дорожного движения для решения задач логистической системы города является актуальным.

2. Анализ последних достижений

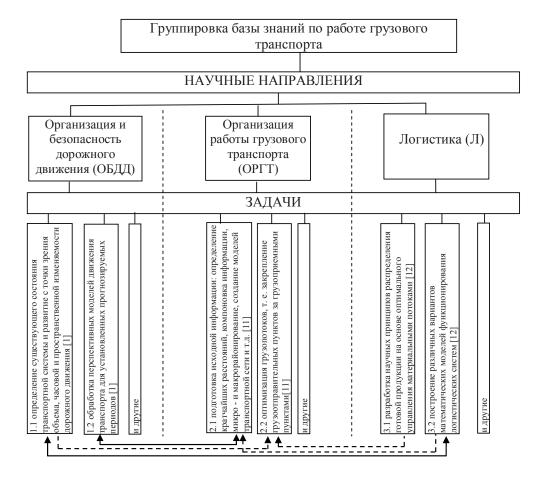
Анализ литературных источников показал, что существует проблема организации работы грузового транспорта в городской сети обслуживания. Вопросам организации дорожного движения уделялось довольно много внимания, однако в этих исследованиях грузовой транспорт рассматривался как второстепенный (например [1,3,4]). В литературе, посвященной вопросам организации и планированию грузовых перевозок, недостаточно учтена дорожная составляющая при транспортировке груза по улично-дорожной сети (например [5-9]).

В условиях перехода к рыночным отношениям единые системы нормативов совершенствования материально-технической базы теряют свое прежнее значение. Каждый субъект хозяйствования самостоятельно оценивает конкретную ситуацию и принимает решения [10]. Как свидетельствует анализ литературных источников, современная организация работы грузового транспорта строится на взаимосвязи с участниками логистической системы [10,12]. Но в тоже время, учет организации дорожного движения в логистической системе должным образом не рассматривается.

Следовательно, требуют дальнейшего исследования вопросы взаимоувязки знаний в таких областях как ор-

ганизация дорожного движения, организация грузовых перевозок, логистика, что позволит более эффективно планировать работу грузового транспорта в городе.

3. Постановка задачи


Целью данной работы является определение модели работы грузового транспорта с учетом дорожного движения при организации работы логистической системы.

4. Результаты исследований

Для решения поставленной задачи произведем группировку существующих данных, которые касаются работы грузового транспорта. Обзор литературных источников (например [1-13]) позволяет выделить три основных направления, затрагивающие грузовой транспорт (рис.1). Их можно сформулировать следующим образом:

- 1). Организация и безопасность дорожного движения.
 - 2). Организация работы грузового транспорта.
 - 3). Транспортная логистика.

Каждое из этих направлений имеет свои цели и задачи, как в своей сфере, так и в общей работе грузового

- ---▶ односторонняя связь
- → двусторонняя связь

Рис. 1. Взаимосвязи задач грузового транспорта в рамках смежных направлений

Таблица 1

Примеры моделей рассматриваемых научных направлений, связанных с работой грузового транспорта

Автор	Характеристики моделей
	Организация и безопасность дорожного движения
4]	Детерминированная модель (упрощенная динамическая модель). $N_{amax} = \frac{A \cdot v_a}{L_{\mathcal{I}}} \ \ , (1)$ где A - коэффициент размерности;
йн Г.И. [$egin{array}{c} v_a \end{array}$ - скорость автомобиля, км/ч; $L_{ m J}$ - динамический габарит, м.
Клинковштейн Г.И. [4]	Стохастическая модель. $P_{n}(t)\!=\!\frac{\left(\lambda t\right)^{n}}{n}\!\cdot\!e^{-\lambda t},(2)$
Кл	где $P_n(t)$ - вероятность проезда n-го числа автомобилей за время t ; λ - основной параметр распределения (интенсивность транспортного потока), авт/с; t - длительность отрезков наблюдения, c ; n - число наблюдаемых автомобилей.
	Грузовые перевозки
[11]	Вероятностно временная модель для времени прибытия груза в пункт назначения с учетом воздействия случайных факторов $T_{\rm приб} = T_{\rm нач} + \sum_{\rm red}^{\rm n} (T_{\rm cp.npi} + T_{\rm cp.дв}) + \sum_{\rm red}^{\rm m} (\Delta t_{\rm npi} + \Delta t_{\rm двi}) + T_{\rm отд} , (3)$
Горев А.Е. [11]	где $T_{\text{нач}}$ - время начала движения, ч; $T_{\text{ср.прi}}$ - среднее время простоя в узловом пункте, ч; $T_{\text{ср.дв}}$ - среднее время движения на участке маршрута, ч; $\Delta t_{\text{прi}}$ - среднее отклонение времени простоя в узловом пункте, ч; $\Delta t_{\text{двi}}$ - среднее отклонение времени движения на участке маршрута, ч; $T_{\text{отд}}$ — время отдыха экипажа, ч.
Вельможин А.В. [9]	Продолжительность процесса перевозки груза: $T = T_1^n + t_{nn} + t_1^n + t_2^n + t_3^n + t_4^n + \frac{L_{er}}{V_T} + t_1^p + t_2^p + t_3^p + t_4^p + T_5, \ (4)$ где T_1^n - продолжительность операций по подготовке груза к отправке, ч; $t_{nn} - \text{продолжительность подачи подвижного состава под погрузку, ч;}$ $t_1^n - \text{продолжительность выполнения элемента ожидания погрузки, ч;}$ $t_2^n - \text{продолжительность выполнения элемента маневрирования подвижного состава, ч;}$ $t_3^n - \text{продолжительность операции погрузки груза, ч;}$ $t_4^n - \text{продолжительность операции оформления документов, ч;}$ $L_{er} - \text{длина ездки c грузом, км;}$ $V_T - \text{техническая скорость, км/ч;}$ $t_1^p - \text{продолжительность операции ожидания разгрузки, ч;}$ $t_2^p - \text{продолжительность операции маневрирования подвижного состава, ч;}$ $t_3^p - \text{продолжительность операции разгрузки, ч;}$ $t_4^p - \text{продолжительность операции разгрузки, ч;}$ $t_4^p - \text{продолжительность операции оформления документов, ч.}$ $T_5 - \text{продолжительность операции оформления документов, ч.}$
	Логистика
i C.H. [15]	Модель оптимизации логистического обслуживания перевозочных операций подсистемы описывается функционалом: $f = \sum_{d=1}^{D} \sum_{s=1}^{S} \sum_{a=1}^{A} \sum_{k=1}^{K} \prod_{i=1}^{I} Q^A_{ikasd} \cdot \Pi^A_{ikasd} \rightarrow min \ \ , (5)$
Нагловский С.Н. [15]	где Q^A_{ikasd} - объем i-го продукта, перевозимого от s -го отправителя до d-й базы (склада) в контейнере (средстве пакетирования) или бесконтейнерным способом автотранспортным средством a, т; Π^A_{ikasd} - логистические удельные затраты на перевозку 1 т i-го продукта от s-го отправителя до d-й базы (склада) в контейнере k (k = 1, 2, 3,, к) или без контейнерным способом (i =0) в автотранспортном средстве a, у. д.е./т.

Нагловский С.Н. [15]

Продолжение таблицы 2

Сравнительная экономическая эффективность логистической системы

$$\overline{\widehat{\mathbf{J}}} = \left\{ \sum_{\widehat{\mathbf{S}}} \Pi_{\tau p} (\widehat{\mathbf{J}}_{\tau p} (\widehat{\mathbf{Z}}_{\tau p}, \mathbf{C}_{3\tau p}), \mathbf{M}_{\tau p}) - \sum_{\widehat{\mathbf{S}}} \Pi_{\kappa} (\widehat{\mathbf{J}}_{\kappa} (\widehat{\mathbf{Z}}_{3\kappa}, \mathbf{C}_{3\kappa}), \mathbf{M}_{\kappa}) \right\} - \sum_{\widehat{\mathbf{S}}} \Pi_{\widehat{\mathbf{k}}} (\widehat{\widehat{\mathbf{J}}}_{\kappa} (\widehat{\mathbf{Z}}_{3\kappa}, \mathbf{C}_{3\kappa}), \widetilde{\mathbf{M}}_{\kappa})$$
(6)

где $\bar{S},\hat{S},\tilde{S}$ - подсистемы, обеспечивающие доставку продукта потребителю традиционным способом, контейнерным способом, а также перемещение порожних контейнеров к местам их формирования (загрузки);

 $\Pi_{\rm Tp}$, $\Pi_{\rm K}$, - логистические затраты на осуществление процесса доставки продукта традиционным способом, контейнерным способом, а также на перемещение порожних контейнеров к местам их формирования (загрузки);

 $\overline{Z}_{_{Tp}}\overline{Z}_{_{3\kappa}},\overline{Z}_{2,}$ - технико-эксплуатационные характеристики элементов, например типы и грузоподъемные возможности элементов, скорости перемещения элементов и их отдельных органов;

 $C_{_{37p}}$, $C_{_{3K}}$, $C_{_{3K}}$ - экономические характеристики элементов, например стоимость элементов; эксплуатационные затраты на единицу работы и единицу простоев элементов, нормы времени выполнения операций;

 $M_{\rm rp}, M_{\rm g}, \widetilde{M}_{\rm g}$ - условия функционирования элементов при доставке продукта традиционным способом, контейнерным способом и при перемещении порожних контейнеров.

транспорта при обслуживании потребителей. С целью выделения этих задач, рассмотрим каждое научное направление в отдельности.

Появление организации дорожного движения как самостоятельного научного направления непосредственно связано с развитием автомобильного транспорта и увеличением объемов дорожного движения [1]. Данное направление рассматривает задачи, связанные со следующими проблемами (на основании [1]):

- определение существующего состояния транспортной системы и развитие с точки зрения объема, часовой и пространственной изменяемости дорожного движения;
- обработка перспективных моделей движения транспорта для установленных прогнозируемых периодов;
- использование прогнозных моделей движения в области планирования и проектирования улично-дорожной сети;

определение закономерностей поведения транспортного потока, как целого, так и его элементов, их взаимодействия, а также их проекция на теорию транспортного потока;

- разработка проектов оперативного и стратегического решения транспортных ситуаций с помощью технических средств управления транспортом;
- использование возможностей конкретных методов оценки существующих или проектируемых транспортных систем и режимов движения соответственно по разным критериям.

В зависимости от вида решаемой задачи на автомобильном транспорте выбирается конкретный показатель, для которого стремятся найти наилучшее значение (например, минимальный пробег автотранспортного средства, максимальная прибыль и т.д.). В перевозочном процессе можно выделить следующие задачи (на основании [11]):

- подготовка исходной информации: определение кратчайших расстояний, компоновка информации, микро и макрорайонирование, создание моделей транспортной сети и т.д.;
- оптимизация грузопотоков, т. е. закрепление грузоотправительных пунктов за грузоприемными пунктами;
- маршрутизация, по машинные и мелкопартионные отправления грузов;

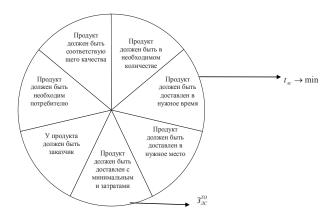
- комплексные задачи рационализации и координации работы транспортных и сбытовых организаций;
- выбор конкретного типа автотранспортного средства для выполнения перевозок в данных условиях

Автор [8] приравнивает задачи организации грузовых перевозок к основным задачам автотранспортных предприятий которыми являются:

- 1. Полное удовлетворение потребностей заказчиков в автомобильных перевозках.
- 2. Обеспечение высокого уровня обслуживания заказчиков.
 - 3. Выполнение существующих планов перевозок.
- 4. Эффективное использование транспортных средств, повышение производительности труда, максимальное снижение транспортных расходов.
 - 5. Систематическое получение прибыли.

В тоже время ряд представленных задач относится к сфере логистики. К задачам логистики относятся (на основании [12,14]):

- прогноз спроса и, на его основе, планирование запасов:
- определение необходимой мощности производства и транспорта;
- разработка научных принципов распределения готовой продукции на основе оптимального управления материальными потоками;
- разработка научных основ управления перегрузочными процессами и транспортно-складскими операциями в пунктах производства и у потребителей;
- построение различных вариантов математических моделей функционирования логистических систем;
- разработка методов совместного планирования, снабжения, производства, складирования, сбыта и отгрузки готовой продукции, а также ряд других задач.


Далее перейдем от качественных характеристик к количественным характеристикам работы грузового транспорта. В таблице 1 приведены примеры моделей, которые характеризуют отдельно рассмотренные направления.

Как видно из таблицы 1, проанализированные модели по каждому из рассмотренных научных направлений затрагивают работу грузового транспорта. Модели (3) и (4), касающиеся работы грузового транспорта, не учитывают дорожную обстановку при

планировании перевозок по магистралям города. В то же время, в (1) и (2) грузовой транспорт приравнивают к легковому, тем самым не учитывают его технические характеристики и возможности, которые сильно отличаются от легкового.

Для достижения эффективности перевозок возможны два подхода к определению распределения потоков грузовых автомобилей по улично-дорожной сети: без учета пропускной способности сети и с ее учетом. Модель распределения транспортных потоков с учетом пропускной способности улично-дорожной сети учитывает большее число факторов, чем модель формирования потоков без учета пропускной способности. Без учета пропускной способности потоки моделируют на основании схемы сети и матрицы корреспонденций. Транспортная сеть задается в виде схемы, каждый участок которой имеет свою стоимость проезда: расстояние или время. Транспортный поток распределяется между корреспондирующими районами по маршрутам, обеспечивающим минимальную стоимость. В нашем случае такой минимальной стоимостью является кратчайшее расстояние перевозки или наименьшее время доставки грузов.

С учетом проанализированной информации о взаимосвязи отдельных задач работы грузового транспорта и существующих моделей затрагивающие грузовые перевозки, далее определим целевую функцию. Рассмотрим работу грузового транспорта в логистической системе. Опираясь на существующие правила логистики (например [12-17]), в качестве критерия (рис. 2) могут быть выбраны либо время обслуживания, либо затраты на обслуживание логистической

- известные параметры логистической системы

Рис. 2. Определение целевой функции

Модель транспортного обслуживания логистической системы может быть представлена следующим образом:

$$t_{nc} = \sum_{i=1}^{N_M} t_{mi} , \qquad (7)$$

где $t_{\scriptscriptstyle Mi}$ - время движения на i-ом участке маршрута,

 $N_{\rm M}$ – количество маршрутов.

Ограничение модели можно представить в следуюшем виде:

$$3_{\text{JC}}^{\text{TO}} = \sum_{j=1}^{K} (t_{p6j} \cdot C_{1q}^{pa6} + \Delta t_{rpj} \cdot C_{1q}^{rp}) , \qquad (8)$$

где $t_{p\acute{0}i}$ - время работы транспортного средства, ч;

 $C_{\scriptscriptstyle 1u}^{\rm pa6}$ - стоимость одного часа работы транспортного средства, у.д.е;

 C_{1q}^{rp} - стоимость (штраф) одного часа невыполнения транспортного обслуживания;

грузового транспорта, ч.

Для определения времени движения на і-ом маршруте используется следующая формула (на основании

$$t_{Mi} = t_{n} + \frac{1_{M}}{V_{U}} + t_{3} + t_{p},$$
 (9)

где $t_{_{\rm I\!I}}$ - продолжительность погрузки груза, ч;

 $l_{_{\rm M}}\,$ - длина маршрута, км;

 $V_{_{\rm M}}^{_{_{\rm M}}}$ - скорость на маршруте, км/ч; $t_{_{_{\rm 3}}}^{_{_{\rm 1}}}$ - время на дополнительный заезд ($^{t_{_{_{3}}}}$ =0,15), ч;

 $t_{_{\rm D}}$ - время на разгрузку груза, ч.

Маршрут транспортного средства проходит по улично-дорожной сети города, которая в свою очередь состоит из главных и второстепенных дорог. Предлагается длину маршрута определять по следующей формуле:

$$l_{\scriptscriptstyle M} = l_{\scriptscriptstyle M\Gamma} + l_{\scriptscriptstyle B} \,, \tag{10}$$

где $l_{\mbox{\tiny MF}}$ - длина магистрального участка маршрута; $1_{_{\rm B}}\,$ - длина второстепенного участка дороги.

Используя формулы (9) и (10), модель времени обслуживания логистической системы (7) можно представить в следующем виде:

$$t_{,x} = \sum_{i=1}^{N_{,u}} t_{,xi} = \sum_{i=1}^{N_{,u}} (t_{ni} + \sum_{i=1}^{N_{,ur}} \frac{1_{,uri}}{V_{,uri}} + \sum_{m=1}^{N_{,u}} \frac{1_{,ur}}{V_{,BT}} + \sum_{k=1}^{N_{,nep}} t_{,nepk} + \sum_{r=1}^{N_{,z}} t_{,r} + t_{,px})$$
(11)

где $_{\rm N_{_{\rm M}}}$ - количество маршрутов в логистической системе;

 $\mathbf{t}_{\mathsf{n}\mathsf{i}}$ - время погрузки на і-ом маршруте;

 $N_{_{M\Gamma}}$, $N_{_{BI}}$, $N_{_{Bep}}$, $N_{_3}$ - соответственно количество магистральных, второстипенных дорог, количество перекрестков, количество заездов на і-ом маршруте;

 $l_{\text{MFI}}, l_{\text{mm}}$ - соответственно длина магистрального, второстепенного участка дороги на маршруте;

 $V_{_{\text{MP}\,\textsc{i}}}$, $V_{_{\text{BM}}}$ - соответственно скорость на магистральном, второстепенном участке дороги на і-ом маршру-

 $t_{_{\text{перk}}}\,$ - время потраченное на k-ом перекрестке на i-

t_ - время на дополнительный заезд на i-ом марш-

 $t_{_{\rm nx}}$ - время на разгрузку в конечном пункте і-ого маршрута.

5. Выводы

- 1. Были проанализированы задачи и модели по каждому из представленных направлений. Были определены зависимости между ними.
- 2. Предложена модель обслуживания логистической системы, которая позволяет учитывать дорожную ситуацию на маршруте.
- 3. В дальнейшем необходимо промоделировать работу грузового транспорта с учетом дорожной ситуации на маршруте. Это позволит получить зависимости работы грузового транспорта в различных дорожных ситуациях

Литература

- 1. Організація дорожнього руху / Системологія на транспорті: Кн. IV / Гаврилов Е.В., Дмитриченко М.Ф., Доля В.К. К.: Знання України, 2005. 452 с.
- 2. Вельможин А.В., Гудков В.А., Миротин Л.Б., Куликов А.В. Грузовые автомобильные перевозки: М.: Горячая линия Телеком, 2006.-560 с.
- 3. Врубель Ю.А. Организация дорожного движения. Часть 2. Мн: Белорусский фонд безопасности дорожного движения, 1996. 306 с
- 4. Клинковштейн Г.И., Афанасьев М.Б. Организация дорожного движения, для вузов. 5-е изд., перераб. и доп. М.: Транспорт, 2001. 247 с.
- 5. Бутаев Ш.А., Мадаминов Ю. Совершенствование методов управления процессами автомобильных перевозок грузов. Таш-кент: Фан, 1988. 152 с.
- 6. Сильянов В.В. Теория транспортных потоков в проектировании дорог и организации движения.. М., Транспорт, 1977. 303 с.
- 7. Коваленко В.М., Щуріхін В.К., Машика Н. Б. Вантажні автомобільні перевзення. К.: Літера ЛТД, 2006. 304 с.
- 8. Савин В.И. Перевозки грузов автомобильным транспортом: Справочное пособие. М.: Издательство «Дело и Сервис», 2002. 544 с.
- 9. Вельможин А.В., Гудков В.А., Миротин Л.Б. Технология, организация и управление грузовыми автомобильными перевозками. Волгоград: Волгогр. гос. техи. ун-т, 2000. 304 с.
- 10. Воркут А.И. Грузовые автомобильные перевозки. К.: Вища шк., 1986.-447с.
- 11. Горев А.Э. Грузовые автомобильные перевозки. 2-е изд., стер. М.: Издательский центр «Академия», 2004.-288 с.
- 12. Гаджинский А.М. Логистика. М.: Издательско-книготорговыи центр «Маркетинг», 2001. 396 с.
- 13. Глухарева Т.А., Горбанев Р. В. Организация движения грузовых автомобилей в городах. М.: Транспорт, 1989. $125~\mathrm{c}$.
- 14. Транспортная логистика. Под общ.ред. Л.Б. Миротина. М: Экзамен, 2002. 512с
- 15. Нагловский С.Н. Логистика проектирования и менеджмента производственно-коммерческих систем. Калуга: Манускрипт, 2002 336 c
- 16. Манускрипт, 2002. 336 с. Эффективная логистика. / Миротин Л.Б., Ташбаев Ы.Э., Порошива О.Г. — М.: Издательство «Экзамен», 2003. — 160 с.
- 17. Логистика: управление в грузовых транспортно логистических системах: Под ред. д-ра техн. наук проф. Миротина Л.Б., М.: Юристь, 2002. —414 с.