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Запропоновано ітераційні алгоритми розв’язання зворотної 
задачі, представленої у вигляді задачі квадратичного програму-
вання, розроблені шляхом модифікації алгоритмів, заснованих 
на механізмі зворотних обчислень. Ітераційні алгоритми поляга-
ють у послідовній зміні значень аргументів за допомогою ітера-
ційних формул до досягнення функцією величини, найбільш відпо-
відної обмеженню. При цьому розглянуто два варіанти вирішення 
задачі: шляхом визначення найкоротшої відстані до лінії заданого 
рівня, що визначається обмеженням, і шляхом руху вздовж гра
дієнта. Даний підхід також був адаптований для вирішення опти-
мізаційних завдань нелінійного програмування більш загального 
вигляду. Розглянуто вирішення чотирьох завдань: формування 
випуску продукції та складських витрат, оптимізація портфеля 
цінних паперів та складських витрат при заданому обсязі заку-
півель. Показано, що одержувані при використанні ітераційний 
алгоритмів рішення узгоджуються з результатом використання 
класичних методів (множників Лагранжа, штрафів), стандарт-
ної функції математичного пакету MathCad. При цьому найбіль-
ша ступінь відповідності була отримана за допомогою методу на 
основі побудови лінії рівня, метод на основі руху вздовж градієнта 
є більш універсальним.

Перевагою алгоритмів є більш проста комп’ютерна реаліза-
ція ітераційних формул, можливість отримати рішення за мен-
ший час в порівнянні з відомими методами (наприклад, методом 
штрафів, що вимагає багаторазової оптимізації модифікованої 
функції зі зміною штрафного параметра). Алгоритми можуть 
бути також використані для вирішення інших завдань нелінійного 
програмування представленого виду.

Стаття може бути корисна для фахівців, які здійснюють 
вирішення завдань в області економіки, а також розробку про-
грамних систем підтримки прийняття рішень

Ключові слова: зворотні обчислення, оптимізація функції, 
нелінійне програмування, градієнтний метод, зворотна задача
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1. Introduction

In the study of socioeconomic systems, there is a need 
to solve both direct and inverse problems. If the solution of 
direct problems allows you to evaluate the performance of 
an object based on the available characteristics, the solution 
of inverse problems provides an opportunity to determine  
a set of characteristics to achieve a given performance. So, 
for example, organizations have the problems of determining  
a set of indicators for generating profit, revenue, sales, integral 
characteristic of the enterprise activity [1]. The relationship 
of indicators can form a tree, at each level of which a solution 
to a separate inverse problem is required. In this case, the solu-
tion of inverse problems due to their instability requires the 
determination of additional conditions (regularization), which 
determines the variety of approaches to solving such problems, 
the development of which modern research is also devoted to.

The relevance of this research area is associated with the 
wide spread of inverse problems in various fields (economics, 
physics, astronomy, etc.), as well as their high applied sig-
nificance. Thus, in the field of economics, the solution of in-
verse problems allows determining control actions to achieve 
a  given state of an economy object and thus forming optimal 
management decisions.

2. Literature review and problem statement

In [2], as additional conditions for solving economic ana
lysis problems, expert information is used: coefficients of the 
relative priority of indicators, directions of changes in indica-
tors. The use of expert information requires the involvement 
of a specialist, which leads to additional costs of time and 
financial resources. In addition, the resulting decision will be 
subjective and determined by the degree of the expert’s pro-
fessionalism. The most common types of regularization based 
on the deviation of the obtained solution from the initial one 
are Tikhonov regularization [3–5] and Manhattan distance 
regularization [6, 7].

Let xi be the i-th performance indicator of an economic 
object, y – the resulting performance indicator of the object, 
h(xi) – the dependence function of the indicators xi and the 
resulting indicator y (y = h(x)). The problem is to determine 
changes in the initial characteristics Δxi to achieve the given 
value of the resulting indicator y+Δy.

When applying Tikhonov regularization, the problem can 
be represented as follows (μ is the regularization parameter):

Q x h x x y y xi
i

n

Δ Δ Δ Δ( ) = +( ) − −( ) + →
=
∑2 2

1

μ min. 	 (1)
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In the case of Manhattan distance regularization, instead 
of the sum of squares of argument changes, in the formula (1) 
the sum of modules of argument changes is used.

The solution of the problem (1) requires finding the regu
larization parameter μ, which is a separate problem that re-
quires choosing the method of searching for μ [8], which deter-
mines the result. In this regard, consideration may be given to 
representation as a constrained optimization problem. In this  
case, the options of the objective function can be considered: 
minimization of the sum of modules of argument changes, 
minimization of the sum of squares of argument changes.

In the case of minimization of the sum of modules of argu-
ment changes, the problem has the following form [9]:

f x xi
i

n

Δ Δ( ) = →
=
∑

1

min,  h x x y y+( ) = +Δ Δ . 	 (2)

As a result of solving this problem, the values of some 
argument changes are equal to zero, so the best features for 
changes can be selected.

In the case of minimization of the sum of squares of argu-
ment changes, the problem has the following form:

f x xi
i

n

Δ Δ( ) = →
=
∑ 2

1

min,  h x x y y+( ) = +Δ Δ . 	 (3)

Representation of the problem in this form can be deter-
mined by the need to achieve the given value of the resulting 
indicator so that changes in input parameters are as close to 
zero as possible. This method of solution reflects the desire 
to minimize the adjustment of input controlled indicators, 
and, consequently, to reduce resource expenditures for ac-
tivities associated with changes in indicators compared to 
their CUrrent state.

The problem (2) can be represented as a linear program-
ming problem, the solution of which is reduced to forming an 
equation for the arguments with the largest absolute nume
rical values in the constraint [9]. Solving the problem (3) is  
a more complex problem. If, with a small number of elements, 
the problem can be solved analytically using the Lagrange 
multiplier method, then when increasing the dimension and 
implementing software applications, it becomes necessary to 
implement numerical solution algorithms.

The classical methods for solving the nonlinear optimi-
zation problem (3) are the penalty method and Lagrange 
multiplier method. In the Lagrange multiplier method, the 
modified function includes unknown parameters – Lagrange 
multipliers l [12]:

Z x h x x y y xi
i

n

Δ Δ Δ Δ, min.l l( ) = +( ) − −( )+ →
=
∑ 2

1

	 (4)

To optimize the function (4), a system of equations is 
formed in which the partial derivatives are equal to zero, 
and the conditions of complementary nonrigidity are also 
included. Due to the definition of additional variables l, the 
dimension of the problem increases, which is a drawback of 
this method.

In the penalty method, there are multiple optimizations 
of the modified function with a sequential change in the pe
nalty parameter R:

L x R h x x y y xi
i

n

Δ Δ Δ Δ( ) = +( ) − −( ) + →
=
∑2 2

1

min. 	 (5)

This classical solution scheme can be modified taking into 
account the specifics of the problem being solved. For exam-
ple  [10] addresses the solution to the multicriteria optimi-
zation problem. The authors of [11] present a solution to the 
two-level optimization problem using the penalty method.

The main disadvantage of the penalty method is the 
need to perform multiple unconstrained optimizations of the  
function. As the modified function (5) includes two compo-
nents (the sum of increment squares and the compliance of 
the function h with the given value of the resulting indicator), 
optimization may take a long time, and gradient methods  
may be ineffective.

As a way to overcome this difficulty, the authors propose 
algorithms for solving the problem without applying the 
penalty parameter, based on the Kuhn-Tucker conditions. As 
a result, the solution of the problem is reduced to solving sys-
tems of equations. So, in [13], three systems of linear equa-
tions are solved at each iteration to search for the direction 
of argument changes, after which a linear search is performed 
in the given direction. In [14], the solution of the nonlinear 
programming problem is reduced to solving the linear pro-
gramming problem by the simplex method. However, the 
proposed method can be used only with a linear constraint. 
Also, the Zoutendijk method [15] is used to solve nonlinear 
optimization problems with inequality constraints, which 
includes solving a linear programming problem to determine 
the search direction, followed by optimization of the function 
by moving along the selected direction.

Another area of research in the field of solving non-
linear programming problems is the use of evolutionary 
algorithms [16]. In particular, the use of recurrent neural 
networks for solving the nonlinear optimization problem is 
considered [17]. However, such algorithms require generat-
ing a large number of population agents, performing multiple 
operations to select them and forming new individuals. The 
use of neural networks requires the implementation of net-
work learning algorithms. Therefore, the development of the 
algorithm, the implementation of multiple optimizations of 
the function can also take a significant amount of time and 
computing resources.

Some authors also consider a combination of two me
thods, for example, in [18], the Zoutendijk method was used 
in conjunction with the heuristic method.

To eliminate the indicated drawbacks of the methods,  
a method for solving problems (3) using inverse calculations 
was developed. Two approaches to problem solution were 
identified [19, 20]:

1. Solving the problem by determining the minimum 
distance to the line of the given level. The essence of this 
method is to move from the starting point, the coordinates of 
which are determined by the values of the variables x, to the 
point on the line of the given level by the shortest path. The 
length of this path is equal to the length of the perpendicu-
lar lowered from the starting point to the line of the given 
level. So, point A in Fig. 1 corresponds to the initial values 
of profit (equal to 2 CU) and cost (equal to 15 CU) (output 
value is profit). Fig. 1 also presents the line of the given profit 
level (0.2). Fig. 2 shows the options of argument changes, 
providing a profit value of 0.2. The points forming a Pareto 
effective set are connected by a line. The solution to the 
problem is an element that provides the minimum sum of two 
criteria. In Fig. 1, the solution to the problem is represented 
by point B obtained by crossing the line of the given profit 
level and the perpendicular lowered from point A to that line.
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Fig. 1. Solution of the problem by crossing the perpendicular 
and the level line
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Fig. 2. Options of argument changes

The algorithm for problem solution includes expressing 
one of the arguments of the constraint function and equating 
the value of the partial derivative of the dependence func-
tion of the arguments to the relation of argument changes. 
As a result, a system that includes equations for argument 
relations and the resulting indicator using the dependence 
function h(x) are formed. So, for the problem in Fig. 1, the 
system of equations has the following form (the expression of 
the Profit:Profit = 0.2·Cost variable is satisfied):

Δ
Δ

Δ
Δ

Cost
Profit

Profit
Cost

= −

+
+

=










0 2

2
15

0 2

. ;

. .

The solution of the system: ΔCost = –0.192, ΔProfit = 0.962.
In the case the dependence function of the arguments is 

nonlinear, the problem is solved iteratively, the obtained solu-
tion is used to calculate the new value of the partial derivative.

The main disadvantage of this algorithm is the need to 
form a dependence function of the arguments, which is not 
possible for some problems. In addition, when solving a prob-
lem, it is necessary to take into account the range of admis-
sible values of the arguments of the generated function  (for 
example, the radicand cannot be negative).

2. Solving the problem by moving along the gradient of  
a function (gradient method). The main idea is to change the 
arguments of the function according to the values of the ele-
ments of the gradient vector of the constraint function until 
the specified value is reached (Fig. 3).

The system of equations in this case is as follows:

Δ
Δ

Δ
Δ

Cost
Profit

Profit
Cost

=
−

+
+

=














2
15
1

15
2
15

0 2

2
;

. .

The solution of the system: ΔCost = –0.13, ΔProfit = 0.974.
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Fig. 3. Solution of the problem by moving 	
along the gradient

With a linear constraint function, analytical formulas 
can be obtained that will be identical for the two approaches 
considered. At the same time, high compliance of the solution 
obtained using the given methods with that using mathema
tical packages is achieved [9, 19]. However, under nonlinear 
constraints, the following disadvantages of the methods  
were revealed:

1. For some functions, there was a significant difference 
between the obtained solution and the optimal one, or the 
solution was not found (for example, the direction of the gra-
dient vector in the initial point allows reaching the specified 
value of the constraint function).

2. Multiple solutions of the system of equations, and, 
accordingly, implementation of the corresponding numerical 
methods (for example, the Newton method) are required, 
which complicates the solution process and also increases 
the solution time.

An example is the formation of the total marginal profit y 
with a quadratic dependence function of the marginal profit 
of the ith products and the set price xi. The dependence func-
tion has the following form (initial price values: x1 = 4 CU, 
x2 = 2.7 CU, x3 = 1.5 CU):

y x x

x

= − −( )( ) + − −( )( ) +

+ − −( )( )
120 9 140 10

150 11

1

2

2

2

3

2
. 	 (6)

It is necessary to determine the changes Δx that ensure 
the total marginal profit value of 400 CU.

The results of applying the gradient method, as well as 
the standard function of the mathematical package, are pre-
sented in Table 1. We can note the difference in the values of 
the objective function by more than two times.

Table 1

Solution of the problem of marginal profit generation

Method Δx1 Δx2 Δx3 f(Δx)

Gradient 6.218 9.078 11.814 260.647

Using the MathCad function 3.782 5.522 7.186 96.433

Thus, the identified shortcomings indicate the feasibility 
of conducting a study on the development of algorithms dif-
ferent from the known ones in simpler computer implemen-
tation and faster problem solution. This paper discusses the 
development of iterative algorithms for solving the optimiza-
tion problem based on existing algorithms using the inverse 
calculation apparatus. This will simplify the implementation 
of the methods, increase the solution accuracy and expand 
the range of problems to be solved.
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3. The aim and objectives of the study

The aim of this work is to investigate the possibility of 
using iterative algorithms to solve inverse problems while 
minimizing the sum of squares of argument changes, as well 
as optimization problems of a more general kind. This will 
allow determining the values of arguments with less compu-
tational resources and higher accuracy compared to existing 
methods based on inverse calculations.

To achieve the aim, the following objectives were set:
– to develop iterative algorithms for solving inverse prob-

lems while minimizing the sum of squares of argument changes;
– to solve inverse problems using iterative algorithms and 

compare the results with solutions to problems in the Math-
Cad package;

– to modify the algorithm to solve nonlinear program-
ming problems of a more general kind;

– to solve optimization problems using iterative algo-
rithms and compare the results with solutions of problems in 
the MathCad package.

4. Development of iterative algorithms  
for solving inverse problems

The initial data of the algorithms: the initial values of the 
arguments x, the given value of the resulting indicator y+Δy, 
α is a small positive number that provides movement towards 
the given value of the constraint y+Δy.

An iterative search based on the gradient method can be 
represented as follows:

Step 1. Using the initial data, calculate the value of the con-
straint function h(x) and compare with the given value y+Δy:

– if h(x) < y+Δy, the arguments must be changed towards 
increasing the value of the constraint function (gradient vec-
tor direction): t = 1;

– if h(x) > y+Δy, the arguments must be changed towards 
decreasing the value of the constraint function (antigradient 
vector direction): t = –1.

Step 2. Determine the absolute difference between the 
value of the constraint function and the given value y+Δy:

d h x y y0 = ( ) − − Δ .

Step 3. Determine new argument values by moving to-
wards the gradient/antigradient:

x x t
h x

xi i
i

i

* ,= + ⋅ ⋅
∂ ( )

∂
α 	 (5)

where i = 1…n, n is the number of arguments.
Step 4. Calculate the value of the constraint function 

h xi
*( ) and the deviation d1 from the given value y+Δy.
Check: if d1 > d0, the algorithm ends. Otherwise, d0 = d1, 

x = x*, go to step 3.
The solution to the problem is x.
The algorithm based on the formation of the line of the 

given level includes the following steps (k is the number of 
the expressed variable, ε is the given accuracy, s is the imple-
mentation number):

Step 1. Set the initial values of the variables: s = 0, 


x x= .
From the constraint function h(x) express the k-th variable:

x g xk l= ( ),  l k≠ .

Using the initial data, calculate the constraint value h(x) 
and compare with the given value y+Δy:

– if h(x) < y+Δy, the arguments must be changed towards 
increasing the value of the constraint function (gradient vec-
tor direction): t = 1;

– if h(x) > y+Δy, the arguments must be changed towards 
decreasing the value of the constraint function (antigradient 
vector direction): t = –1.

Step 2. Determine the absolute difference between the 
value of the constraint function and the given value y+Δy:

d h x y y0 = ( ) − − Δ .

Step 3. Determine the value of the partial derivatives of 
the function g:

r
g x

xi
i

i

=
−∂ ( )

∂
.

Step 4. Determine new argument values:

x x tk k
* ,= + ⋅α  x x t ri i i

* ,= + ⋅ ⋅α  i k≠ . 	 (6)

Step 5. Calculate the value of the constraint function 
h xi

*( ) and the deviation d1 from the given value y+Δy.
Check: if d1 > d0, go to step 6. Otherwise, d0 = d1, x = x*,  

go to step 4.
Step 6. Calculation of the objective function value: 

s = s+1, fs = f(x).
If s  > 1, the algorithm is checked for completion;  

if | fs–fs–1| < ε, the algorithm ends.
Step 7. Calculation of new values of partial derivatives:

r
g x

xi

i

i

=
−∂ ( )

∂

*

,  x x= ,

go to step 4. The solution to the problem is x.

5. Results of solving inverse problems  
using iterative algorithms

Consider the use of iterative algorithms to solve inverse 
problems while minimizing the sum of squares of argument 
changes. The dependence of production volume on produc-
tion factors (labor and capital costs) is described by the 
Cobb-Douglas function [21]:

y A K L= ⋅ α β ,

where y is production volume; K is capital costs; L is labor 
costs; A, α, β are parameters.

The initial values of K, L are equal to 2 and 1.15, the 
parameters A, α, β are equal to 7, 0.5, 0.3, respectively. It is 
necessary to identify changes in these arguments in order to 
achieve a production volume of 17.

For an algorithm based on constructing the line  
of the given contour level, the first iterative formula is 

K
L

K
L L

= 





∂
∂

=
−









17
7

3 539
0 3

2

1 6. .,
.

:

K K= + α,  L L
L

= + α
3 539

1 6

.
..
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For the gradient algorithm, the first iterative formula  

is 
∂
∂

=
∂
∂

=






y
K

L
K

y
L

K
L

3 5 2 10 3

0 5

0 5

0 7

.
,

.
:

.

.

.

.

K K
L

K
= + α

3 5 0 3

0 5

.
,

.

.

L L
K

L
= + α

2 1 0 5

0 7

.
.

.

.

Tables 2 and 3 show changes in the arguments in the 
process of solving the problem for α = 0.01 (the algorithm is 
implemented in Excel using VBA).

Table 2

Results of iterations using the gradient method

Iteration number K L d f(x)

1 2.026 1.177 6.537 0.001

2 2.052 1.204 6.399 0.006

3 2.077 1.231 6.263 0.012

… … … … …

57 3.449 2.468 0.046 3.835

Table 3

Results of implementations using the method based on 
forming the line of the given level (ε = 0.02)

Implementation 
number, s

R K L d f(x)

1 2.83 2.810 3.442 0.002 5.910

2 0.489 3.840 2.051 0.016 4.198

3 1.121 3.310 2.619 0.0003 3.873

4 0.758 3.550 2.326 0.011 3.784

5 0.917 3.430 2.461 0.014 3.765

According to the results obtained, it can be concluded 
that using the method based on forming the line of the given 
level, a smaller difference from the given constraint value 
and a smaller value of the objective function were achieved. 
However, the number of iterative calculations was higher and 
amounted to 699. Greater compliance with the specified con-
straint value can be achieved by decreasing the parameter α.  
So, Table 4 presents the results of solving the problem us-
ing two algorithms for α = 10–8 (ε = 0.001). The last column 
shows the value u – the difference between the value of the 
objective function f(x), obtained using this method and the 
value of the objective function using the standard MathCad 
function. Also Table 4 shows the results of applying classical 
methods of problem solution (penalty and Lagrange multi-
plier methods), the gradient method, and the method based 
on forming the line of the given level (description is given in 
Section 2). In the penalty method, the step of changing the 
penalty parameter is 10, and the accuracy is 10–8. The great-
est value of the difference u was obtained using the gradient 
method, and the difference d – the penalty method. Consid-
ering the parameters d and u as minimized values, it can be 
noted that the Pareto effective results will be those obtained 
using the Lagrange multiplier method, penalty method, and 
the standard MathCad function. In this case, the best result 
among the algorithms based on inverse calculations was ob-
tained using the iterative algorithm based on forming the line 
of the given level.

Table 4

Solution of the problem of production volume 	
formation (α = 10–8) 

Method K L d f(x) u

Iterative 
gradient

3.441 2.455 4 1 10 7. ⋅ − 3.779 3 4 10 3. ⋅ −

Iterative 
based on 
forming the 
line of the 
given level

3.463 2.429 5 6 10 8. ⋅ − 3.776 2 8 10 4. ⋅ −

Gradient 3.412 2.562 5 10 7⋅ − 3.827 0.051

Based on 
forming the 
line of the 
given level

3.463 2.429 2 4 10 7. ⋅ − 3.776 2 8 10 4. ⋅ −

Lagrange 
multiplier

3.472 2.418 0 3.776 2 8 10 6. ⋅ −

Penalty 3.472 2.418 3 9 10 4. ⋅ − 3.775 − ⋅ −4 6 10 4.

Using the 
MathCad 
function

3.472 2.418 2 3 10 6. ⋅ − 3.776 –

The gradient method was also used to solve the problem (6).  
The obtained values of argument increments: Δx1 = 3.782, 
Δx2 = 5.522, Δx3 = 7.186.The value of the objective function 
is 96.433, the values of d and u are equal to 1 3 10 6. ⋅ −  and 
− ⋅ −4 8 10 4. . Thus, the iterative algorithm made it possible to 
obtain a solution with a significantly lower value of the ob-
jective function (Table 1).

As an example of a problem for which the method based 
on constructing the line of the given level cannot be applied, 
the formation of storage costs can be considered (according 
to the classical inventory management model [22]). The 
cost-volume function of the first, second and third kind of 
products is presented as follows:
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32 2 2
, 	 (7)

where x is the order size; s is the cost of storing a unit of 
products per unit of time; w is the cost per order; q is the 
intensity of demand.

The values of the variables are presented in Table 5. It is 
necessary to determine the order size of each type of products 
so that the total cost is 10 CU. The results of solving the 
problem are presented in Table 6.

Table 5

Input data of the cost formation problem

Indicator
Product number

1 2 3

Cost of storing a unit of products per 
unit of time, s

0.3 0.1 0.1

Cost per order, w 10 5 5

Demand intensity, q 2 4 5

Initial order size, x 7 5 4
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Table 6

Solution of the cost formation problem for α = 10–8

Method x1 x2 x3 d f (x)

Iterative gradient 8.347 7.986 8.233 1 2 10 9. ⋅ − 28.649

Gradient 7.854 7.48 9.001 9 28 10 8. ⋅ − 31.888

Using the standard 
MathCad function

8.525 8.102 8.069 3 75 10 6. ⋅ − 28.508

The results obtained also suggest that the use of the ite
rative algorithm made it possible to obtain a solution with  
a lower value of the objective function.

6. Modification of iterative algorithms for solving 
nonlinear programming problems

The inverse calculation approach can be used to solve  
a wider class of optimization problems, in particular, non-
linear programming problems with one constraint in the 
form of equality [19]. The partial derivatives of the objective 
function must be one-dimensional functions. In this case, the 
gradient method can be used. For the iterative algorithm, it is 
necessary to perform the following modification:

1. To carry out unconstrained optimization of the objec-
tive function f(x), subsequent use of iterative algorithms ad-
justs the obtained values of the arguments x. That is, instead 
of the initial values of x used in the inverse problem, the 
values obtained from the unconstrained optimization of the 
objective function f(x) are used.

2. In iterative calculation formulas, it is necessary to 
make an adjustment that reflects the effect of argument 
changes on the objective function (if the second partial de-
rivatives are neither constant nor equal). This operation is 
performed by dividing the first-order partial derivatives of 
the constraint function by the second-order partial deriva-
tives of the objective function:

x x t

h x

x
f x

x

i i

i

i

i

i

* .= + ⋅ ⋅

∂ ( )
∂

∂ ( )
∂

α 2

2

6. 1. Results of solving optimization problems using 
iterative algorithms

Consider solving two classical 
problems of operations research using  
iterative algorithms: optimization of 
the securities portfolio and cost for-
mation for a given total order.

The problem of optimization of 
the securities portfolio in the absence 
of their mutual influence and mini-
mizing the risk is as follows [23]:

f x x x

x x
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σ σ

σ σ
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2
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2

4 4
2 min,

m x m x m x
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4 4

+ + +
+ = ,

x x x x1 2 3 4 1+ + + = , 	 (8)

where σ is the risk indicator; m is the profit indicator; M is 
the profit margin.

The values of risk and profit indicators: σ1 = 0.0165, 
σ2 = 0.0032, σ3 = 0.0008, σ4 = 0.0002, m1 = 0.291, m2 = 0.121, 
m3 = 0.481, m4 = 0.381. The given value of profit M is 0.37.

The problem (8) has two constraints. To use the iterative 
algorithm, it is necessary to convert them into a single con-
straint. There are two ways to do this:

1) replacement of variables: expression of a variable 
from one constraint and substitution of it into the second 
constraint and objective function (the main advantage is the 
reduction of the dimension of the problem being solved);

2) formation of the constraint as the sum of squares of the 
difference between the constraint function and its given value.

Using the second method provided a solution with a lower  
value of the objective function. The optimization problem in 
this case is:

f x x x x x( ) = + + + →σ σ σ σ1 1
2

2 2
2

3 3
2

4 4
2 min,

m x m x m x m x M

x x x x
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2
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+ + + −( ) +

+ + + + −( ) = .

The first iterative formula for the first variable is (the 
initial values of the variables x are zero):
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We also consider the problem of minimizing the function 
of purchase and storage costs (7) for the given volume of 
purchases, which should be equal to 28:

x x x1 2 3 28+ + = .

The initial data are presented in Table 5, while the ini-
tial values of the arguments x being the values obtained by 
unconstrained optimization of the function (7): x1 = 11.547, 
x2 = 19.999, x3 = 22.358.

Table 7 shows the results of solving two optimization 
problems.

Table 7
Results of solving optimization problems for α = 10–8

Optimization 
problem

Method x1 x2 x3 x4 d f(x)

securities 
portfolio

Iterative gradient 0.011 0.086 0.12 0.782 6 10 22⋅ − 1 5 10 4. ⋅ −

Gradient 0.008 0.04 0.186 0.76 3 10 4⋅ − 1 4 10 4. ⋅ −

Using the MathCad 
function

0.011 0.086 0.12 0.782 10 12− 1 5 10 4. ⋅ −

storage  
costs

Iterative gradient 7.884 9.497 10.618 – 4 10 6⋅ − 9.185

Gradient 9.389 8.786 9.825 – 4 10 15⋅ − 9.29

Using the MathCad 
function

7.884 9.497 10.618 – 6 10 13⋅ − 9.185
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According to the results obtained, the iterative gradient 
method provided greater compliance with the solution ob-
tained using the mathematical package. In the cost optimi-
zation problem, it provided a lower value of the objective 
function, and in the portfolio optimization problem, a smaller 
difference between the value of the constraint function and 
the given value.

7. Discussion of the results of the development  
of iterative algorithms

Iterative algorithms for solving inverse problems of eco-
nomic analysis are proposed. The first algorithm is based on 
determining the shortest distance to the line of the given 
level, determined by the constraint value. The second al-
gorithm (gradient) is based on moving along the gradient 
until the constraint best complies with the given value. The 
algorithms are developed on the basis of the approaches 
discussed in [9, 19], however, their application does not re-
quire solving a system of equations. In addition, the results 
of the calculations show that in the gradient approach, the 
use of the iterative algorithm can provide greater compli-
ance with the solution obtained using the mathematical 
package (Tables 1, 4, 6, 7). The highest degree of compliance 
with the solution obtained using the mathematical package 
was achieved using the algorithm based on the expression of  
a variable (Table 4). However, the algorithm based on mov-
ing along the gradient is more universal, since the expression 
of a variable can be performed not for all problems. The paper 
considers the solution of problems with a nonlinear con-
straint function: formation of production volume and cost of 
delivery and storage of products while minimizing the sum of 
squares of argument changes.

Modification of iterative algorithms, reflecting the effect 
of argument changes on the objective function, made it possi-
ble to obtain the solution of optimization problems (optimi-
zation of the securities portfolio and storage costs), consistent 
with the results of using the mathematical package (Table 7).

When using iterative algorithms, the choice of the argu-
ment change parameter plays an essential role. With the large 
value, there may be a significant difference from the specified 
value of the constraint (Tables 2, 3); if the value is too small, 
a large number of iterations will be required for the solution.

Compared to classical methods for solving nonlinear pro-
gramming problems (Lagrange multiplier method, penalty 
method), the advantage of the proposed algorithms is that 
there is no need for repeated optimization of the modified func-
tion (including the objective function and constraint). Also, 
using these methods, no additional variables that increase the 
problem dimension are determined. In addition, the proposed 
iterative algorithms are simpler in terms of computer imple-
mentation, since they include iterative formulas for changing 
arguments using partial derivatives of the constraint function 
and second partial derivatives of the objective function.

The restriction of the algorithms is related to the type of 
optimization problems they can be used for. So, if the opti-
mization problem has several constraints, they must have an 
equal sign. Also, partial derivatives of the objective function 
must be one-dimensional functions. In addition, the use of 
the algorithm based on constructing the line of the given 
level, which provided the best results, is limited due to the 
impossibility of expressing variables in some problems. The 
directions of further research will be related to the study of 
the possibility of modifying algorithms to solve optimization 
problems with constraints in the form of inequalities and 
multidimensional partial derivatives of the objective function.

8. Conclusions

1. Iterative algorithms for solving the inverse prob-
lem, presented as a quadratic programming problem with 
a  single constraint are proposed. A feature of the proposed 
approach is the use of iterative formulas for changing ar-
guments based on the inverse calculation apparatus. This 
apparatus allows a transition from the original argument 
values to those that satisfy the problem constraint. The ap-
proach used simplifies the implementation of algorithms as 
there is no need to implement methods for solving systems 
of equations. Compared to multiple optimizations of the 
modified function, the use of the proposed approach reduces 
the time of problem solution.

2. Using the developed algorithms, solution of two in-
verse problems with a nonlinear dependence of the resulting 
indicator on input variables is made. In the gradient ap-
proach, iterative change of arguments provided greater com-
pliance with the solution of the problem using the standard 
function of the mathematical package compared to problem 
solution using the system of equations. Thus, iterative algo-
rithms can provide a solution for a wider range of problems.

3. Modification of algorithms for solving nonlinear pro-
gramming optimization problems of the presented type is 
performed. In this case, unconstrained optimization of the 
objective function is performed, and iterative formulas are 
adjusted to take into account the effect of arguments on the 
objective function.

4. The solution of two optimization problems using ite
rative algorithms is considered. The results of the numerical 
solution of problems are consistent with the results of using 
standard functions of mathematical packages and classical 
nonlinear optimization methods. With the argument change 
parameter α of 10–8, the maximum absolute difference bet
ween the values of the objective function obtained using the 
iterative algorithm and mathematical package was 7·10–7. 
When solving inverse problems, the maximum value of such 
a difference was obtained using the iterative gradient algo-
rithm and amounted to 0.141. The presented algorithms can 
be used to create decision support systems for solving inverse 
and optimization problems.
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