u] =,

3adaua xomisosicepa (3K) — ue 3adana, npu sxiii komieosicep 6ionpaes-
€MbCA 3 BUXIOH020 8Y31A | NOBEPMAEMBCA 00 Hb020 MAKUM YUHOM, WO KONHCEH
6Y30J1 6 Mepedici Y316 6106i0YembCst 00U Pa3, a 3a2aavHA NPotidena 6i0cman
3600umuvcs 00 minimymy. Beasxcaemocs, wo edpexmuenozo anzopummy ons 3K
e icnye. 3K xaacugixyemocs sk NP-eaxcka 3adaua i po3poora epexmuenozo
eupiwenns ons nei 0yoe osnavamu NP=P. Y cmammi npedcmasiena nocma-
Ho6Ka 3adavi Komisosicepa 3 Qikmuenumu eaemenmamu. JInsa ybozo 6uKmo-
uaromvcs 6ci cyomypu 6 mepesici 3adaxi xomieoscepa (3K) 3 suxopucmannsm
MIHIMANLHO MONCUBOT KibKOCHT 00Mexcety. OcKinbku 0151 popmyeants cyo-
mypa nompiono minimym mpu eyzau, mepexca 3K pozodinsemvcs 3a donomozoro
BEPMUKANLHUX | 20PU3OHMATLHUX JUHITL MAKUM YUHOM, W00 MIXNC 6epMUKAIb-
HUMU aB0O 20PU3OHMATLHUMU JIHIAMU OYN0 He Ginvue mpvox 6y3ie. Y Oaiil
PoGomi MHONCUNA 6CIX 8Y371i6 MidC GYOb-SK010 NAPOIO 6EPMUKAILHUX DO 20pU-
30HmanvHux Ninil Hazueaemvcs oaoxom. DiKmueni 6yY3u 6UKOPUCTOBYIOMbCS
05 3’e0nanns 00Hoz0 6a0xy 3 nacmynuum. [lomim pexoncmpyiiosana 3K euxo-
pucmosyemocs 0as nocmanosxu 3K sax 3adaui uinouucaosozo niniiinozo npo-
epamyeannsn (LJIII). Tlpu euxopucmanni anzopummis po32anyincenHs HeMae
HisKoi eapanmii, wo Kiavkicms nidzadayw e 3nemumv 00 HeKePOBAHUX PIGHIG.
Eepucmuuni a6o anpoxcumyroui aneopummu, ki iH00i 6UKOPUCIOBYIOMbCS
03 npuiinamms weuoxux piuenv 011 npaxmuunux mooeneii 3K, maromo cep-
1103Hi exonoMiuHi npobaemu. Pisnuys Mmixnc mouHum piuennsam i npuOIUHUMU
8 2POU0BOMY BUPAINCEHHT OYIIce 8eNUKA O NPAKMUMHUX 3A60aHb, MAKUX K
docmaska aucmie 3 6UKOPUCMAHHAM mpancnopmuozo 3acooy ¢ Ilexini, Toxio,
Bawunemoni i m. 0. Modeno 3K mae 6e3nin npomMuciosux 3acmocyeans, maxux
ax ceeponinus opyrxosanux naam (I), kanimanoruii pemonm 2azomypoinHux
deuzynie, penmeeniecoka Kpucmaiozpadis, niokaoueHHs Komn romepis, Komn-
JleKmauis 3amoeieH HA CKAA0ax, CKIAOAHHS MAPupymic mpaHcnopmHux
3acobie, nanecenns macox npu eupoonuumei JI1im. o.

Kmouogi crnosa: zadana xomisosisicepa, cyomyp, 6,10k, yisouucevra ainii-
Ha npozpama, Pikmusnuil/mamnexen
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Fig. 1 is presented in this form for convenience. Any TSP

network problem can be put in any form one may wish.

Network reconstruction is not a new idea. It was used in [1]
to solve the traveling salesman problem. A minimal spanning
tree was used to detect sub-tours. In that paper, the TSP
network diagram was reconstructed in such a way that the
sub-tours are eliminated. The challenge with that approach is
that suppose a sub-tour is missed or failed to be detected. In the
proposed approach, it is ensured that all sub-tours are elimina-
ted. The fact that a minimum of three nodes are needed to form
a sub-tour is used to eliminate all sub-tours when reconstruct-
ing the TSP network model. Vertical and horizontal lines are
used to partition the TSP network problem so that there are no
more than three nodes between either the vertical lines or hori-
zontal lines. In this paper, a set of all nodes between any pair of
vertical or horizontal lines is called a block. Dummy nodes are
used to connect one block to the next one. The reconstructed
TSP is then used to reformulate TSP as an integer linear pro-
gramming problem (ILP), which is then solved efficiently by
interior point algorithms to give an exact solution.

The traveling salesman problem is a problem whereby the
salesman starts from an origin node and returns to it in such

Fig. 1. TSP model

Fig. 1 gives an example of a TSP network model. This

a way that every node in the network of nodes is visited once
and the total distance travelled is minimized. It is assumed in
this paper that all nodes have at least two arcs coming out of
them as given in Fig. 1.

TSP network model can have any number of nodes. The TSP
model has many industrial applications such as drilling of
printed circuit boards (PCBs), overhauling of gas turbine en-
gines, X-Ray crystallography, computer wiring, order-picking



problem in warehouses, vehicle routing, mask plotting in
PCB production, etc.

2. Literature review and problem statement

Partitioning or clustering method is not a new idea for
the traveling salesman problem. Clustering was used in [2]
to solve the clustered generalized traveling salesman problem
(CGTSP). The challenge with such a clustering approach is
that it gives near optimal solutions and not the exact solu-
tion. The 2-Opt heuristic is a simple algorithm for finding
a good approximate solution to the traveling salesman prob-
lem [3]. In that paper, it was proved that for the metric TSP
with 7 cities, the approximation ratio of the 2-Opt heuristic
is n/2 and that this bound is tight. Again, this heuristic
gives a near optimal solution and it does not give the exact
solution. The paper [4] presents an approach to improve the
Miller-Tucker-Zemlin (MTZ) model for the symmetric trav-
eling salesman problem (ATSP). This is a 2020 publication
and it shows that the hunt for an exact algorithm is ongoing.
The paper [5] is on the generalized traveling salesman prob-
lem with time windows (GTSPTW). The TSP problem in
this case is partitioned into clusters whereby each cluster
has only one depot. The proposed algorithm in this paper is
aimed at finding a minimum cost tour starting and ending at
the depot, such that each cluster is visited exactly once and
time constraints are not violated. This algorithm takes time
to solve large TSP problems. In [6], ant colony optimiza-
tion (ACO) algorithm is used to solve the traveling salesman
problem (TSP). The main challenge with this algorithm
is that it is not exact and is very difficult to know how far
the solution obtained is from the exact one. Some exact and
approximation methods for the TSP are compared in [7].
Heuristics are fast in obtaining a near optimal solution to
the TSP and exact methods obtain the optimal solution at
unreasonable times. One cannot make quick decisions with
these exact methods. The difference between exact and ap-
proximate solution for large towns such as Beijing or Tokyo is
avery huge amount of money. The TSP model has many indus-
trial applications and is NP-hard, making it very difficult to
solve. There is a need for an efficient method that can handle
very large TSPs. In this paper, an efficient exact method that
incorporates interior point approaches is proposed. Interior
point algorithms can handle very large practical problems.

3. The aim and objectives of the study

The aim of the study is to develop a dummy guided for-
mulation for the traveling salesman problem. To achieve the
set aim, the following objectives have been accomplished:

— to partition the TSP network problem into blocks by
means of vertical and horizontal lines;

— to construct dummies so as connect neighboring blocks;

— to formulate the dummy reconstructed TSP as an ILP;

— to provide a numerical illustration.

4. TSP network properties

4. 1. Standard constraints
Suppose we are given any node r with % arcs emanating
from it as given in Fig. 2.

Fig. 2. Arcs in and out of node r

The standard constraint is very easy to formulate and can
be formulated as (1):

Xy, + Xy, +X, o, =2 ¢))

If a TSP does not have sub-tours, then the optimal solu-
tion of the relaxed will be an integer as presented in 4. 2.

4. 2. Theorem

Let the coefficient matrix be A if the TSP is made up of
standard constraints only. The matrix A is totally unimodular
if it satisfies the following five conditions:

a) all entries of A are 0, 1 or —1;

b) the rows of A can be partitioned into two disjoint sets
Siand So;

¢) every column of A contains at most two nonzero entries;

d) if any column of A contains two nonzero entries of the
same sign, then one is in a row of S1 and the other in a row of Sy;

e) if any column of A contains two nonzero entries of
the opposite sign, then they are both in rows of S, or both
in rows of Sy.

The theorem is from [8] and more on it is well presen-
ted there.

4. 3. Existence of sub-tours

Unfortunately, standard constraints on their own may result
in sub-tours. So there is a need for a way to detect and eliminate
sub-tours. The existence of sub-tours is illustrated in Fig. 3.

Sub-tour 1




The existence of sub-tours makes the traveling salesman
problem appear to be very difficult to solve.

Examples of sub-tours are presented in Fig. 3 and there
are four of them.

In practical problems, there can be any number of sub-
tours in one TSP network model.

4. 4. Vertical and horizontal parts

For a sub-tour to form, a minimum of three nodes are
required and this fact can be used to partition a TSP network
diagram.

Thus, vertical and horizontal lines can be drawn such
that the distance between any two vertical lines or horizontal
lines is not more than three nodes.

In other words, these horizontal and vertical lines cross
arcs without touching a single node.

These lines do not necessarily have to be vertical and they
do not necessarily have to be horizontal.

All those lines that are vertical or near vertical are treated
as vertical.

Similarly, all those lines that are horizontal or near ho-
rizontal are treated as horizontal in this paper.

Any TSP network diagram can be made to face any di-
rection.

Vertical line.
Vertical lines represented by v are presented in Fig. 4.

Fig. 4. Vertical and horizontal lines

Note that the distance between any two nearest vertical
lines is not more than 3 nodes.

Horizontal lines.

Examples of horizontal lines (y) are presented in Fig. 5.
Note that the distance between any two nearest horizontal
lines is not more than 3 nodes.

Note that there are no more than 3 nodes between the
lines when going horizontally and no more than 3 nodes
when going vertically.

Fig. 5. Horizontal lines

4. 5. Dummy nodes

In this paper, we define a block as a set of all nodes bet-
ween any closest pair of vertical or horizontal lines. To make
sure sub-tours are eliminated, there is a need to connect all
the blocks. This can be done by introducing dummy nodes
so as to enable connection of these blocks. A dummy node
is an additional node or artificial node created to elimi-
nate sub-tours. A dummy node connects the boundary or
frontline nodes of any two neighboring blocks. A dummy is
added as an additional node and all the original and given
nodes remain there. Fig. 6 illustrates blocks and boundary or
frontline nodes.

Fig. 6. Blocks and frontline or boundary nodes

In real life or practical problems, there are any number (7)
of nodes on one side of the boundary (Wy, Wo, ..., W;) and
any number (j) nodes on the other side of the boundary
(Y3, Yy, ..., Y)) as given in Fig. 7.



The frontline nodes after adding a dummy become as
given in Fig. 8.

Fig. 8. Frontline nodes (general case+dummies)

Where D" is the dummy from the horizontal line 7,. In
this case, there is a horizontal line, when the line v, is vertical,
D" is used implying a dummy from the vertical line .

4. 6. Law of conservation of intermodal distance

The total distance (optimal distance) before introducing
dummies and after introducing dummies does not change.

It is because of the law of conservation the following equali-
ties (3)—(10) are valid and used in this paper:

WD =W,D}) =..=W,D" =0. 3)
Arcs coming from Vi:
WY, = DY, WY, = DI'Y,...WY, = D'Y, @)

Arcs coming from Vo

WY, = DY'Y, WY, = D}'Y,,...W,Y, = D}'Y,. )

7

Arcs coming from V;:

WY, = D", WY, =D/"Y,..WY,=D"Y,, ©)
Dummy Dy:
xm(p‘m,) Xy F Xy ot Xy, = 2k,. @)

Dummy Dy:
XWQ(DS’) Xy Ty +...+xD;,yj =2k,. )
Dummy D;:
XM(D('r)+xDpr},1 +JCDP,Y2 +"'+fo11/] :2kj. ©)
ki+k+.+k =1 a0

where k,=0.1 Yu=1,2,...,1i.

Equality constraint (10) is the constraint that makes the
TSP formulation very difficult. With the %, variable, the coef-
ficient matrix is no longer unimodular. In this case, 27, is used
instead of just 2 because it is not certain the traveling sales-
man will use this dummy bridge or not. In other words, these
equalities are formulated for every vertical or horizontal line.

5. LP Formulation of TSP network diagram with dummies

5.1.LP
Min ¢x,+¢,%, +...4+¢,x,.
Such that:
Node 1: in =2,
Vi

Node 2: ij =2,
Vi

Node n: 296,;2, (11)
Vk

Dummy 1 (D1V1): =2k,

Dummy 2 (Df): =2k,

Dummy ¢ (D),”): =2k,

ki+x, 4.tk =1,

where x;;20 and binary V.

5. 2. Efficient exact solution of the general linear bi-
nary problem

In[9], it is shown that the general linear binary problem
can be solved in polynomial time by interior point approaches.
The linear binary form must be transformed into the convex
quadratic problem. We introduce slacks such that 12 is satisfied.

—— (12)
To transform this into a convex quadratic problem, let:

f(X)=¢, (01295122 +Cgly F ot €, XL )+

in""in

2.2 2
+(s12s13 +..+S;, ) +4, (x12312 + X385+t xmsin), (13)
where ¢, and 7, are very large in terms of their sizes com-
pared to any of the coefficients in the objective function.



There are so many values of ¢, and ¢, that can make this
to work. In this chapter, we select:

7,=1,000. (14)

,=(1,000,000)(c,, +¢;5 +...+ ¢, )- (15)

Enforcer £,(x,,5,,+ X385 + .. X,,5,,)-

Since this is a minimization quadratic objective function,
the objective function will be minimal when:

0y (X580 + X380+t 2,8, ) =0,

in*in

(16)

L€ 281y + 2385+ + 8,8, =0, 2,8, =258, == x5, =0.
This is only possible when either x;=0 or s;=0. The
expression in (16) is called an enforcer since it forces the

variables to assume only binary values.

Equivalence.
P 2 2
CioXpy + €y + o C X, = CoXyy + CaXpy +otcxs,. (17)
The two quantities are equal if either x;=0 or x;=1.
2 2 2 18
Spy Syt tS, =S, +Sn .t (18)

Similarly, the two quantities are equal if 5;;=0 or s;=1.

Convexity of f(X).
Since:

in”"in

f(X)=f1(C12x122 + 0y + ot Cy X )+

2
in

2 2
+(S12+S13+...+S )+Z2(x12312+x13313+.‘.+xvs ),

in“in

then f(X) is convex if and only if it has second-order partial
derivatives for each point X =(a,,,2,5,.0,2;, 812, Si3,000: 5, ) €S

and for each X" € §, all principal minors of the Hessian matrix
are non-negative.

Proof.
In this case,
f(X) =1 (C1zx122 +C13JC123 +otc xl )+

in"in

2 .2 \2
+(s12 +5 +...+sin)+£2(x12812 + X3Sy o T XS, ),

in*in

This has continuous second order partial derivatives and
the 2n by 2n Hessian matrix is given by

H(x12,x13,...,xin,siz,sw,...,sm)=

[(20¢, O .. 0 00 ..0
0 20¢, . 0 00 .0
|0 20.c,, 0 0 (19)
) 0 0 20 0
0 0 0 0 2 0
|0 0 . 0 00 .. 2

Since all principal minors of H(,,,%,5,..,%;,S19, S35, )
are non-negative, then f(at,,,2,3,...,X;,, 81,3, S, ) is convex.
See [10] for more on convex functions.

Note that XHX" >0, VX" >0. Thus, the matrix H is sym-
metric and positive definite.

Remark: whatever binary solution that minimizes f(X)
will also minimize z.
From:

_ 2 2 2
f(X) - (1 (C1zx12 + leixﬂi +o.t Cinxin)-‘r
+(§2+92+ +92)+€ (20158, + X585+ 2,8,
<12 <13 st Yin 2 12712 13913 ° inin )’

in*in

where ¢, is very large and since ¢, <</, then
0y (2,80, + X381+t 2,8, ) =0.
Similarly, ¢, is very large and that
£, (61236122 + c13x123 totc xl )>> (sfz + sfs +..+ s;i)

in""in

This is the same as just (20).

Minimize:

€y + Cpgdiy + ot €, X0 (20)
which is the same as (21).

Minimize

612x12 +C13‘X13 +"'+Cinxiﬂ' (21)

This is because the variables in this case assume only
binary variables.

5. 3. Numerical illustration
Solve the problem given in Fig. 9, using the dummy gui-
ded formulation. The distances are in kilometres.

250

Fig. 9. Numerical illustration — given problem

Step 1. Using vertical and horizontal lines to partition the
problem we have Fig. 10.

Where y; and vy, are the vertical and horizontal lines
respectively.

Step 2. For vy, the frontline nodes are 1, 4, 5 on one side
and 6,7, 10, 12, 15, 18 on the other side. As for y,, the front-



line nodes are 5, 9, 10 on one side and 12, 13, 14, 15, 18 on
the other side. There are three dummies for the vertical line
v1 and another three for the horizontal line 5. The dummies
are presented in Fig. 11, 12.

For boundary v;:

I|| ('|III|I|)
/
U
/

250/ 180 'l e 300 ,’ 280 \ 500 ~ 620

oNoloJoJole

Fig. 11. Dummies from the vertical line 1 (y;). D/ stands
for the dummy j from the vertical line /

For boundary vy»:
.'
:0
620, 500. 280\ 152,' 142‘ 16 \\\ 220|

Fig. 12. Dummies from the horizontal line 1. D?" stands
for the dummy j from the horizontal line /

Step 3. Formulated ILP.

(302, +202x,, +35x,, +250x,, +25x,, +
+50x,; +30x,, +45x,; +60x,; +180x,, +
+300259, + 2805, + 500254 +620x5,, +
+282; + 2105 + 3659 + 272075 + 5107 ) +
+332g + 4254, + 6520y + 22020, +
15254y, + 14220, 49, +1692, 45 +
+292, 19y + 54X 114y + 33X 5015, AT X y45) +

Min | +6525 45, + 292,15, + 402,17, +49% 504, +

+682,547, +1102x,5,7, +0x, 0 + 25035DV1

1oy

+0x oy T 180;‘61)Zl7 + Oxswﬂ +300x

4(Dy7) D”(10)

+280x +500x +620x

DY (11) DY (14) D"‘(17)

+0x5(D1M) +620xD1m(17)500x +280x

+0x +152x

10041

+169x

DI (14)

+142x

D’”(11)

Dy (1)

+0x9(D§,1) +220x

D! (12)

DI (13) Di'(13)’

Such that:

Node 1: xp + 2, + 2+ X +x, 0 =2,

1oy

Node 2: ayy + 2, + X5 =2,
Node 3: 2y, + 2y, + X + 2455 =2,

Node 4: a,, + 25, + X5+ 2, +X =2,

403"
Node 5: x5+ 245+ X5 + X5 ) +

5011 F Xsrsy T Xsry T X =2,

5(Dy")

Node 6: ;g + 205, + 25+ g9 + 20 =2,
Node 7: x,; +xg; + X5 + X9y + Xpi; =2,
Node 8: g+ 275 + Xy + X1, = 2,

Node 9: gy + Xy + X0y + K13y + X =2,

(DY

Node 10: X510y F X110y T Xsir0y F Xogro) T Xiory +

002 F Lroqry T X pt 40, T Xpoeopty = 2,
Node 11: Xsany T X0y T iz T Xiyaa +

+ng‘(11) + xD("(n) + xnfl(u) =2,
Node 12: %,y + X1, + ¥io01) + Xiois) + X110y =

Node 13: Koz + Xioa13) + Xiazy T

+x13(16) + xDz"1(13) +xD§‘(13) = 2’
Node 14: Fsasy + Xiyay T Frarsy
+x14(17> + xD;‘(M) + fo‘(M) =2

Node 15: Xioasy T Xisas) T Xisa6) T Xisany = 2,

Node 16: X6y T Xisaey T Xigan = 2

Node 17: x5 7, + X, 47, + X547, +

+x16(17) + xr);‘(n) + xD{’(ﬂ) = 2’
1

Dummy 1 (D;’ ): Xy F X pug )=2k,
1

Dummy 2 (DZ,v ): Xy, T X s =2k,

vi).
Dummy 3 (D3'): 5 0, % X 40, + iy +

T+ Fpprany = 2R
One bridge from the vertical line y;:
ki+x,+k =1,
nty.
Dummy 4 (D1 ) Fsopy T Xppny T
+2 s 1y X g1y = 2k,,
aty.
Dummy 5 (D2 ) Zioopty T ¥ppan t
X iy T ¥ o1y = 2k,
nty . —
Dummy 6 (D3 ) Koty T X 1) = 2k,

(22)



One bridge from the horizontal line y»:
ky+xs+ks=1,
where x;;20 and binary V.

Solving by the interior point algorithm, the optimal solu-
tions in Fig. 13 or Fig. 14 are obtained.

250
gﬁ
20

Fig. 14. Alternate optimal solution

The optimal route is given in blue and note that there are
no sub-tours. An alternate solution is given in Fig. 14.

6. Discussion of the solution
method for TSP

The TSP network model has been partitioned in such
a way that there are no more than 3 nodes in either direction
so as to avoid sub-tours as given in Fig. 10. Three blocks are
used to partition the TSP network diagram.

From the vertical line, 3 dummy nodes are used to force
the traveling salesman to move from one block to the next
one and another 3 dummy nodes are constructed from the
horizontal line. In this illustration, a total of 6 extra nodes
are required to avoid sub-tours.

From the numerical illustration, it can be noted that
the number of variables is increased by approximately half
(i. e. 20/36=55.56 %) which is a weakness. Similarly, the
number of nodes is increased by a third (i. e. 6/17=35.29%)
approximately. There are no computational results for com-
paring the proposed method with other approaches, which is
a limitation of the study. The numerical illustration is pre-
sented in Section 5. 2.

The proposed approach provides a formulation for the
TSP where no sub-tours will occur. Interior point algo-
rithms can be used to solve the formulated ILP efficiently as
presented in Section 5. 1. The branching related algorithms
such as the branch and cut, branch and price or branch cut
and price have no guarantee that the number of sub-prob-
lems required to verify optimality will not explode to un-
manageable levels.

Even though very powerful computers are now available,
the use of brute force in solving the TSP model is still not
possible for large and practical problems. The brute force
for TSP models requires (n!) in the worst case i.e. (17!)
sub-problems for this numerical illustration to verify opti-
mality, which is not possible for large practical problems.
Note that the number of nodes for the numerical illustration
given in Section 5. 2 is 17.

Interior point algorithms provide a guarantee to solve
optimization problems in polynomial time and display an
early convergence in merely a few iterations, which is al-
most independent of the problem size [11]. Interior point
algorithms are incorporated into this approach and can
handle large problems implying that large TSP can now be
solved efficiently.

7. Conclusions

1. The TSP network diagram was partitioned into blocks
by means of vertical and horizontal lines. The TSP network
diagram was partitioned into 3 blocks. A single horizontal
line and a single vertical line were used in the partitioning
process. The number of blocks depends on the size of the TSP
network diagram or number of nodes. The bigger the number
of nodes the bigger the number of blocks.

2. Dummies were used to connect neighboring blocks.
Dummies come from horizontal and vertical lines. Dum-
mies are artificial nodes introduced to eliminate sub-tours.
Dummy nodes are there to connect blocks and do change the
total distance travelled. This is because dummy arcs have
lengths of zeros.

3. The dummy constructed TSP was formulated as
an ILP. The strength of this formulation is that it can be
solved efficiently to give the exact optimal solution. Interior
point algorithms are incorporated in the proposed algorithms.



These interior point algorithms have the strengths that they  integer model and solved efficiently using an interior point
can solve large sizes of problems. algorithm to give the exact solution.
4. A full numerical illustration was presented in the pa-

per. The partitioning process using vertical and horizontal

lines together with the construction of dummy nodes and Acknowledgments
arcs were explained. In addition, the formulation of the dum-
my reconstructed TSP network was formulated as a linear We are thankful to the anonymous referees.
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