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1. Introduction

2. Literature review and problem statement

Among such vibratory machines as sieves, vibratory ta-
bles, vibratory conveyors, vibratory mills, etc., the promising
ones are multi-frequency-resonance machines.

Multi-frequency vibratory machines have greater perfor-
mance [1], resonance vibratory machines are the most energy
efficient [2], while the multi-frequency-resonance vibratory
machines combine the benefits of both multi-frequency and
resonance vibratory machines [3]. Therefore, there is a com-
mon issue of designing multi-frequency-resonance vibratory
machines [3-20].

The most effective and simple technique to excite reso-
nance two-frequency vibrations is based on the use of a ball-, a
roller, or a pendulum auto-balancer as a vibration exciter [10].
This technique is based on the Sommerfeld effect [11]. The
feasibility of this technique was tested analytically in stud-
ies [12-20]. However, given the significant non-linearity of
the problems considered, it was not possible to conduct in-
depth research and obtain analytical results for the case of a
two-mass vibratory machine.

It is relevant to use the results of papers [17-20] to inves-
tigate by analytical-computational methods the steady-state
vibrations of a two-mass vibratory machine with a rectilin-
ear translational motion of the platforms.

Two-mass vibratory machines have a series of advan-
tages over single-mass machines. In the two-mass vibratory
machines:

— the frequencies of platform oscillations are less depen-
dent on a load mass [4]. frequencies;

— it is possible to excite the anti-resonance fluctuations at
which platform oscillations are not transferred to the base [5];

— the resonance modes of motion have large regions of
existence and stability [6];

— it is possible to excite the combined (poly-frequency)
resonance vibrations of platforms with the natural vibration
frequencies of a vibratory machine [7];

— the anti-resonance mode of vibratory machine opera-
tion is implemented over a wide parameter range [8], and is
less dependent on the mass of a load [9], etc.

It is proposed in [10] to use a ball-, a roller-, or a pendu-
lum auto-balancer to excite two-frequency resonance vibra-
tions in vibratory machines with different kinematic motion
of platforms. It is assumed that this technique is applicable
for one-, two-, three-mass Vibratory machines.

The technique is based on the Sommerfeld effect [11].
The technique employs a special mode of the motion of balls
(rollers) [12] or pendulums [13], which occurs under small



forces of resistance to the motion of loads relative to the
casing of the auto-balancer. Under this mode, the loads get
together, cannot catch up with the rotor, onto which the
auto-balancer mounted, and get stuck at one of the reso-
nance frequencies of the vibratory machine. Slow resonance
fluctuations of platforms are excited by load jamming. In
addition, the casing of an auto-balancer hosts an unbalanced
mass. The unbalanced mass rotates in sync with the rotor.
That excites the rapid fluctuations of platforms. The param-
eters of two-frequency vibrations change by changing the
rotor rotation velocity, the unbalanced mass, and the total
weight of the loads.

The vibrations of rotary machines, which are caused by
the Sommerfeld effect, were studied in works [14—16]. The
effect of jamming a rotor with an unbalanced mass at the res-
onance frequency of a platform’s vibrations using a dynamic
system synchronization method was studied in [14]. The use
of an airflow to excite the vibrations of the platform by an
impeller hosting an unbalanced mass was studied in [15] by
using the energy method. The effect of jamming a pendulum
freely mounted on the engine shaft on a platform at the
resonance platform vibration frequencies was investigated
in [16] by using the motion separation method.

It should be noted that the approximate methods applied
in works [14—16] made it possible to establish the very fact
of a rotor, an impeller, or a pendulum getting stuck at one
of the resonance frequencies of the platform oscillations. At
the same time, the laws that govern the platform oscillations
were defined in the lowest approximation. Therefore, the
above approximate methods and the results obtained cannot
be used to study the vibrations of a two-mass machine with a
vibration exciter in the form of a passive auto-balancer.

The theoretical justification of the feasibility of the
method for exciting two-frequency vibrations by passive
auto-balancers was addressed in studies [17-20].

Paper [17] developed the generalized models of single-,
two-, and three-mass vibratory machines with a transla-
tional motion of the platforms and a vibration exciter in the
form of a ball-, roller-, or a pendulum auto-balancer. The
differential equations of the motion of vibratory machines
have been derived.

Study [18] has analytically established the two-frequen-
cy modes of the motion of a two-mass vibratory machine
with a rectilinear translational motion of the platforms. At
the same time, the motions were not investigated because
of the complexity to solve this problem analytically. The
difficulties are related to the significant non-linearity of the
considered problem.

To investigate the steady-state vibrations of a two-mass
vibratory machine, excited by a passive auto-balancer, one can
apply the analytical-numerical methods developed in [19, 20]
using an example of the single-mass vibratory machines. It
was shown in [19] that the various steady-state motions of a
single-mass vibratory machine acquire or lose stability only
at the bifurcating points. In [20], the task of studying the
steady-state modes of the motion of a single-mass vibratory
machine was solved parametrically and using computational
methods.

3. The aim and objectives of the study

The aim of this study is to analytically-numerically
examine the two-frequency motion modes of the vibratory

platforms of a two-mass vibratory machine with a recti-
linear translational motion of the platforms excited by a
passive auto-balancer. This is necessary for the develop-
ment and design of new two-frequency dual-mass vibratory
machines.

To accomplish the aim, the following tasks have been set:

—to devise a methodology for the analytical-numerical
analysis of the steady-state vibrations of a two-mass vibra-
tory machine;

— to find, at certain ratios of smallness between the sys-
tem parameters, different steady-state motions of a vibratory
machine and to assess their stability;

— to investigate the influence of external and internal
resistance forces on these motion modes.

4. Description of the mechanical-mathematical model of
vibratory machine

4. 1. Description of the generalized model of vibratory
machine

The generalized model of a two-mass vibratory machine
is shown in Fig. 1 [17]. The vibratory machine consists of
two platforms of masses M| and M5, forming an angle o with
the horizon. Each platform is held by external elastic-viscous
supports with a rigidity coefficient k; and a viscosity coeffi-
cient b;, /i=1,2/. The platforms are connected via an inner
elastic-viscous support with a rigidity coefficient k15 and a
viscosity coefficient bys.

b c

Fig. 1. The generalized model of a two-mass vibratory
machine [17]: a — the kinematics of platform motion (the
scheme is turned at angle ¢); b — the kinematics of motion of
the unbalanced mass and a ball or a roller; ¢ — the kinematics
of the motion of the unbalanced mass and a pendulum

The direction of the platform motion forms angle o with
the vertical. The coordinates of the platforms yy, ys are
counted from the positions of the static equilibrium of the
platforms.



The second platform hosts a passive auto-balancer — ball-
type, roller-type (Fig. 1, b), or pendulum-type (Fig. 1, ¢).

The casing of the auto-balancer revolves around the
shaft, point K, at a constant angular speed w.

The point unbalanced mass p is rigidly connected
to the casing of the auto-balancer. It is located at dis-
tance P from point K. The position of the unbalanced
mass relative to the casing is determined by the angle oz,
where ¢ is the time.

The auto balancer is made up of N identical loads.
The weight of a single load is m. The load mass center
can move along the circle of radius R with the center at
point K (Fig. 1 b, ¢). The position of load number j relative
to the casing is determined by the angle ¢;, /j=1,N /. The
load motion relative to the auto balancer’s casing is hindered
by the force of viscous resistance, whose module is

Fy=byo” =byR|¢/-0| /j=1N/,

where by is a viscous resistance force factor,
) — Pl

vj =R | ¢j_ [ |
is the module of the motion speed of the center of the mass of
load number j relative to the casing of the auto-balancer with
a bar by the value denoting a time-derivative ¢.

4. 2. Differential equations of the motion of a vibra-
tory machine

The differential equations of vibratory machine motion
in a dimensionless form

8, + 2k, +njo, +2h,, (pd, -0, )+n}, (po, —v,) =0,

b, +2hyo, + nyo, — 2hy, (po, -0, ) —

_nf2 (pU1 - vz)+ «§y =dn’sin nt, (1)
6, +eB(o,—n)+

+Gcos(¢j—(x)+£i)’2cosq)j:0, /j:m/. 2)

In (1), (2), the following dimensionless quantities are
introduced:
— variables and time
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In turn, in (3), (4):

- M,;=M,+Nm+y,

= NmRM,,, &=V ®
— for a ball, a roller, and a pendulum, respectively
k=7/5, x=3/2, x=1+ ], /(mR’), (6)

where J is the principal central axial moment of pendulum
inertia.

Hereafter, the effect of gravity is not taken into consid-
eration (6=0).

4. 3. The steady-state motion modes of a vibratory
machine

The steady-state modes of platform motion are de-
termined at €=0 [18]. For actual vibratory machines, the
amendment to the law found in [18] does not exceed 2 %.

At steady-state motions

0 =Qt+y,, Qy, —const, /j=1N /. @)
In this case,

s, =Scos(Qr+7,),

x

s, = Ssin(§21:+yo), ®)
where
1 N 2 N 2
52 :Nz[[;coswj] +[;Sin\pj) :l,

N
tgy, = ) siny,

=

N
ZCOS V. )
=

A two-frequency platform motion mode at zero approxi-
mation (e=0):

0, (1)=D(Q,8)sin(Qr+7y,)+

+E(Q,5)cos(Qt+7,)+

+D(n,8)sin(nt)+ E(n,8)cos(nt),

v, (1:): K(Q,S)sin(QT+Yo)+
+L(Q,8)cos(Qt+7,)+

+K(n,8)sin(nt)+ L(n,8)cos(n1), (10)

where



In turn:

Ag)= {aﬂ (4)as(a)~p[ als(a)~ai,(a)] —}2 .

—qyy (Q)a:M (5])

ayy (C])
A(q.F)=b,(qF) +a,,(q)as(q) :
—a (q)|:a“(q)a34(q)+:|
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{am)[aa(q)—afs<q>]-}+

Ay(a.F)=b,(q.F)

/\
©°

{au(q)[aig(q)—af4(q)]—}+

+as; (q)[af1(q)+af2 (q)] >

A(q.F)=b,(q,F) |-2a,(q)ay,(q)a,(q) .(12)
+ay,(q)[ i\ (a) +aiy(q)]

Finally:

a,(q)=n+pn},—q*, a,(q)=-2q(h +ph,,),

a,=-n;,, a,(q)=2qh,,

ay,(q)=m; +n},—q*, a,(q)=-2q(h,+h,),

b,(q,F)=Fq’. (13)

In motion laws (10), the value of the constant param-
eter Q that determines the frequency of load jamming is
determined from the following equation

P(Qn)=2B(n-Q)A(Q)+Q%A,(Q,5)=0. 14)

Equation (14) is a 9th degree polynomial relative to Q,
which almost defies analytical investigation.

5. Results of studying steady-state vibrations

5. 1. Building a procedure for studying steady-state
vibrations and a computational algorithm

The procedure is based on the idea of parametric solution
to the problem of finding the frequency of load jamming (14)
and a bifurcation theory of motion. The procedure employs
the fact that the rotor speed 7 is linearly included in the

equations of the frequencies of load jamming. Therefore,
the specific frequency of load jamming corresponds to one
and only one rotor speed. This makes it possible to find all
possible modes of load jamming in a parametric form, and
bifurcation points at which these modes appear or disappear.
The bifurcation theory of motion makes it possible to as-
sess the stability of different jamming modes. Stability can
change to instability, and vice versa, only when passing the
bifurcation points.

In the absence of resistance forces in the supports (%4,
hia, h2=0)

Aq)=[(n2 +pnty ~7)(n} + 1y —q?)—prs ] (15)

Two different double roots of this equation

1 , , , ) -
=$\/nf +my +(1+p)np, ﬁ/[nf -n —(1—p)an]2 +4pnl,, (16)

determine the system’s natural vibration frequencies when
the loads are stationary relative to the auto-balancer. These
frequencies always exist, and 0<g1<g,. They correspond to
two shapes of the platform resonance oscillations. The first
shape of platform oscillations is dominated by a component
at which platforms move in the same direction. The second
shape of platform oscillations is dominated by a component
at which platforms move in opposite directions.

In the absence of resistance forces in the supports, the
term 2B(n-Q)A(Q) has five valid positive roots: g1, g1,
q2, 42, N.

For the case of small forces of viscous resistance in the
supports, the frequencies of load jamming;

—are close to the natural vibration frequencies or a vi-
bratory machine or the rotor rotation frequency;

— the jamming frequencies, close to the resonance ones,
arise and disappear in pairs in the vicinity of each natural
frequency.

From (10), the amplitudes of the slow oscillations of plat-
forms are found:

A(Q.8)=\D*(Q.9)+E*(Q.5),

B(Q,8)=K*(Q.8)+L(Q.9). (17)
From (16), such a solution to the equation of the frequen-
cy of load jamming is derived in a parametric form

n(Q)=Q

In the plane (Q,n(Q)), Qe (0,4e), a chart of the func-
tion Q(n), ne(0,+e) is built. At the points of motions bifur-
cation, there is the origin or merging of a pair of jam frequen-
cies. At the same time,

2BA(Q)-QA,(Q,5)
2BA(Q)

, Qe(0,4+e0). (18)

(o)1
dQ  2pA*(Q)

2BA* (Q)-20QA,(Q,5)A(Q)+
dA(Q)

Q =0.

_A(Q) da, d(g,s)

A (Q)

X

19
+Q? {9



A qualitative assessment of the system’s performance
makes it possible to construct the following computational
algorithm for studying the resonance vibrations of a vibra-
tory machine.

1. Equation (19) produced four critical frequencies of
load jamming, so that 0<Q, <Q, <Q, <Q, <n.

2. Formula (18) derives four bifurcation angular rotor
rotation velocities n,=n(<Q,), /i=14/. For convenience,
they are numbered and arranged in ascending order. When
passing these velocities, one pair of jamming modes occurs
or disappears.

3. For each jamming mode, formula (18) calculates, in a
parametric form, the corresponding rotor speeds

n,(Q)=n(Q), Qe[0,2,];

n,(Q)=n(Q), Qe[Q,Q,];

n,(Q)=n(Q), Qe[Q,Q,];

n,(Q)=n(Q), Qe[Q,,Q,];

ny(Q)=n(Q), Qe[Q,,+). (20)

The results of calculations in the plane (7,Q) are used to
build the diagrams of five possible jamming modes

(n(Q),Q), /i=15/.

4. In assessing the stability of possible jamming modes,
the following rules are applied:

— if there is only one mode of load jamming at a certain
rotor speed, it is (globally or locally) asymptotically stable;

— if, at a certain rotor speed, there are three or more load
jamming modes, the only the odd modes of jamming are lo-
cally asymptotically stable.

5. For each jamming mode, formulae (17) are used to
calculate, in a parametric form, the amplitudes of the slow
oscillations of the platforms

A(QA)=A(QA), Qe[0,9,],

A(QA)=A(QA4), Qe[Q,Q,],

A (QA)=A(QA), Qe[Q,,Q,],

A (QA)=A(QA4), Qe[Q,,Q,],

A(QA)=A(QA), Qe[Q,,+);

B (QA)=B(QA), Qe[0,Q,],

B,(QA)=B(QA), Qe[Q,Q,],

B,(QA)=B(QA), Qe[Q,,Q,],

B,(Q,A4)=B(Q,4), Qe[Q,,Q,],

B (QA)=B(QA), Qe[Q,,+). 21

The results of calculations are applied to build, in the
planes (n, A) and (n, B), the diagrams (ni (Q),Ai(Q)) and
(n,(Q).B,(Q)), /i=15/.

5. 2. Search for the steady-state motions of a vibrato-
ry machine and the assessment of their stability

All calculations are performed with dimensionless val-
ues. The results are also derived in a dimensionless form.

In computational experiments, a vibratory machine is
considered without a second external support. This design
is most relevant for practice. In this case, the main one is
platform 1. Auxiliary platform 2 is attached to it elastically-
plastically. Platform 2 is fitted with a vibration exciter in the
form of a passive auto-balancer.

Estimated data (dimensionless parameters):

n=1 n,=2 n,=0, p=0.1, F=1
B=0.3, k=01, h,=01 h=0 c=0. (22)

Substituting (22) into (16), two natural (resonance) fre-
quencies of system oscillations in the absence of resistance
forces are found

q,=0.941, g,=2.125.

The bifurcation frequencies of load jamming are found as
the roots of equation (19):

Q,=09616, Q,=1.1606,
Q,=2.1332, Q,=35256.

Substituting (22) into (18), the appropriate bifurcation
rotor speeds are derived. Arrange them in ascending order:

n,=16516, n,=2.1597, n,=6.3684, n, =58.2407.

Fig. 2 show the built diagrams of 5 possible modes of load
jamming (20).

e a1 ;{
|
|

\__Q,/l ny 20 40 ny n

Fig. 2. Diagrams of possible load jamming modes:
/— jamming mode number j, /i=15/

Fig. 2 shows in solid lines the steady-state load jamming
modes. It follows from Fig. 2 and rules from point 4 of the
algorithm that:



— in the range (0,n,), the first mode of load jamming is
asymptotically stable (globally or locally);

— in the range (n,,n,), the first and third modes of load
jamming are locally asymptotically stable;

— in the range (n,,n,), the third mode of load jamming is
asymptotically stable (globally or locally);

—in the range (ns,n4), the third and fifth modes of load
jamming are locally asymptotically stable;

— in the range (n,,+<o), the fifth mode of load jamming
is asymptotically stable (globally or locally).

Fig. 3, a, b shows the built diagrams of possible ampli-
tudes of the slow oscillations of the platforms.

AB

Fig. 3. Diagrams of the possible amplitudes of the slow
oscillations of platforms: @ — general view; b — at the low
rotor speeds

Fig. 3 shows in solid lines the amplitudes corresponding
to the stable jamming modes; in dotted lines — unstable.

Fig. 3 demonstrates that significant fluctuations of
the 1st platform can be achieved:

— in the (n,,n,) range of rotor speeds when implementing
the first jamming mode;

—in the (ny,n,) range of rotor speeds when implement-
ing the third jamming mode.

Comparing the single-mass vibratory machine [16] with
the considered two-mass machine reveals the following:

— the two-mass vibratory machine has two ranges of an-
gular rotor rotation velocities, at which it is advisable to use
a vibratory machine; the single-mass — one;

—the only range of a single-mass vibratory machine
roughly corresponds to the first range of the two-mass vi-
bratory machine;

— for the case of a two-mass vibratory machine, the sec-
ond range (n,,n,) is much wider than the first range (n,,n,);

— the two-mass vibratory machine, compared to a sin-
gle-mass one, has twice as many usable load jamming modes,
with the second suitable mode having a much larger region
of existence and stability.

5. 3. The influence exerted on steady-state motions by
the external and internal resistance forces

The estimated data (dimensionless parameters) are taken
by default from (22) unless otherwise specified.

When studying the effect of a particular parameter on
jamming modes, only this parameter changes.

Fig. 4, a, b shows the dependence of load jamming fre-
quencies on a change in the viscosity factor in support 1.

20
h,={0.01, 0.05, 0.25}

10
0.05| 0.01

0 20 40 60 n

h={0.01, 0.05, 0.25}

025 005 0.01

b

Fig. 4. Dependence of load jamming frequencies on a change
in the viscosity factor Ay in support 1: a — general view;
b — in the vicinity of the first jamming frequency

Fig. 4 demonstrates that:

— with an increase in 4y, the first range decreases until
the complete disappearance, while the second range almost
does not decrease;

—reducing hy can significantly increase the first range,
up to the intersection with the second one.

Fig. 5, a, b shows the dependence of load jamming fre-
quencies on a change in the viscosity factor in intermediate
support 1-2.

Fig. 5 demonstrates that:

— with an increase in /s, the second range decreases un-
til the complete disappearance, while the first range almost
does not decrease;

—reducing &5 can significantly increase the second
range, up to the intersection with the first range.

Fig. 6, a, b shows the dependence of load jamming frequen-
cies on a change in the viscosity force factor acting on the load.
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Fig. 5. Dependence of load jamming frequencies on a change in
the viscosity factor Ay, in intermediate support 1—2:
a — general view; b — in the vicinity of the first jamming
frequency
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Fig. 6. Dependence of load jamming frequencies on changes
in the viscosity force factor B, acting on the load: a — general
view; b — in the vicinity of the first jamming frequency

Fig. 6 shows that:

— with an increase in B, both ranges decrease and ap-
proach the rotor rotation velocity;

— reducing B can significantly increase both ranges.

6. Discussion of results of studying the two-frequency
motion modes of a two-mass vibratory machine

The current study demonstrates the effectiveness of the
devised procedure of studying the steady-state vibrations of a

two-mass vibratory machine, excited by a passive auto-balanc-
er. The procedure has made it possible to find all possible modes
of load jamming, to investigate them, and to assess stability.

The considered vibratory machine has two resonance rotor
rotation frequencies (15) and two corresponding shapes of plat-
form oscillations. The use of the procedure has shown that, for
the case of small resistance forces, the vibratory machine:

— has five possible modes of load jamming (Fig. 2), with
the first shape of resonance vibrations of platforms being ex-
cited under modes 1 and 2, the second shape — 3 and 4, and,
under mode 5, the frequency of load jamming is close to the
frequency of rotor rotation;

— demonstrates stable jamming modes under the odd
(1, 3, 5) load jamming modes;

— shows that the jamming modes 1 and 3 are suitable to
excite the resonance oscillations of platforms and for indus-
trial application (Fig. 3);

— exhibits that increasing the rotor speed monotonously
increases the amplitudes of platform oscillations correspond-
ing to a certain jamming mode (Fig. 3);

— proves that the amplitude of resonance platform oscil-
lations can be controlled by changing the rotor speed.

The viscous resistance forces acting on the first platform
affect the first range of rotor speeds, at which the first res-
onance shape of platform oscillations is excited (Fig. 4). As
the resistance forces increase, the first range decreases until
the total elimination.

The internal forces of viscous resistance acting between
the platforms affect the second range of rotor speeds, at
which the second shape of resonance vibrations of platforms
is excited (Fig. 5). As the resistance forces increase, the sec-
ond range decreases until the total elimination.

The viscous resistance forces acting on the loads when mov-
ing relative to the auto-balancer affect both ranges (Fig. 6). As
the resistance forces increase, both ranges decrease.

Thus, the two-mass vibratory machine has the following
advantages over the single-mass machine:

—a larger number of the resonance modes of platform
oscillations;

— a larger range of rotor speeds at which the resonance
modes are implemented.

It should be noted that the devised procedure has solved
an essentially non-linear problem. The procedure is applica-
ble to solve this class of problems for the cases of single-mass
and multi-mass vibratory machines at the different kinemat-
ics of platform motions. However, the methodology does not
make it possible to obtain the analytical results of research.
This needs to be compensated for by a large amount of
computations, considering the different ratios of smallness
between the system parameters.

In the future, it is planned to investigate the steady-
state vibrations of a three-mass vibratory machine using the
devised procedure.

7. Conclusions

1. The current study demonstrates the effectiveness of
the devised procedure for investigating load jamming modes
in systems similar to the one under consideration. The
procedure is based on the idea of parametric solution to
the problem of finding the load jamming frequencies and a
bifurcation theory of motion. The procedure employs the fact
that the rotor speed is linearly included in the equations of



load jamming frequencies. Therefore, a specific load jamming
frequency corresponds to one and only one rotor speed. This
makes it possible to find all possible load jamming modes in a
parametric form, the bifurcation points at which these modes
appear or disappear. The bifurcation theory of motion makes
it possible to assess the stability of different jamming modes.

2. The two-mass vibratory machine has two resonance
rotor rotation frequencies and two corresponding shapes of
platform oscillations. The use of the procedure has shown that
for the case of small resistance forces, the vibratory machine:

— has five possible modes of load jamming, with the first
shape of resonance vibrations of platforms being excited
under modes 1 and 2, the second shape — 3 and 4, and, under
mode 5, the frequency of load jamming is close to the fre-
quency of rotor rotation;

— demonstrates stable jamming modes under the odd
(1, 3, 5) load jamming modes;

— shows that the jamming modes 1 and 3 are suitable
to excite the resonance oscillations of platforms and for
industrial application;

— exhibits that increasing the rotor speed monotonously
increases the amplitudes of platform oscillations correspond-
ing to a certain jamming mode;

— proves that the amplitude of resonance platform os-
cillations can be controlled by changing the rotor rotation
velocity.

3. The viscous resistance forces acting on the first plat-
form affect the first range of rotor speeds, at which the first
resonance shape of platform oscillations is excited. As the
resistance forces increase, the first range decreases until the
total elimination.

The internal forces of viscous resistance acting between
the platforms affect the second range of rotor speeds, at
which the second shape of resonance vibrations of plat-
forms is excited. As the resistance forces increase, the sec-
ond range decreases until the total elimination.

The viscous resistance forces acting on the loads when
moving relative to the auto-balancer affect both ranges.
As the resistance forces increase, the two ranges de-
crease.
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Memoto docnidncenns € o0TpyHmysanus ymoe cmixocmi
Bi0KAMHUX WMPEKi6 NPU POIPOOUL KPYMUX 8Y2INHUX NAACMIE.

B npoueci modentosanns cmitixocmi wumpexie 6cmanos-
J1eH0, Wo Hanpydxiceno-0edopmosanuil cman 6iunux nopio 6
8Y2/1enopooHOMY MACUG] JiNbHUUI NOKPIeNi, axull emiujae
8upooOKuU, 3a1encums 6i0 PisuUK0-MexaHIMHUX 8LACMUBOCMET
noKpiei i Ipynmy BY2iNbHO20 NaACMA, WO PO3POOAAEMbCA,
JHcopcmKocmi 0XOpoHHUX Cnopyo i 0068xcUHU niompumyea-
HOT 0X0pOHH010 Cnopy0010. 3i 30iNbUEHHAM 00BIHCUHU, AKA
nIOMPUMYEMbC 0XOPOHHOI0 CNOPYO010 OibHUYUL NOKPIEL,
npu MinimanoHil s’copcmrocmi nidoamaueux onop, 30inv-
WYEMbC 30HA NNABHO20 NPOUNY OTHUX NOPI0 HAO éidKam-
HUM WMPEKOM i SHUNCYEMBCS PideHb ix HanpyxHceno-0edop-
Moeanozo cmany.

Jogedero, wo npu niompumui 2ipuunux upooox 6 eaubo-
KUX Waxmax 3HujNCeHHs Hanpyiiceno-0edpopmosanozo cmamy
OtuHuUX NOpio npu 3acMoCcyeanti 3axKaa0Ku 6upoodIeH020 NPo-
cmopy 6i06yeacmvCs 6 pesyaomami YuiioHeHHs 3aKAA0H020
Macusy, Ha AKUI CNUPAIOMbCS NOPOOU NOKPIBIL, KOJU 3HAMEH-
HA Koeiuicnma ywinvHents 6uxionozo mamepiany npuima-
10Mb MAKCUMATbHI 3HAUEHHA, W0 dopisHiotomb k,,,=1.5-1.53.
IIpu suxopucmanni wmyunux niddamaueux 0XOPOHHUX CNO-
PYo, wWo 3600AMbCA HAO WMPEKOM, 3MIHA HANPYIHCEHO-
depopmosarozo cmary 6i00yeaemvCs 6 pesyomami CmucHeH-
H5L ONOP, KO NepeMiueHHs nopio nokpieni i ipynmy oomesicy-
10mobCs, a naowa Konmaxmy 0iunux nopio 3 3acob6amu 0xXopoHu
3binvmyemvcs.

IIpu eubopi cnocoby oxoponu eéidxamnux wmpexie 1eoo-
Xi0HO 8paxosyseamu napamempu 0XOpOHHUX CROPYO, MOMY W0
6NJIUG PO3IMIPIE 00HUX 1 MUX Jice Onop, npu 00HAKOEII JHcop-
cmKocmi Ha po3nodii HANpyYd’ceHs 6 8Y2J1en0POOHOMY MACUBI,
pi3HoManimmui.

Jna 3abe3nevenns excnayamauiunozo cmawy OinvHuH-
HUX ni020moeuux eupobox, npu Po3POOUl KPYMUX 6Yy2ilvHUX
naacmie, OOULILHO 3ACMOCYBAHHA NIOOAMIAUBUX OXOPOHHUX
cnopy0, po3mauiosanux Hao ei0KAMHUM WMPEKOM, AKi 06Me-
JHCY1omo nepemimena GiHux nopio y eupooaeHomy npocmopi

Kmouosi caosa: 2ipcokuii muck, owuchuii 6uoiii, 006anen-
Ha 61unux nopid, 3axaaoxa eupooaenozo npocmopy, niodam-
JU6i onopu
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1. Introduction

The coal industry is the main supplier of high-quality coal
for the steel industry and energy. According to experts [1],
the possible depth of development of high-quality coking
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coal, under conditions of steep coal seams, is 1,700 m, with
balance reserves reaching 1.14 billion tons.

Despite that, at present, the development of steep
high-quality coal seams is characterized by a relatively low
level of the technical and economic indicators. In no small



