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Сформульовано і розглянуто проблему формування систе-
ми правил виконання бінарних операцій над нечіткими числами. 
Поставлену задачу розв’язано з нечіткими числах (L–R)-типу 
з компактним носієм. Така постановка задачі обумовлена про-
стотою аналітичного опису цих чисел, що дозволяє однознач-
но задати нечітке число набором значень його параметрів. Ця 
обставина стосовно до чисел (L–R)-типу дає можливість звести 
шукані правила виконання операцій над нечіткими числами до 
правил виконання простих арифметичних операцій над їх пара-
метрами. Встановлено, що у великій кількості цитованих робіт 
наводяться співвідношення, що описують правила виконання опе-
рацій над нечіткими числами (L–R)-типу, які містять помилки. 
Крім того, у всіх випадках відсутнє обґрунтування цих правил.

З метою побудови коректної системи правил нечіткої 
арифметики запропоновано сукупність метаправил, що визна-
чають принципи побудови та структуру правил виконання опе-
рацій. З використанням цієї сукупності метаправил розробле-
но і описано систему правил виконання основних арифметичних 
операцій (додавання, віднімання, множення, ділення). При цьому 
для правил множення і ділення наведені різні правила залежно 
від положення носіїв чисел, що беруть участь в операції, по відно-
шенню до нуля. Запропонована система правил забезпечує мож-
ливість коректного розв’язання безлічі практичних задач, в яких 
вихідні дані визначені нечітко. Ця система правил над нечітки-
ми числами з компактним носієм поширена випадок з нескінчен-
ним носієм. Відповідний підхід реалізується двокроковою проце-
дурою. Визначено переваги та недоліки цього підходу

Ключові слова: нечіткі числа (L–R)-типу, компактний носій, 
правила виконання арифметичних операцій
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1. Introduction

Practical tasks related to the analysis and synthesis of 
systems, decision theory, management theory, are resolved 
under conditions of uncertainty. Methods from a proba-
bility theory or a fuzzy set theory are used to describe this 
uncertainty. Probability theory is a strict axiomatic theory. 
However, it is this circumstance that limits the scope of its 
application for many practical problems. The fact is that the 
fundamental concepts of this theory, such as the distribution 
of random probabilities, can be strictly defined if the mecha
nism of forming these random quantities does not change 
over multiple observations. In reality, the conditions for 
the formation of observed quantities can vary significantly, 
resulting in the inadequacy of the results derived from them. 
Less demanding is the description of uncertainty in terms of 
fuzzy set theory [1]. This theory is a step towards bringing 
together the impeccable accuracy of classical mathematics 
and the pervasive inaccuracy of the real world [2].

2. Literature review and problem statement

The objects of fuzzy mathematics are fuzzy numbers. As 
in any mathematical theory, the success of solving practical 

problems in terms of fuzzy mathematics is determined by the 
correctness of the rules for performing operations over the ob-
jects of this theory. These rules are introduced as follows [3, 4].

Consider an arbitrary binary operation on fuzzy num-
bers x1 and x2 with membership functions μ1 1x( ),  μ2 2x( ). 
Introduce the * symbol of an arbitrary binary arithmetic 
queue (addition, subtraction, multiplication, division). Any 
such operation assigns the numbers x1 and x2  a certain  
result z. We also introduce the «reverse» operation ⊗, which 
assigns its second element to the result of composition z  and 
one of its elements (for example, x1) its second element.

Set the variants for a binary arithmetic operation:

z x x x x= ∗ = +1 2 1 2;  z x x x x= ∗ = −1 2 1 2; 	 (1)

z x x x x= ∗ =1 2 1 2;  z x x
x
x

= ∗ =1 2
1

2

.

Then, by using the «reverse» operation, we obtain, ac-
cordingly:

x z x z x2 1 1= ⊗ = − ;  x z x x z2 1 1= ⊗ = − ; 	 (2)

x z x
z
x2 1

1

= ⊗ = ;  x z x
x
z2 1

1= ⊗ = .
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The membership function of the result of a binary compo-
sition z x x= ∗1 2  is determined by ratio [5–7]:

μ μ μz t z t t( ) = ( ) ⊗( )
−∞

∞

∫ 1 2 d . 	 (3)

In particular, for the summation operation, the corre-
sponding membership function of the fuzzy number z  takes 
the following form:

μ μ μz t z t t( ) = ( ) −( )
−∞

∞

∫ 1 2 d . 	 (4)

Similarly, for the operations of subtraction, multipli-
cation, and division, the membership functions operations 
corresponding to the result of the operation execution are 
determined by the following ratios:

μ μ μz t t z t( ) = ( ) −( )
−∞

∞

∫ 1 2 d , 	 (5)

μ μ μz t
z
t

t( ) = ( ) 





−∞

∞

∫ 1 2 d , 	 (6)

μ μ μz t
t
z

t( ) = ( ) 





−∞

∞

∫ 1 2 d . 	 (7)

The downside of these rules of arithmetic operations is 
that the fuzzy numbers resulting from their implementations 
are not normalized. This shortcoming is taken into consi
deration in [8]. In this case, the membership functions, deter-
mined by considering (4) to (7), are normalized by the corre-
sponding maximum value. Then, in a general case, we obtain:

μ μ μ μz z t z t t
Z

( ) = ( ){ }



 ( ) ⊗( )

−

−∞

∞

∫max .
1

1 2 d 	 (8)

It is clear that the difficulty of performing computational 
operations in accordance with (8) depends on the form of the 
membership functions of the elements of composition x1 and 
x2, in specific cases, it can be unacceptably high. Therefore, 
many works [9–12] consider simplifying the procedure for 
arithmetic operations on fuzzy numbers. In this case, fuzzy 
numbers of different types are proposed to be used as operands: 
sigmoidal [12], interval [13], trapezoidal [14, 15] numbers. 
However, the low adequacy of these variants for describing 
uncertainty has led to the development of a more informative 
unified description of the membership functions of fuzzy num-
bers in the form of so-called (L–R)-type functions [1–8]. The 
membership function of such a fuzzy number x takes the form:

μ
α

β

LR x

L
m x

x m

R
x m

x m
( ) =

−





<

−





≥











, ,

, ,

if

if

	 (9)

where m  is the mode of a fuzzy number x, α, β are the left 
and right coefficients of fuzziness α β> >( )0 0, , L t( ), R t( ) are 
the arbitrary functions that are not ascending over a set of 
non-negative numbers, and L R0 0 1( ) = ( ) = .

According to (9), the (L–R)-type fuzzy number can be 
unequivocally defined by the three parameters < >m, , .α β  
Note that the asymmetric nature of the membership func-
tions of the (L–R)-type fuzzy numbers provides a possibility 

of obtaining good-quality approximations for a wide class of 
specific membership functions. In this case, a universal and 
extremely simple way of formally describing the membership 
functions of the (L–R)-type numbers initiated the develop-
ment of a specific technology for performing the simplest of 
operations (addition, subtraction, multiplication, division) 
over these numbers using only the parameters of these num-
bers. As a result, a large number of works have emerged that 
each has its own rules for performing operations over the 
(L–R)-type fuzzy numbers. Significant differences among 
them are due to the need to analyze known results and to 
construct a unified approach to the formation of the justified 
set of rules for implementing arithmetic operations over the 
(L–R)-type numbers. The relevant results are given below.

Let the (L–R)-type fuzzy numbers x1 and x2 be set by the 
membership functions:

μ
α

β

1 1

1
1 1

1
1 1

1 1

1
1 1

x

L
m x

x m

R
x m

x m

( ) =

−





≤

−





>








, ,

, ;

if

if





	 (10)

μ
α

β

2 2

2
2 2

2
2 2

2
2 2

2
2 2

x

L
m x

x m

R
x m

x m

( ) =

−





≤

−





>





 , ,

, .

if

if








	 (11)

Thus, these two fuzzy numbers are defined by sets 
x m1 1 1 1=< >, , ,α β  x m2 2 2 2=< >, , .α β  In accordance with this, 
the fuzzy number z, resulting from the operation z x x= ∗1 2, 
is described by the set < >m, , ,α β  where the numbers m, α, β 
are determined by the rules corresponding to the * operation. 
Consider the known rules for performing arithmetic opera-
tions (addition, subtraction, multiplication, and division).  
A large number of publications provide their own rules for 
performing operations on fuzzy numbers. We shall choose 
some of the most cited ones from those papers, containing the 
main results related to this issue.

Studies [16, 17] propose the following set of rules for per-
forming operations over the (L–R) fuzzy numbers.

Addition z x x= +1 2.

< > = < + + + >m m m, , , , .α β α α β β1 2 1 2 1 2 	 (12)

Subtraction z x x= −1 2.

< > = < − + + >m m m, , , , .α β α α β β1 2 1 2 1 2 	 (13)

Multiplication z x x= ⋅1 2.

< > = < ⋅ ⋅ + ⋅ ⋅ + ⋅ >m m m m m m m, , , , .α β α α β β1 2 1 2 2 1 1 2 2 1 	(14)

Ratio (13) (a subtraction operation) is wrong. It is clear 
that each fuzzy coefficient of the number z that sets the pa-
rameters for membership function (9) should depend simul-
taneously on the degree of blurriness in both the reduced and 
subtracted. Ratio (14) also produces an inaccurate result. 
For simple reasons, it is clear that the values of the fuzzy 
coefficients α and β in the result of the multiplication of 
fuzzy numbers should be higher than the fuzzy coefficients of 
the efficients. However, if the modal values of the efficients 
are small, the fuzzy result obtained according to (14) may  
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be inexplicably small. In particular, if the modal values m1 
and m2 are close to zero, then the result, even with the high 
vagueness of the efficients, would be an almost clear number, 
which, of course, is not the case.

Work [18] reports the following rules for operation exe-
cution. The rule of addition repeats (12).

Subtraction z x x= −1 2.

< > = < − − − >m m m, , , , .α β α α β β1 2 1 2 1 2 	 (15)

The proposed rule (15) of the subtraction operation 
makes the erroneous ratio (13) absurd. According to this 
formula, the blurring level of the result of the subtraction for 
any two blurred, to any degree (but almost equally), reduced 
and subtracted would be almost zero, which contradicts 
common sense.

The multiplication rule repeats error (14). 
In work [19], the addition rule repeats (12).
Subtraction z x x= −1 2.

< > = < − + + >m m m, , , , .α β α β α β1 2 1 2 2 1 	 (16)

Multiplication z x x= ⋅1 2.

< > =
⋅ ⋅ + ⋅ −

− ⋅ ⋅ + ⋅ + ⋅
m

m m m m

m m
, ,

,

,
.α β

β α
α β β α α β

1 2 1 1 2 1

1 1 1 2 2 2 2 2

	 (17)

Division z
x
x

= 1

2

.

< > = <
⋅ + ⋅

+( )
⋅ + ⋅

−( ) >m
m
m

m m
m m

m m
m m

, , , , .α β
β α

β
α β

β
1

2

1 2 2 1

2 2 2

2 1 1 1

2 2 1

	 (18)

Rule (17) makes an unsuccessful attempt to improve 
the consideration of importance of the efficients blurriness.  
As is shown below, the reported formula is not accurate. The 
proposed ratio (18) to describe the results of division is also 
not accurate. The denominator of the third component in for-
mula (18) should include a parameter that describes the fuz

ziness of the divider rather than the divisible in fraction 
x
x

1

2

.

In the set of rules for the execution of operations, pro-
posed in [20, 21], the rules of addition and subtraction repeat 
the previous (12) and (16).

Multiplication z x x= ⋅1 2.

< > = < ⋅ ⋅ + ⋅ ⋅ + ⋅ >m m m m m m m, , , , .α β α α β β1 2 1 2 2 1 1 2 2 1 	(19)

Division z
x
x

= 1

2

.

< > = <
⋅ + ⋅ ⋅ + ⋅

>m
m
m

m m
m

m m
m

, , , , .α β
β α α β1

2

1 2 2 1

2
2

2 2 2 1

2
2 	(20)

Ratio (19) repeats error (14). Rule (20) for the division 
of fuzzy numbers, as is shown below, contains inaccuracies in 
determining the left and right fuzzy coefficients. 

Thus, a brief analysis of the known sets of rules for per-
forming arithmetic operations over the (L–R)-type fuzzy 
numbers suggests that there is not any substantiated system 
of rules for operating on such numbers, which requires con-
tinued research.

3. The aim and objectives of the study

The aim of this study is to develop a sound system of 
fuzzy arithmetic rules.

To accomplish the aim, the following tasks have been set:
– to devise a unified, scientifically-substantiated ap-

proach to the wording of rules for performing arithmetic 
operations on the (L–R)-type fuzzy numbers;

– to implement the devised approach and to form with 
its use a system of rules for the execution of fuzzy arithmetic 
operations.

4. Rules for performing operations over  
the (L–R)-type fuzzy numbers

The desired approach to the formation of a system of rules 
for performing arithmetic operations over the (L–R)-type  
fuzzy numbers should be simple, naturally interpreted, and 
general in character, regardless of the type of operation.  
In accordance with this, we shall introduce a set of metarules 
for forming the rules for the execution of operations over the 
(L–R)-type fuzzy numbers.

The proposed metarules for compiling the rules for per-
forming operations over the (L–R)-type fuzzy numbers struc-
turally employ their following fundamental feature: the mem-
bership functions of such numbers are clearly determined by 
the numerical values of their parameters (a mode and the 
fuzzy coefficients). The rules for performing operations over 
the (L–R)-type fuzzy numbers should define algebra, that is, 
meet the generally accepted requirement: for any pair of fuzzy 
numbers from the (L–R)-type numbers class, no operation 
involving these numbers should exclude the operation result 
from this class. Let MLR be a set of the (L–R)-type fuzzy num-
bers with a finite carrier and a pair of fuzzy numbers x1 and x2 
belong to this set, that is, x MLR1 ∈ , x MLR2 ∈ .

Introduce *, an arbitrary operation on fuzzy numbers be-
longing to MLR . Then, the fuzzy number z, obtained as a result 
of this operation, is equal to

z x x MLR= ∗ ∈1 2 , 	 (21)

describe in the standard way:

x m1 1 1 1= < >, , ,α β  x m2 2 2 2= < >, , ,α β  z m= < >, , .α β 	(22)

Taking into consideration (21), (22), we shall introduce 
the following metarules for the formation of fuzzy arithme-
tic rules. 

Metarule 1. The modal value m of the fuzzy number z, de-
rived from the execution of (21), depends only on the modal 
values m1 and m2 of numbers x1 and x2, that is:

m m m= ∗1 2. 	 (23)

Metarule 2. The left fuzzy coefficient α of the number z is 
defined as the difference between the modal value m of the  
z number and the minimum possible value of the result of the 
operation execution, that is:

α = ∗( ) − ∗( )m m x x
x x1 2 1 2

1 2

min .
,

	 (24)

Metarule 3. The right fuzzy coefficient β is defined as the 
difference between the maximum possible value of the ope
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ration execution result and the modal value of the z number, 
that is:

β = ∗( ) − ∗( )max .
,x x

x x m m
1 2

1 2 1 2 	 (25)

Thus, the introduced metarules 1–3 clearly set a formal 
procedure for calculating the parameters of the membership 
function of the fuzzy number resulting from performing 
arithmetic operations over the (L–R)-type fuzzy numbers. 
We shall use these metarules to consistently describe the 
rules for performing basic operations over the (L–R)-type 
fuzzy numbers with a finite carrier.

Introduce x m1 1 1 1= < >, , ,α β  x m2 2 2 2= < >, , .α β  Next, in 
line with (23) to (25), write down the rules for performing 
arithmetic operations over numbers x1  and x2, accompany-
ing them with explanatory drawings.

 0222 ma

 2xB

1

2 2

2a 2m 2b
2x

1

0111 ma

1 1

1a 1m 1b

 1xA

1x

Fig. 1. The membership functions of operands

Addition z x x= +1 2;  z m= < >, , :α β

min

,

x x m m

m m

1 2 1 1 2 2

1 2 1 2

+( ) = −( ) + −( ) =

= +( ) − +( )
α α

α α

max

,

x y m m

m m

+( ) = +( ) + +( ) =

= +( )+ +( )
1 1 2 2

1 2 1 2

β β

β β

then

m m m= +1 2;  α α α= +1 2;  β β β= +1 2. 	 (26)

Subtraction z x x= −1 2;  z m, , :α β( )

min ,z m m m m= −( ) − +( ) = −( ) − +( )1 1 2 2 1 2 1 2α β α β

max ,z m m m m= +( ) − −( ) = −( )+ +( )1 1 2 2 1 2 1 2β α β α

Then

m m m= −1 2;  α α β= +1 2;  β β α= +1 2. 	 (27)

The rules for multiplication and division operations vary 
depending on the position of the x1 and x2  number carriers 
relative to zero. We shall give these rules for different vari-
ants of ratios between m1, α1, β2 and m2, α2, β2.

Variant 1.
Multiplication z x x= ⋅1 2;  z m= < >, , ;α β  m m m= ⋅1 2.

min ,z m m m m m m= −( )⋅ −( ) = − − +1 1 2 2 1 2 1 2 2 1 1 2α α α α α α

max ,z m m m m m m= +( )⋅ +( ) = + + +1 1 2 2 1 2 1 2 2 1 1 2β β β β β β

α α α α α

α α α α

= − − − +( ) =

= + −

m m m m m m

m m
1 2 1 2 1 2 2 1 1 2

1 2 2 1 1 2, 	 (28)

β β β β β
β β β β

= + + + − =
= + +

m m m m m m

m m
1 2 1 2 2 1 1 2 1 2

1 2 2 1 1 2. 	 (29)

 

 11 x

0111 ma
1a 1m 1b 1x

 22 x

0222 ma
2a 2m 2b 2x

Fig. 2. Performing operations. Variant 1

Division z
x
x

m
m

= = < >1

2

1

2

; ; ;α β  m
m
m

= 1

2

.

min ,z
m
m

=
−
+

1 1

2 2

α
β

 max ,z
m
m

=
+
−

1 1

2 2

β
α

α
α
β

β α
β

α β

= −
−
+

=

=
+ − +

+( ) =
+

m
m

m
m

m m m m m m
m m

m m
m

1

2

1 1

2 2

1 2 1 2 1 2 2 1

2 2 2

2 1 1 2

22 2 2m +( )β
, 	 (30)

β
β
α

β α
α

α β

=
+
−

− =

=
+ − +

−( ) =
+

m
m

m
m

m m m m m m
m m

m m
m

1 1

2 2

1

2

1 2 2 1 1 2 1 2

2 2 2

1 2 2 1

22 2 2m −( )α
. 	 (31)

Variant 2.

 0222 ma0111 ma
1a 1m 1b

x
2a 2m 2b

y

 0222 ma0111 ma
1a 1m 1b

x
2a 2m 2b

y

Fig. 3. Performing operations. Variant 2

Multiplication z x x= ⋅1 2;  m m m= ⋅1 2.

min ,z m m m m m m= −( )⋅ +( ) = + − −1 1 2 2 1 2 1 2 2 1 1 2α β β α α β

max ,z m m m m m m= +( )⋅ +( ) = + + +1 1 2 2 1 2 1 2 2 1 1 2β β β β β β

α β α α β

α β α β

= − + − −( ) =

= − +

m m m m m m

m m

1 2 1 2 1 2 2 1 1 2

2 1 1 2 1 2, 	 (32)

β β β β β

β β β β

= + + + − =

= + +

m m m m m m

m m

1 2 1 2 2 1 1 2 1 2

1 2 2 1 1 2. 	 (33)
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Division z
x
x

m= = < >1

2

; ; ;α β  m
m
m

= 1

2

.

min ,z
m
m

=
−
+

1 1

2 2

α
β

 max .z
m
m

=
+
−

1 1

2 2

β
α

The result of the division operation, in this case, repeats 
the above result.

Variant 3.

 

y

0222 ma
2a 2m 2b

0111 ma
1a 1m 1b

x

 

y

0222 ma
2a 2m 2b

0111 ma
1a 1m 1b

x

Fig. 4. Performing operations. Variant 3

Multiplication z x x= ⋅1 2;  m m m= ⋅1 2.

min min
;

min

z
m m

m m

m m m

=
−( ) +( )
−( ) +( )












=

=
+

1 1 2 2

2 2 1 1

1 2

α β

α β

11 2 2 1 1 2

1 2 2 1 1 2 2 1

β α α β

β α α β

− −( )
+ − −( )













m

m m m m

;
.

max max
;

max

z
m m

m m

m m m

=
−( ) −( )
+( ) +( )












=

=
−

1 1 2 2

1 1 2 2

1 2

α α

β β

11 2 2 1 1 2

1 2 1 2 2 1 1 2

α α α α

β β β β

− +( )
+ + +( )













m

m m m m

;
.

α β α α β= − + − −( ){m m m m m m1 2 1 2 1 2 2 1 1 2min ;

m m m m1 2 2 1 1 2 2 1+ − −( )}β α α β ; 	 (34)

β
α α α α

β β β β
=

− − +( )×

× + +( )











max .

m m

m m

1 2 2 1 1 2

1 2 2 1 1 2

	 (35)

The division operation in this variant is impossible as the 
carrier of the divider covers zero. 

Thus, we have devised the system of rules for performing 
arithmetic operations over the (L–R)-type fuzzy numbers.

5. Discussion of results obtained in the development  
of the fuzzy number arithmetic rule system

This paper proposes a strictly based system of rules for per-
forming arithmetic operations on fuzzy numbers. These rules, 
when necessary, take into consideration the location of the 
carriers of fuzzy arguments of the operation performed relative 
to zero. The proposed analytical ratios have been obtained to 
execute rules over the (L–R)-type fuzzy numbers with a com-
pact carrier. For other cases, if, for example, the membership 
functions of the fuzzy arguments are Gaussian, then these rules 
would produce an approximate result. The system of rules for 
performing operations over fuzzy numbers with an infinite 

carrier, corresponding to such a situation, can be obtained as 
follows. Operations are performed in two stages. In the first 
stage, for each of the arguments of the implemented rule, their 
membership functions are cut on a certain set of levels. To this 
end, for the appropriate pair of the membership functions:

μ
α

β

1 1

1
1 1

1
1 1

1
1 1

1
1 1

x

L
m x

x m

R
x m

x m

( ) =

−





≤

−





>





 , ,

, ;

if

if








μ
α

β

2 2

2
2 2

2
2 2

2
2 2

2
2 2

x

L
m x

x m

R
x m

x m

( ) =

−





≤

−





>





 , ,

, .

if

if








and for the selected value of the d level, the following equa-
tions are solved:

L
m x

dK
K K

K

−





=
α

,  R
x m

dk
k k

k

−





=
β

,  k = 1 2, . 	 (38)

The roots of these equations l dk ( ), r dk ( ), k = 1 2, , for argu-
ments x1 and x2 form intervals:

I x l d r dd
1 1 1 1
( ) ( ) = ( ) ( ) , ,  I x l d r dd

2 2 2 2
( ) ( ) = ( ) ( ) , . 	 (39)

The resulting intervals (39) in the second stage are 
used to calculate the d-level interval, which is the re-
sult of the * operation performed over the fuzzy numbers, 
set by the intervals I xd

1 1
( ) ( ) and I xd

2 2
( ) ( ). In this case, we  

shall obtain I z I x I xd d d( ) ( ) ( )( ) = ( ) ( )1 1 2 2* . The corresponding  
operation is performed according to the rules introduced 
above. The described steps are performed for each of the 
d-levels. The undeniable advantage of the described approach 
is the possibility to restore the operation over the original 
fuzzy numbers at any predefined accuracy. The obvious draw-
back is the laboriousness of obtaining the result, associated 
with the need to multiply solve the set of equations (38), not 
necessarily easily solved, which naturally limits the scope of 
application of this approach.

Possible areas of further research include the develop-
ment of an expanded system of rules for any binary algebraic 
operations in order to create a formal basis for problem solv-
ing, analysis, and fuzzy system optimization under uncertain 
conditions [22, 23]; the construction of rules for performing 
operations over fuzzy numbers of the second type.

6. Conclusions

1. We have devised a scientifically-substantiated ap-
proach to form a system of rules of fuzzy numbers arithmetic 
whose axiomatic basis is a set of metarules.

2. Using this approach, a strictly based system of rules 
has been built for performing arithmetic operations over the 
(L–R)-type fuzzy numbers with a compact carrier. The pro-
posed rule system has been expanded to perform operations 
on fuzzy numbers with a non-finite carrier. In this case, the 
initial problem is reduced to a set of simple problems with  
a compact carrier.
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