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Задача комівояжера (ЗК) – це задача, при якій комівояжер відправля-
ється з вихідного вузла і повертається до нього таким чином, що кожен 
вузол в мережі вузлів відвідується один раз, а загальна пройдена відстань 
зводиться до мінімуму. Вважається, що ефективного алгоритму для ЗК 
не існує. ЗК класифікується як NP-важка задача і розробка ефективного 
вирішення для неї буде означати NP=P. У статті представлена поста-
новка задачі комівояжера з фіктивними елементами. Для цього виклю-
чаються всі субтури в мережі задачі комівояжера (ЗК) з використанням 
мінімально можливої кількості обмежень. Оскільки для формування суб-
тура потрібно мінімум три вузли, мережа ЗК розділяється за допомогою 
вертикальних і горизонтальних ліній таким чином, щоб між вертикаль-
ними або горизонтальними лініями було не більше трьох вузлів. У даній 
роботі множина всіх вузлів між будь-якою парою вертикальних або гори-
зонтальних ліній називається блоком. Фіктивні вузли використовуються 
для з’єднання одного блоку з наступним. Потім реконструйована ЗК вико-
ристовується для постановки ЗК як задачі цілочислового лінійного про-
грамування (ЦЛП). При використанні алгоритмів розгалуження немає 
ніякої гарантії, що кількість підзадач не злетить до некерованих рівнів. 
Евристичні або апроксимуючі алгоритми, які іноді використовуються 
для прийняття швидких рішень для практичних моделей ЗК, мають сер-
йозні економічні проблеми. Різниця між точним рішенням і приблизними 
в грошовому вираженні дуже велика для практичних завдань, таких як 
доставка листів з використанням транспортного засобу в Пекіні, Токіо, 
Вашингтоні і т. д. Модель ЗК має безліч промислових застосувань, таких 
як свердління друкованих плат (ДП), капітальний ремонт газотурбінних 
двигунів, рентгенівська кристалографія, підключення комп’ютерів, комп-
лектація замовлень на складах, складання маршрутів транспортних 
засобів, нанесення масок при виробництві ДП і т. д.

Ключові слова: задача комівояжера, субтур, блок, цілочисельна ліній-
на програма, фіктивний/манекен
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1. Introduction

Network reconstruction is not a new idea. It was used in [1] 
to solve the traveling salesman problem. A minimal spanning 
tree was used to detect sub-tours. In that paper, the TSP 
network diagram was reconstructed in such a way that the 
sub-tours are eliminated. The challenge with that approach is 
that suppose a sub-tour is missed or failed to be detected. In the 
proposed approach, it is ensured that all sub-tours are elimina-
ted. The fact that a minimum of three nodes are needed to form 
a sub-tour is used to eliminate all sub-tours when reconstruct-
ing the TSP network model. Vertical and horizontal lines are 
used to partition the TSP network problem so that there are no 
more than three nodes between either the vertical lines or hori-
zontal lines. In this paper, a set of all nodes between any pair of 
vertical or horizontal lines is called a block. Dummy nodes are 
used to connect one block to the next one. The reconstructed 
TSP is then used to reformulate TSP as an integer linear pro-
gramming problem (ILP), which is then solved efficiently by 
interior point algorithms to give an exact solution.

The traveling salesman problem is a problem whereby the 
salesman starts from an origin node and returns to it in such 
a way that every node in the network of nodes is visited once 
and the total distance travelled is minimized. It is assumed in 
this paper that all nodes have at least two arcs coming out of 
them as given in Fig. 1.

Fig. 1 is presented in this form for convenience. Any TSP 
network problem can be put in any form one may wish.
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                                                  Fig 1. TSP model 
 

   

 

 

 

 

  

   

         

 

 

 

 

 

 

Fig.	1.	TSP	model

Fig. 1 gives an example of a TSP network model. This 
TSP network model can have any number of nodes. The TSP 
model has many industrial applications such as drilling of 
printed circuit boards (PCBs), overhauling of gas turbine en-
gines, X-Ray crystallography, computer wiring, order-picking  
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problem in warehouses, vehicle routing, mask plotting in 
PCB production, etc.

2. Literature review and problem statement

Partitioning or clustering method is not a new idea for 
the traveling salesman problem. Clustering was used in [2] 
to solve the clustered generalized traveling salesman problem 
(CGTSP). The challenge with such a clustering approach is 
that it gives near optimal solutions and not the exact solu-
tion. The 2-Opt heuristic is a simple algorithm for finding  
a good approximate solution to the traveling salesman prob-
lem [3]. In that paper, it was proved that for the metric TSP 
with n cities, the approximation ratio of the 2-Opt heuristic 
is n 2 and that this bound is tight. Again, this heuristic 
gives a near optimal solution and it does not give the exact 
solution. The paper [4] presents an approach to improve the 
Miller-Tucker-Zemlin (MTZ) model for the symmetric trav-
eling salesman problem (ATSP). This is a 2020 publication 
and it shows that the hunt for an exact algorithm is ongoing. 
The paper [5] is on the generalized traveling salesman prob-
lem with time windows (GTSPTW). The TSP problem in 
this case is partitioned into clusters whereby each cluster 
has only one depot. The proposed algorithm in this paper is 
aimed at finding a minimum cost tour starting and ending at 
the depot, such that each cluster is visited exactly once and 
time constraints are not violated. This algorithm takes time 
to solve large TSP problems. In [6], ant colony optimiza-
tion (ACO) algorithm is used to solve the traveling salesman 
problem (TSP). The main challenge with this algorithm 
is that it is not exact and is very difficult to know how far 
the solution obtained is from the exact one. Some exact and 
approximation methods for the TSP are compared in [7]. 
Heuristics are fast in obtaining a near optimal solution to 
the TSP and exact methods obtain the optimal solution at 
unreasonable times. One cannot make quick decisions with 
these exact methods. The difference between exact and ap-
proximate solution for large towns such as Beijing or Tokyo is  
a very huge amount of money. The TSP model has many indus-
trial applications and is NP-hard, making it very difficult to 
solve. There is a need for an efficient method that can handle 
very large TSPs. In this paper, an efficient exact method that 
incorporates interior point approaches is proposed. Interior 
point algorithms can handle very large practical problems.

3. The aim and objectives of the study

The aim of the study is to develop a dummy guided for-
mulation for the traveling salesman problem. To achieve the 
set aim, the following objectives have been accomplished:

– to partition the TSP network problem into blocks by 
means of vertical and horizontal lines;

– to construct dummies so as connect neighboring blocks;
– to formulate the dummy reconstructed TSP as an ILP;
– to provide a numerical illustration.

4. TSP network properties

4. 1. Standard constraints
Suppose we are given any node r with k arcs emanating 

from it as given in Fig. 2.
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Fig.	2.	Arcs	in	and	out	of	node	r

The standard constraint is very easy to formulate and can 
be formulated as (1):

x x x xr r r kr1 2 3 2+ + + + =... .  (1)

If a TSP does not have sub-tours, then the optimal solu-
tion of the relaxed will be an integer as presented in 4. 2.

4. 2. Theorem
Let the coefficient matrix be A if the TSP is made up of 

standard constraints only. The matrix A is totally unimodular 
if it satisfies the following five conditions:

a) all entries of A are 0, 1 or –1;
b) the rows of A can be partitioned into two disjoint sets 

S1 and S2;
c) every column of A contains at most two nonzero entries;
d) if any column of A contains two nonzero entries of the 

same sign, then one is in a row of S1 and the other in a row of S2;
e) if any column of A contains two nonzero entries of  

the opposite sign, then they are both in rows of S1 or both  
in rows of S2.

The theorem is from [8] and more on it is well presen-
ted there.

4. 3. Existence of sub-tours
Unfortunately, standard constraints on their own may result 

in sub-tours. So there is a need for a way to detect and eliminate 
sub-tours. The existence of sub-tours is illustrated in Fig. 3.
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Fig.	3.	Existence	of	sub-tours
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The existence of sub-tours makes the traveling salesman 
problem appear to be very difficult to solve.

Examples of sub-tours are presented in Fig. 3 and there 
are four of them.

In practical problems, there can be any number of sub-
tours in one TSP network model.

4. 4. Vertical and horizontal parts
For a sub-tour to form, a minimum of three nodes are 

required and this fact can be used to partition a TSP network 
diagram.

Thus, vertical and horizontal lines can be drawn such 
that the distance between any two vertical lines or horizontal 
lines is not more than three nodes.

In other words, these horizontal and vertical lines cross 
arcs without touching a single node.

These lines do not necessarily have to be vertical and they 
do not necessarily have to be horizontal.

All those lines that are vertical or near vertical are treated 
as vertical.

Similarly, all those lines that are horizontal or near ho-
rizontal are treated as horizontal in this paper.

Any TSP network diagram can be made to face any di-
rection.

Vertical line.
Vertical lines represented by γs are presented in Fig. 4. 

.

γ γ γγ1 2
2

3

Fig.	4.	Vertical	and	horizontal	lines

Note that the distance between any two nearest vertical 
lines is not more than 3 nodes.

Horizontal lines.
Examples of horizontal lines (γs) are presented in Fig. 5. 

Note that the distance between any two nearest horizontal 
lines is not more than 3 nodes.

Note that there are no more than 3 nodes between the 
lines when going horizontally and no more than 3 nodes 
when going vertically.

. 

γ 2

γ3

γ 1

Fig.	5.	Horizontal	lines

4. 5. Dummy nodes
In this paper, we define a block as a set of all nodes bet-

ween any closest pair of vertical or horizontal lines. To make 
sure sub-tours are eliminated, there is a need to connect all 
the blocks. This can be done by introducing dummy nodes 
so as to enable connection of these blocks. A dummy node 
is an additional node or artificial node created to elimi-
nate sub-tours. A dummy node connects the boundary or 
frontline nodes of any two neighboring blocks. A dummy is 
added as an additional node and all the original and given 
nodes remain there. Fig. 6 illustrates blocks and boundary or  
frontline nodes.

.

γ

Fig.	6.	Blocks	and	frontline	or	boundary	nodes

In real life or practical problems, there are any number (i)  
of nodes on one side of the boundary (W1, W2, …, Wi) and  
any number ( j) nodes on the other side of the boundary 
(Y1, Y2, …, Yj) as given in Fig. 7. 
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The frontline nodes after adding a dummy become as 
given in Fig. 8.

…    

… … …

rγ

             …

Fig. 7.  The frontline nodes (general case)

1Y jY2Y

1W 2W iW

Fig.	7.	Frontline	nodes

…    

…

… …
…

…   

Fig. 8.  The frontline nodes (general case + dummies)

1Y
jY2Y

1W 2W iW

r
iD2

rD1
rD

Fig.	8.	Frontline	nodes	(general	case+dummies)

Where Di
r  is the dummy from the horizontal line γr. In 

this case, there is a horizontal line, when the line γr is vertical, 
Di

rν  is used implying a dummy from the vertical line r.

4. 6. Law of conservation of intermodal distance
The total distance (optimal distance) before introducing 

dummies and after introducing dummies does not change.  
It is because of the law of conservation the following equali-
ties (3)–(10) are valid and used in this paper:

W D W D W Dr r
i i

r
1 1 2 2 0  = = = =... .  (3)

Arcs coming from V1:

WY D Y WY D Y WY D Yr r
j

r
j1 1 1 1 1 2 1 2 1 1= = =  , ,..., .  (4)

Arcs coming from V2:

W Y D Y W Y D Y W Y D Yr r
j

r
j2 1 2 1 2 2 2 2 2 2= = =  , ,..., .  (5)

…

Arcs coming from Vi:

WY D Y WY D Y WY D Yi i
r

i i
r

i j i
r

j1 1 2 2= = =  , ,..., .  (6)

Dummy D1:

x x x x k
W D D Y D Y D Yr r r r

j1 1 1 1 1 2 1
2 1

  ( ) + + + + =... .  (7)

Dummy D2:

x x x x k
W D D Y D Y D Yr r r r

j2 2 2 1 2 2 2
2 2

  ( ) + + + + =... .  (8)

…

Dummy Di:

x x x x k
W D D Y D Y D Y j

i i
r

i
r

i
r

i
r

j


  ( ) + + + + =
1 2

2... .  (9)

k k ki1 2 1+ + + =... ,  (10)

where k u iu = ∀ =0 1 1 2. , ,..., .
Equality constraint (10) is the constraint that makes the 

TSP formulation very difficult. With the ku  variable, the coef-
ficient matrix is no longer unimodular. In this case, 2ru is used 
instead of just 2 because it is not certain the traveling sales-
man will use this dummy bridge or not. In other words, these 
equalities are formulated for every vertical or horizontal line. 

5. LP Formulation of TSP network diagram with dummies

5. 1. LP
Min c x c x c xn n1 1 2 2+ + +... .
Such that: 

Node 1: xi
i

=
∀
∑ 2,

Node 2: x j
j

=
∀
∑ 2,

…

Node n: xk
k

=
∀
∑ 2,  (11)

Dummy 1 D1
1ν( ) : ... ,= 2 1k

Dummy 2 D2
1ν( ) : ... ,= 2 2k

…

Dummy   D


ν1( ) : ... ,= 2kl

k x kl1 2 1+ + + =... ,

…

where xij≥0 and binary ∀j.

5. 2. Efficient exact solution of the general linear bi-
nary problem

In [9], it is shown that the general linear binary problem 
can be solved in polynomial time by interior point approaches. 
The linear binary form must be transformed into the convex 
quadratic problem. We introduce slacks such that 12 is satisfied.

x sij ij+ = 1.  (12)

To transform this into a convex quadratic problem, let:

f X c x c x c x

s s s

in in

in

( ) = + + +( )+

+ + +( ) +

1 12 12
2

13 13
2 2

12
2

13
2 2

...

... 2 12 12 13 13x s x s x sin in+ + +( )... ,  (13)

where 1  and 2  are very large in terms of their sizes com-
pared to any of the coefficients in the objective function.  
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There are so many values of 1  and 2  that can make this  
to work. In this chapter, we select:

1 1 000= , .  (14)

2 12 131 000 000= ( ) + + +( ), , ... .c c cin  (15)

Enforcer 2 12 12 13 13x s x s x sin in+ + +( )... .
Since this is a minimization quadratic objective function, 

the objective function will be minimal when:

2 12 12 13 13 0x s x s x sin in+ + +( ) =... ,  (16)

i. e. x s x s x sin in12 12 13 13 0+ + + =... , x s x s x sin in12 12 13 13 0= = = =... .
This is only possible when either xij = 0 or sij = 0. The 

expression in (16) is called an enforcer since it forces the 
variables to assume only binary values. 

Equivalence.

c x c x c x c x c x c xin in in in12 12 13 13 12 12
2

13 13
2 2+ + + = + + +... ... .  (17)

The two quantities are equal if either xij = 0 or xij = 1.

s s s s s sin in12 13 12
2

13
2 2+ + + = + + +... ... .  (18)

Similarly, the two quantities are equal if sij = 0 or sij = 1.

Convexity of f(X).
Since:

f X c x c x c x

s s s

in in

in

( ) = + + +( )+

+ + + +( )
1 12 12

2
13 13

2 2

12
2

13
2 2

...

... ++ + + +( )2 12 12 13 13x s x s x sin in... ,

then f(X) is convex if and only if it has second-order partial 
derivatives for each point X x x x s s s Sin in= ( ) ∈12 13 12 13, ,..., , , ,...,  
and for each ′ ∈X S, all principal minors of the Hessian matrix 
are non-negative.

Proof.
In this case,

f X c x c x c x

s s s

in in

in

( ) = + + +( )+

+ + + +( )
1 12 12

2
13 13

2 2

12
2

13
2 2

...

... ++ + + +( )2 12 12 13 13x s x s x sin in... ,

This has continuous second order partial derivatives and 
the 2n by 2n Hessian matrix is given by

H x x x s s s

c

c

in in12 13 12 13

1 12

1

2 0 0 0 0 0
0 2

, ,..., , , ,...,

... ...

( ) =

=



 113

1

0 0 0 0

0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0

... ...

...

... ...

... ...

... ...

.

 cin

...
... ...0 0 0 0 0 2































 (19)

Since all principal minors of H x x x s s sin in12 13 12 13, ,..., , , ,...,( ) 
are non-negative, then f x x x s s sin in12 13 12 13, ,..., , , ,...,( ) is convex. 
See [10] for more on convex functions. 

Note that XHXT ≥ 0, ∀ ≥XT 0. Thus, the matrix H  is sym-
metric and positive definite. 

Remark: whatever binary solution that minimizes f(X) 
will also minimize z.

From:

f X c x c x c x

s s s

in in

in

( ) = + + +( )+

+ + + +( )
1 12 12

2
13 13

2 2

12
2

13
2 2

...

... ++ + + +( )2 12 12 13 13x s x s x sin in... ,

where 2 is very large and since  1 2<<  then 

2 12 12 13 13 0x s x s x sin in+ + +( ) =... .

Similarly, 1 is very large and that 

1 12 12
2

13 13
2 2

12
2

13
2 2c x c x c x s s sin in in+ + +( ) >> + + +( )... ... .

This is the same as just (20).
Minimize:

c x c x c xin in12 12
2

13 13
2 2+ + +... .  (20)

which is the same as (21). 
Minimize

c x c x c xin in12 12 13 13+ + +... .  (21)

This is because the variables in this case assume only 
binary variables. 

5. 3. Numerical illustration
Solve the problem given in Fig. 9, using the dummy gui-

ded formulation. The distances are in kilometres.
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1 52        1 42         1 69   

500                                     29                     33                           

620   
5 4                     47                   65          

  
     29                      49                                                      

40   
                  68        110   

1   

5   

3   2   4   

6   

9   7   8   

10   

12   

16    14   15   

17   

13   11   

Fig.	9.	Numerical	illustration	–	given	problem

Step 1. Using vertical and horizontal lines to partition the 
problem we have Fig. 10.

Where γ1 and γ2 are the vertical and horizontal lines 
respectively.

Step 2. For γ1, the frontline nodes are 1, 4, 5 on one side 
and 6, 7, 10, 12, 15, 18 on the other side. As for γ2, the front-
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line nodes are 5, 9, 10 on one side and 12, 13, 14, 15, 18 on 
the other side. There are three dummies for the vertical line 
γ1 and another three for the horizontal line γ2. The dummies 
are presented in Fig. 11, 12.

For boundary γ1:

  0
 0 0

250        180    300      280  500   620 

7

1

10

4

11 14 17

5

6

1
1D 1D 1

3D
2

Fig.	11.	Dummies	from	the	vertical	line	1	(γ1).	Dj
i 	stands		

for	the	dummy	j	from	the	vertical	line	i

For boundary γ2: 

0 0 0

620 500 280 152 142 169 220

        14

5 10

11 12 13

9

17

1
1D 1

2D 1
3D

Fig.	12.	Dummies	from	the	horizontal	line	1.	Dj
i 	stands		

for	the	dummy	j	from	the	horizontal	line	i

Step 3. Formulated ILP.

Min

30 20 35 250 25

50 30 45 60 18
12 13 14 16 23

25 34 35 45

x x x x x

x x x x

+ + + + +
+ + + + + 00

300 280 500 620

28 21

47

5 10 5 11 5 14 5 17

67 6

x

x x x x

x x

+
+ + + + +

+ +
( ) ( ) ( ) ( )

88 69 78 7 10

89 8 10 9 10 9 13

36 27 51

33 42 65 220

+ + + +

+ + + +

x x x

x x x x
( )

( ) ( ) ( ) ++

+ + + +

+ + +

152 142 169

29 54 3
10 11 10 12 10 13

11 12 11 14

x x x

x x
( ) ( ) ( )

( ) ( ) 33 47

65 29 40 49
12 13 12 15

13 16 14 15 14 17 15 1

x x

x x x x
( ) ( )

( ) ( ) ( ) (

+ +

+ + + + 66

15 17 16 17 1 6

4

68 110 0 250

0 1
1

1
1

1

2
1

)

( ) ( ) ( )

( )

+

+ + + + +

+ +

x x x x

x
D D

D

ν ν

ν 880 0 300

280 500
2

1
3

1
3

1

3
1

3
1

7 5 10

11 14

x x x

x x

D D D

D D

ν ν ν

ν ν

+ + +

+ +
( ) ( )

( ) ( )) ( )

( ) ( ) ( )

+ +

+ + +

620

0 620 500 280
2

1

1
1

1
1

1
1

1

17

5 17 14

x

x x x x

D

D D D D

ν

   

  



1

2
1

2
1

2
1

2
1

11

10 11 12

13

0 152 142

169

( )

( ) ( ) ( )

(

+

+ + + +

+

x x x

x
D D D

D )) ( ) ( )
,+ +







































0 220
9 133

1
3

1x x
D D 






















.

Such that:

Node 1: x x x x x
D12 13 14 16 1 1

1 2+ + + + =
( )

,ν  

Node 2: x x x12 23 25 2+ + = ,  

Node 3: x x x x13 23 34 35 2+ + + = ,  

Node 4: x x x x x
D14 34 45 47 4 2

1 2+ + + + =
( )

,ν

Node 5: x x x x

x x x x
D

25 35 45 5 10

5 11 5 14 5 17 5 3
1 2

+ + + +

+ + + + =
( )

( ) ( ) ( ) ( )
,ν

Node 6: x x x x x
D16 67 68 69 61

1 2+ + + + =ν ,  

Node 7: x x x x x
D47 67 78 7 10 72

1 2+ + + + =( ) ,ν

Node 8: x x x x68 78 89 8 10 2+ + + =( ) ,  

Node 9: x x x x x
D69 89 9 10 9 13 9 3

1 2+ + + + =( ) ( ) ( )
,



 

Node 10: x x x x x

x x x
D

5 10 7 10 8 10 9 10 10 11

10 12 10 13
3

1

( ) ( ) ( ) ( ) ( )

( ) ( )

+ + + + +

+ + + ν (( ) ( )
,

10 10 2
1 2+ =x

D

Node 11: x x x x

x x x
D D D

5 11 10 11 11 12 11 14

11 113
1

1
1

2
1

( ) ( ) ( ) ( )

( ) ( ) (

+ + + +

+ + +ν   111
2

)
,=

Node 12: x x x x x
D10 12 11 12 12 13 12 15 122

1 2( ) ( ) ( ) ( ) ( )
,+ + + + =



 

Node 13: x x x

x x x
D D

9 13 10 13 12 13

13 16 13 132
1

3
1 2

( ) ( ) ( )

( ) ( ) ( )
,

+ + +

+ + + =
 

 (22)

Node 14: x x x

x x x
D D

5 14 11 14 14 15

14 17 14 143
1

1
1 2

( ) ( ) ( )

( ) ( ) ( )
,

+ + +

+ + + =ν 

Node 15: x x x x12 15 14 15 15 16 15 17 2( ) ( ) ( ) ( ) ,+ + + =

Node 16: x x x13 16 15 16 16 17 2( ) ( ) ( ) ,+ + =

Node 17: x x x

x x x
D D

5 17 14 17 15 17

16 17 17 173
1

1
2

( ) ( ) ( )

( ) ( ) ( )
,

+ + +

+ + + =ν 

Dummy 1 D1
1ν( ) :  x x k

D D1 6 1
1

1
1

1 2
( )

) ,ν ν+ =

Dummy 2 D2
1ν( ) :  x x k

D D4 7 2
2

1
2

1 2
( )

,ν ν+ =

Dummy 3 D3
1ν( ) :  x x x

x x k
D D D

D D

5 10 11

14 17 3

3
1

3
1

3
1

3
1

3
1 2

( ) ( ) ( )

( ) ( )
,

ν ν ν

ν ν

+ + +

+ + =

One bridge from the vertical line γ1:

k x k1 2 3 1+ + = ,

Dummy 4 D1
1( ) :  x x

x x k
D D

D D

5 17

14 11 4

1
1

1
1

1
1

1
1 2

( ) ( )

( ) ( )
,

 

 

+ +

+ + =

 

Dummy 5 D2
1( ) :  x x

x x k
D D

D D

10 11

12 13 5

2
1

2
1

2
1

2
1 2

( ) ( )

( ) ( )
,

 

 

+ +

+ + =

 

Dummy 6 D3
1( ) :  x x k

D D9 13 6
3

1
3

1 2
( ) ( )

,
 

+ =
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One bridge from the horizontal line γ2: 

k x k4 5 6 1+ + = ,  

where xij≥0 and binary ∀j.
Solving by the interior point algorithm, the optimal solu-

tions in Fig. 13 or Fig. 14 are obtained.
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Fig.	13.	Optimal	solution
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Fig.	14.	Alternate	optimal	solution

The optimal route is given in blue and note that there are 
no sub-tours. An alternate solution is given in Fig. 14.

6. Discussion of the solution  
method for TSP

The TSP network model has been partitioned in such  
a way that there are no more than 3 nodes in either direction 
so as to avoid sub-tours as given in Fig. 10. Three blocks are 
used to partition the TSP network diagram.

From the vertical line, 3 dummy nodes are used to force 
the traveling salesman to move from one block to the next 
one and another 3 dummy nodes are constructed from the 
horizontal line. In this illustration, a total of 6 extra nodes  
are required to avoid sub-tours. 

From the numerical illustration, it can be noted that 
the number of variables is increased by approximately half 
i. e. 20 36 55 56=( ). %  which is a weakness. Similarly, the 

number of nodes is increased by a third i. e. 6 17 35 29=( ). %  
approximately. There are no computational results for com-
paring the proposed method with other approaches, which is 
a limitation of the study. The numerical illustration is pre-
sented in Section 5. 2.

The proposed approach provides a formulation for the 
TSP where no sub-tours will occur. Interior point algo-
rithms can be used to solve the formulated ILP efficiently as 
presented in Section 5. 1. The branching related algorithms 
such as the branch and cut, branch and price or branch cut 
and price have no guarantee that the number of sub-prob-
lems required to verify optimality will not explode to un-
manageable levels. 

Even though very powerful computers are now available, 
the use of brute force in solving the TSP model is still not 
possible for large and practical problems. The brute force 
for TSP models requires (n!) in the worst case i. e. (17!) 
sub-problems for this numerical illustration to verify opti-
mality, which is not possible for large practical problems. 
Note that the number of nodes for the numerical illustration 
given in Section 5. 2 is 17.

Interior point algorithms provide a guarantee to solve 
optimization problems in polynomial time and display an 
early convergence in merely a few iterations, which is al-
most independent of the problem size [11]. Interior point 
algorithms are incorporated into this approach and can  
handle large problems implying that large TSP can now be 
solved efficiently.

7. Conclusions

1. The TSP network diagram was partitioned into blocks 
by means of vertical and horizontal lines. The TSP network 
diagram was partitioned into 3 blocks. A single horizontal 
line and a single vertical line were used in the partitioning 
process. The number of blocks depends on the size of the TSP 
network diagram or number of nodes. The bigger the number 
of nodes the bigger the number of blocks.

2. Dummies were used to connect neighboring blocks. 
Dummies come from horizontal and vertical lines. Dum-
mies are artificial nodes introduced to eliminate sub-tours.  
Dummy nodes are there to connect blocks and do change the 
total distance travelled. This is because dummy arcs have 
lengths of zeros.

3. The dummy constructed TSP was formulated as  
an ILP. The strength of this formulation is that it can be 
solved efficiently to give the exact optimal solution. Interior 
point algorithms are incorporated in the proposed algorithms.  
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These interior point algorithms have the strengths that they 
can solve large sizes of problems.  

4. A full numerical illustration was presented in the pa-
per. The partitioning process using vertical and horizontal 
lines together with the construction of dummy nodes and 
arcs were explained. In addition, the formulation of the dum-
my reconstructed TSP network was formulated as a linear 

integer model and solved efficiently using an interior point 
algorithm to give the exact solution.
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