yu | =,

Copmyavosano i posensnymo npoénemy Qopmyeanns cucme-
MU NPABUNL BUKOHANNS GTHAPHUX ONePaUiil HAO HeHIMKUMU YUCTIAMU.
Iocmasneny 3adauy poseé’sasano 3 newimxumu wucnax (L—R)-muny
3 Komnaxmuum nociem. Taxa nocmanosxa saoaui o6ymosaena npo-
CMOMOI0 GHATIMUUHO020 ONUCY UUX HUCETl, WO 003607€ 00HOIHAU-
HO 3a0amu Heuwimie HUCTO HAOOPOM 3HAMEHb 11020 napamempis. I
oocmasuna cmocoeno 0o wucen (L—R) -muny dae moycaugicmo 36ecmu
wyKani npasuna 6UKOHAHHA Onepauiii Hao HewimKumu “ucaamu 0o
npaeusl BUKOHAHHS NPOCMUX apudpmemuuHux onepauii Hao ix napa-
Mmempamu. Bcmanoeneno, wo y eequkiil xinvkocmi yumosanux pooim
HAB00MbCS CNiBEIOHOUEHHSL, W0 ONUCYIOMb NPABUNA BUKOHAHHS ONe-
pauii nao newimxumu wucramu (L—R)-muny, axi micmamo nomunxu.
Kpim mozo, y ecix sunadxax eiocymie o6rpynmyeanis uux npasu.

3 Mmemoto nobyodosu xopexmuoi cucmemu npasun Heuimroi
apugpmemuxu 3anponoHO6aH0 CYKYNHICMb MEMAnpasul, wo 6U3HA-
4aromv npUHUUNU NOGYO06U Ma CMPYKMYpPY NPAGUL BUKOHAHHS One-
pauiii. 3 GUKOPUCMANHAM UIEL CYKYNHOCMI Memanpasui po3pob.ie-
HO 1 ONUCAHO CUCMeMY NPABUITL BUKOHAHHS OCHOBHUX ApUpMemuuHux
onepauiii (Dooasanns, 6iOHIMaAHHA, MHOJNCEHHA, Oinenns) . [Ipu yvomy
O3 MPABUNL MHOJICEHHSA i OiJleHHA HaBedeHl Pi3Hi NPABUNA 3ATIeIHCHO
610 N0J10JICENNA HOCII6 UCe, W0 Oepymb ynacmv 6 onepauii, no 610Ho-
wennio 00 HY. 3anponoHO6aHa cucmema npasut 3adesneuye Modic-
JUGICHD KOPEKMHO20 PO36’I3aHHS Oe3Ml NPaAKMUMHUX 3a0a4, 8 SKUX
euxioni dani eusnaueni newimxo. Il cucmema npasun nao newimiu-
MU HUCTAMU 3 KOMRAKMHUM HOCIEM NOWUPEHA BUNRAVOK 3 HECKIHUEH -
Hum Hociem. Bionoeionuii nioxio peanizyemocs 060KpoKx0601o npouye-
Oyporo. Busnaueno nepesazu ma nedonixu ub020 nioxooy

Knrouosi crosa: newimxi wucaa (L—R)-muny, xomnaxmmuii HoCiil,
npasuna 6UKOHAHHS ApuUPMemutHux onepayii
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Practical tasks related to the analysis and synthesis of
systems, decision theory, management theory, are resolved
under conditions of uncertainty. Methods from a proba-
bility theory or a fuzzy set theory are used to describe this
uncertainty. Probability theory is a strict axiomatic theory.
However, it is this circumstance that limits the scope of its
application for many practical problems. The fact is that the
fundamental concepts of this theory, such as the distribution
of random probabilities, can be strictly defined if the mecha-
nism of forming these random quantities does not change
over multiple observations. In reality, the conditions for
the formation of observed quantities can vary significantly,
resulting in the inadequacy of the results derived from them.
Less demanding is the description of uncertainty in terms of
fuzzy set theory [1]. This theory is a step towards bringing
together the impeccable accuracy of classical mathematics
and the pervasive inaccuracy of the real world [2].

2. Literature review and problem statement

The objects of fuzzy mathematics are fuzzy numbers. As
in any mathematical theory, the success of solving practical

problems in terms of fuzzy mathematics is determined by the
correctness of the rules for performing operations over the ob-
jects of this theory. These rules are introduced as follows [3, 4].

Consider an arbitrary binary operation on fuzzy num-
bers x, and x, with membership functions p,(x,), w,(x,).
Introduce the * symbol of an arbitrary binary arithmetic
queue (addition, subtraction, multiplication, division). Any
such operation assigns the numbers x, and x, a certain
result z. We also introduce the «reverse» operation ®, which
assigns its second element to the result of composition z and
one of its elements (for example, x,) its second element.

Set the variants for a binary arithmetic operation:

Z=X KX, =X H Xy, Z=X KX, =X, — X, ¢))

x
Z= X RN, = XN, Z= X FX, =L,

Xy
Then, by using the «reverse» operation, we obtain, ac-
cordingly:

X,=2z@x,=2-Xx; X,=2Qx, =X, 2 (2)
z X
— — . — |
X, =zQx=—; x,=2zQ@x, =—.
X, z



The membership function of the result of a binary compo-
sition z=ux,*x, is determined by ratio [5-7]:

oo

u(z)= Ju1(t)u2(z®t)dt. 3)

In particular, for the summation operation, the corre-
sponding membership function of the fuzzy number z takes
the following form:

w(z)= ju1(t)uz(z—t)dt. (4)

Similarly, for the operations of subtraction, multipli-
cation, and division, the membership functions operations
corresponding to the result of the operation execution are
determined by the following ratios:

(2)= [ e =2)ae, 5)

u(o)=| ul(t)uz(i)dt, (©)

(@)= o . @)

The downside of these rules of arithmetic operations is
that the fuzzy numbers resulting from their implementations
are not normalized. This shortcoming is taken into consi-
deration in [8]. In this case, the membership functions, deter-
mined by considering (4) to (7), are normalized by the corre-
sponding maximum value. Then, in a general case, we obtain:

i(z) = max{u(2)} | ;‘:ul(t)uz(z@t)dt. ®)

It is clear that the difficulty of performing computational
operations in accordance with (8) depends on the form of the
membership functions of the elements of composition xy and
X9, in specific cases, it can be unacceptably high. Therefore,
many works [9-12] consider simplifying the procedure for
arithmetic operations on fuzzy numbers. In this case, fuzzy
numbers of different types are proposed to be used as operands:
sigmoidal [12], interval [13], trapezoidal [14, 15] numbers.
However, the low adequacy of these variants for describing
uncertainty has led to the development of a more informative
unified description of the membership functions of fuzzy num-
bers in the form of so-called (L—R)-type functions [1-8]. The
membership function of such a fuzzy number x takes the form:

L(u), if x<m,
o

Mg (x): vem 9)
{

J, if x>m,

where m is the mode of a fuzzy number x, o, B are the left
and right coefficients of fuzziness (o> 0, p>0), L(¢), R(¢) are
the arbitrary functions that are not ascending over a set of
non-negative numbers, and L(0)=R(0)=1.

According to (9), the (L—R)-type fuzzy number can be
unequivocally defined by the three parameters <m,o,B>.
Note that the asymmetric nature of the membership func-
tions of the (L—R)-type fuzzy numbers provides a possibility

of obtaining good-quality approximations for a wide class of
specific membership functions. In this case, a universal and
extremely simple way of formally describing the membership
functions of the (L—R)-type numbers initiated the develop-
ment of a specific technology for performing the simplest of
operations (addition, subtraction, multiplication, division)
over these numbers using only the parameters of these num-
bers. As a result, a large number of works have emerged that
each has its own rules for performing operations over the
(L—R)-type fuzzy numbers. Significant differences among
them are due to the need to analyze known results and to
construct a unified approach to the formation of the justified
set of rules for implementing arithmetic operations over the
(L—R)-type numbers. The relevant results are given below.

Let the (L—R)-type fuzzy numbers x1 and x, be set by the
membership functions:

m—-x ) .
L1( - 1), if x,<m,,
o

()= ‘ (10)
R(x‘[;m‘], if x,>m;
1
L{mz_xzj, if x,<m,,
o,
Hz(xz): ’ (11)

R{%;%}ﬁ%>%.
2

Thus, these two fuzzy numbers are defined by sets
x, =<my,0,,B, >, x,=<m,,c,,B,>. In accordance with this,
the fuzzy number z, resulting from the operation z=x, *x,,
is described by the set <m,a,B>, where the numbers m, o, B
are determined by the rules corresponding to the * operation.
Consider the known rules for performing arithmetic opera-
tions (addition, subtraction, multiplication, and division).
A large number of publications provide their own rules for
performing operations on fuzzy numbers. We shall choose
some of the most cited ones from those papers, containing the
main results related to this issue.

Studies [16, 17] propose the following set of rules for per-
forming operations over the (L—R) fuzzy numbers.

Addition z=x, +x,.

<m,0,B>=<m, +m,o,+0,,B +p,>. (12)
Subtraction z=ux, —x,.
<m,,B>=<m —m,,o,+0,,B +B,>. (13)

Multiplication z=ux,-x,.
<m,o,B>=<m-my,m O, +m,-o,,m B, +m,-B,>. (14)

Ratio (13) (a subtraction operation) is wrong. It is clear
that each fuzzy coefficient of the number z that sets the pa-
rameters for membership function (9) should depend simul-
taneously on the degree of blurriness in both the reduced and
subtracted. Ratio (14) also produces an inaccurate result.
For simple reasons, it is clear that the values of the fuzzy
coefficients o and B in the result of the multiplication of
fuzzy numbers should be higher than the fuzzy coefficients of
the efficients. However, if the modal values of the efficients
are small, the fuzzy result obtained according to (14) may



be inexplicably small. In particular, if the modal values m,
and m, are close to zero, then the result, even with the high
vagueness of the efficients, would be an almost clear number,
which, of course, is not the case.

Work [18] reports the following rules for operation exe-
cution. The rule of addition repeats (12).

Subtraction z=x, —x,.

<m,o,B>=<m —m,, o, —at,, B, —B,>. (15)

The proposed rule (15) of the subtraction operation
makes the erroneous ratio (13) absurd. According to this
formula, the blurring level of the result of the subtraction for
any two blurred, to any degree (but almost equally), reduced
and subtracted would be almost zero, which contradicts
common sense.

The multiplication rule repeats error (14).

In work [19], the addition rule repeats (12).

Subtraction z=x, —x,.

<m,o,B>=<m —m,, o, +B,, o, +B, >. (16)
Multiplication z=x,-x,.
m,-m,, m, B, +m,- o, —
<m,a,B>=< oty By > A7)
—oy-By, myPy+my o, +o, B,
Division z==1.
Xy
m, my-B,+m, om0 +m,-
<m,0c,[3>=<—1, B, g Oy My - Oy B, (18)

, >
m, mz(m2+[32) mz(m2_51)

Rule (17) makes an unsuccessful attempt to improve
the consideration of importance of the efficients blurriness.
As is shown below, the reported formula is not accurate. The
proposed ratio (18) to describe the results of division is also
not accurate. The denominator of the third component in for-
mula (18) should include a parameter that describes the fuz-
ziness of the divider rather than the divisible in fraction .

x2

In the set of rules for the execution of operations, pro-
posed in [20, 21], the rules of addition and subtraction repeat
the previous (12) and (16).

Multiplication z=x,-x,.

<m,o,B>=<m,-m,, m -0, +m,-o,, m-B,+m,-B,>.(19)

Division z=-L.
Xy

m, m-B,+m,-o, my-0o,+m,-B

1 1 2 2 1 2 2 2 1
<m,o,f>=<—, 5 , 5
m, m, m,

>. (20)
Ratio (19) repeats error (14). Rule (20) for the division

of fuzzy numbers, as is shown below, contains inaccuracies in

determining the left and right fuzzy coefficients.

Thus, a brief analysis of the known sets of rules for per-
forming arithmetic operations over the (L—R)-type fuzzy
numbers suggests that there is not any substantiated system
of rules for operating on such numbers, which requires con-
tinued research.

3. The aim and objectives of the study

The aim of this study is to develop a sound system of
fuzzy arithmetic rules.

To accomplish the aim, the following tasks have been set:

—to devise a unified, scientifically-substantiated ap-
proach to the wording of rules for performing arithmetic
operations on the (L—R)-type fuzzy numbers;

— to implement the devised approach and to form with
its use a system of rules for the execution of fuzzy arithmetic
operations.

4. Rules for performing operations over
the (L—R)-type fuzzy numbers

The desired approach to the formation of a system of rules
for performing arithmetic operations over the (L—R)-type
fuzzy numbers should be simple, naturally interpreted, and
general in character, regardless of the type of operation.
In accordance with this, we shall introduce a set of metarules
for forming the rules for the execution of operations over the
(L—R)-type fuzzy numbers.

The proposed metarules for compiling the rules for per-
forming operations over the (L—R)-type fuzzy numbers struc-
turally employ their following fundamental feature: the mem-
bership functions of such numbers are clearly determined by
the numerical values of their parameters (a mode and the
fuzzy coefficients). The rules for performing operations over
the (L—R)-type fuzzy numbers should define algebra, that is,
meet the generally accepted requirement: for any pair of fuzzy
numbers from the (L—R)-type numbers class, no operation
involving these numbers should exclude the operation result
from this class. Let M, , be a set of the (L—R)-type fuzzy num-
bers with a finite carrier and a pair of fuzzy numbers xy and xy
belong to this set, that is, ¥, € M, x, € M.

Introduce *, an arbitrary operation on fuzzy numbers be-
longing to M, ;. Then, the fuzzy number z, obtained as a result
of this operation, is equal to

z=x%x, €M,

(21)
describe in the standard way:
x =<m,o,,B, > x,=<m,,0,,B,> z=<moB>. (22)

Taking into consideration (21), (22), we shall introduce
the following metarules for the formation of fuzzy arithme-
tic rules.

Metarule 1. The modal value m of the fuzzy number z, de-
rived from the execution of (21), depends only on the modal
values m, and m, of numbers x, and x,, that is:

m=m, *m,. (23)

Metarule 2. The left fuzzy coefficient o of the number z is
defined as the difference between the modal value m of the
znumber and the minimum possible value of the result of the
operation execution, that is:

o= (m, *m,)—min(x, *x,).

X4,Xy

(24)

Metarule 3. The right fuzzy coefficient B is defined as the
difference between the maximum possible value of the ope-



ration execution result and the modal value of the z number,
that is:

B=max(x, *x,)—(m, *m,). (25)

Thus, the introduced metarules 1-3 clearly set a formal
procedure for calculating the parameters of the membership
function of the fuzzy number resulting from performing
arithmetic operations over the (L—R)-type fuzzy numbers.
We shall use these metarules to consistently describe the
rules for performing basic operations over the (L—R)-type
fuzzy numbers with a finite carrier.

Introduce x,=<m,0,,B,> x,=<m,0,B,>. Next, in
line with (23) to (25), write down the rules for performing
arithmetic operations over numbers x, and x,, accompany-
ing them with explanatory drawings.

i MA(xl) il Mg(xz)

» X » Xy
a, m, b,

a=m—o,>0 a,=m, —0, >0

Fig. 1. The membership functions of operands
Addition z=x,+x,; z=<m,o,p>:
min(x1+x2)=(m1—a1)+(m2—0c2)=
=(m, +m,)— (o, +0,),
max(x+y):(m1+ﬁ1)+(m2+[32):
=(m1+m2)+([31+[32),

then

m=m +m,; a=0,+0,; B=P,+P,. (26)
Subtraction z=x,—x,; z(m,o,p):
minz = (m, —o,)—(m, +p,)=(m, —m,)—(c, +B,),
Inaxzz(m1+[31)—(m2—az):(m1—m2)+(ﬁ1+oc2),
Then
m=m,—m,; o.=0o,+B,; B=p,+a,. 27)

The rules for multiplication and division operations vary
depending on the position of the x, and x, number carriers
relative to zero. We shall give these rules for different vari-
ants of ratios between my, oy, By and ms, o, Bo.

Variant 1.

Multiplication z=ux,-x,; z=<m,oB> m=m, -m,.

min z = (m, — o, )-(m, —ot,) = mym, — m,oL, —m,0t, + 0,0,
max z = (m1 +B1)-(m2 +B2) =mm, +m}, +m,B, +B,B,,

o =m,m, —(m,m, —m,o, —m,o, +0,0,) =

=m,0l, +m,0, — 0,0, (28)

B=mm,+mp,+m,p,+pp, —mm,=
= m1Bz + sz1 + B1B2~ (29)

> 'x2
a m by a, m; b,
a=m—o,; >0 a,=m, — o, >0
Fig. 2. Performing operations. Variant 1
Division z=-"t=<—1;04,B> m=—L.
x, m, m,
. m, —a, m, +
minz=——2=1, max2=1731,
m, +, My =0y
_my, om0,
m, m,+B,
_mm, + m,B, —mm, +m,o, _myoy mp, (30)
’
mz(m2+Bz) mZ(m2+BZ)
g +B _my _
m,—o, m,
_mm, + m,B, —mm, +mat, _mo, + mB, 31)
mz(mz_‘xz) mz(mz_az)
Variant 2.

a m, b,
a,=m,—a,>0

4
L=m —a,; <0

Fig. 3. Performing operations. Variant 2
Multiplication z=x,-x,; m=m,-m,.
minz= (m1 - 011)-(m2 + [32) =mm, +m,}B, —m,o, —o.B,,

maxz= (m1 + [31)~(m2 + B2)= mym, +m,B, +m,B, +pB,,
oL =mym, —(m1m2 +mf, —m,a, - 0‘1[32) =
=m,o, —mB, +a,B,, (32)

B=mm,+mp,+m,p,+pB, —mm,=

=mp, +m,p, +BB,. (33)



Division z="t=<m;o;B> m=—L.
X m

2 2
. m, —o m, +
minz=——72>=, maxz:ﬁ.
m,+p, m, —Q,

The result of the division operation, in this case, repeats
the above result.
Variant 3.

4 A

» X >
a, m, b
a,=m; —o,<0

Fig. 4. Performing operations. Variant 3

Multiplication z=x,-x,; m=m,-m,.
. . {(m1 _O(1)(m2+l32);}
min z=min =
(mz —(12)(7711 +B1)
. {(mﬂnz +m1l32 —m,0, —061[32); }
=min .
(m1m2 + sz1 —mol, — (X2I~)’1)
{(m1 _(X1)(m2 _(XZ);}
max z = max =
(m, +B,)(m, +B,)

{(mmz2 =m0, — M0 + 0,0 ); }

=max
(m1m2 + mlBZ + mZB1 + B1l32)
o=mm, —Inin{(m1m2 +m,f, —m,o, — 0(1[32);
(m1m2 +m,p, —mo, — 0‘231)}; (34)
- max{(—mpcz —m,0, +oc1oc2)><} (35)
X(m1B2 +myf, + B1B2)

The division operation in this variant is impossible as the
carrier of the divider covers zero.

Thus, we have devised the system of rules for performing
arithmetic operations over the (L—R)-type fuzzy numbers.

3. Discussion of results obtained in the development
of the fuzzy number arithmetic rule system

carrier, corresponding to such a situation, can be obtained as
follows. Operations are performed in two stages. In the first
stage, for each of the arguments of the implemented rule, their
membership functions are cut on a certain set of levels. To this
end, for the appropriate pair of the membership functions:

m—x | .
L|——=1, if x,<m,
o

u1(x1)= 1
R1(x1—m1

1

), if x,>my;

m,—x,\ .
L —=—2| if x,<m,,
a’Q

RZ(XQI;mZJ, if x,>m,.

2

My (xz):

and for the selected value of the d level, the following equa-
tions are solved:

LK(WJ% Rk(xk[;kazd, k=12.
Oy k

The roots of these equations /,(d), r,(d), k=1,2, for argu-
ments x, and x, form intervals:

(38)

Ifd)(x1)=[l1 (d)’ 71(01)]y Igd)(xz):[lz (d)’ ) (d)]

(39)

The resulting intervals (39) in the second stage are
used to calculate the d-level interval, which is the re-
sult of the * operation Ferformed over the fuzzy numbers,
set by the intervals 7\ (x,) and Iéd)(xz). In this case, we
shall obtain I(d)(z):li(d) (x1)*1£d)(x2). The corresponding
operation is performed according to the rules introduced
above. The described steps are performed for each of the
d-levels. The undeniable advantage of the described approach
is the possibility to restore the operation over the original
fuzzy numbers at any predefined accuracy. The obvious draw-
back is the laboriousness of obtaining the result, associated
with the need to multiply solve the set of equations (38), not
necessarily easily solved, which naturally limits the scope of
application of this approach.

Possible areas of further research include the develop-
ment of an expanded system of rules for any binary algebraic
operations in order to create a formal basis for problem solv-
ing, analysis, and fuzzy system optimization under uncertain
conditions [22, 23]; the construction of rules for performing
operations over fuzzy numbers of the second type.

6. Conclusions

This paper proposes a strictly based system of rules for per-
forming arithmetic operations on fuzzy numbers. These rules,
when necessary, take into consideration the location of the
carriers of fuzzy arguments of the operation performed relative
to zero. The proposed analytical ratios have been obtained to
execute rules over the (L—R)-type fuzzy numbers with a com-
pact carrier. For other cases, if, for example, the membership
functions of the fuzzy arguments are Gaussian, then these rules
would produce an approximate result. The system of rules for
performing operations over fuzzy numbers with an infinite

1. We have devised a scientifically-substantiated ap-
proach to form a system of rules of fuzzy numbers arithmetic
whose axiomatic basis is a set of metarules.

2. Using this approach, a strictly based system of rules
has been built for performing arithmetic operations over the
(L—R)-type fuzzy numbers with a compact carrier. The pro-
posed rule system has been expanded to perform operations
on fuzzy numbers with a non-finite carrier. In this case, the
initial problem is reduced to a set of simple problems with
a compact carrier.
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