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3anpononosano imepauiiini anzopummu po3e’s3anns 360pOMHOL
3adaui, npedcmaenenoi y 6unadi 3a0ai K6AOPAMUUHO20 NPOLPAMY-
6anHs, PO3POOEH] WAAXOM MOOudikauii anzopummis, 3aCHOBAHUX
Ha Mexanismi 360pomnux oouucnens. Imepauiini anzopummu nonsea-
10Mmb Y NOCAI006HI 3MIHI 3HAUEHL apeyMenmie 3a 00NOMO2010 imepa-
uitinux popmyn 00 docsenenns QynKyicto seaurunu, HaWoiwLW 6i0Nno-
6i0n0i oomexncennto. Ilpu ybomy posensanymo dea eapiarmu eupiuenns
3a0aui: wasaxom eusnavenns naukoponuoi eidcmani 0o ninii 3adanozo
DI6HS, WO BUIHAMAEMBC 0OMENCEHHAM, § WAAXOM PYXY 63006C 2pa-
dienma. Jlanuii nioxio maxodc 6ye adanmosanuii 01 6upiuenns onmu-
Mizauitinux 3a60anb HeNiHIlHO20 NPOZPaAMYEaHHs Oilvul 3a2aNbH020
euenn0y. Posenanymo eupiwenns 1omupoox 3ae0amnv: (Qopmyseans
UNYCKyY npooyKuii ma cKaAadCoKux eumpam, onmumizayis nopmeens
UIHHUX nanepié Mma CKJAAOCOKUX 6UMPam npu 3a0aHomy 06ca3i saxy-
nigenw. Iloxasano, wo odepicysani npu euxopucmanni imepaitinui
anzopumMmie pients Y3200HcytomoCs 3 Pe3yaomanmom eUKOPUCMAHHS
Kaacuunux memoodie (muoscnuxie Jazpanca, wmpagie), cmandapm-
Hoi Qynxuii mamemamuunozo naxemy MathCad. IlIpu uyvomy naiéine-
wa cmyninw 6i0n06ioHoCMi 6Y1a ompuMana 3a 00NOM0o2010 Memooy Ha
0CHO061 n06Y006u Ninii pieHs, Memo0 HA 0CHO6L pYXY 630062ic epadienma
€ Oibu YHIBePCANILHUM.

Iepesazoro anzopummie € Ginvw npocma xKomn’tomepna peaniza-
yis imepayitnux Qpopmyn, MONCAUBICHL OMPUMAMYU PIUlEHHS 34 MEH-
wuil wac 6 nopienanii 3 eidomumu memooamu (Hanpuxaiao, memooom
wmpadpie, wo eumazae Gazamopazoeoi onmumizauii Mooudixosanoi
Dynxuii 3i 3minor0 wmpagrnozo napamempa). Anzopummu moxicymo
Oymu maxosic uKopucmani 0 GUPIUeHHs THIUX 3a60aHb HeNIHITH020
npopamyeanis npeocmasaenozo 6udy.

Cmamms moxce Oymu xopucna 0as axieuie, axi 30uiCHIOIOMD
eupiuenns 3a60ans 6 00aACMI eKOHOMIKU, A MAKOIHC PO3POOKY npo-
Zpamnux cucmem niompumKy npuitHamms piwiens

Kntouosi caosa: 36opommui o6uucaenns, onmumizauis Qymxuii,
HeJliHiliHe NPoZpamMyeants, padichmuuil memoo, 360pomuna 3a0a4a
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1. Introduction

2. Literature review and problem statement

In the study of socioeconomic systems, there is a need
to solve both direct and inverse problems. If the solution of
direct problems allows you to evaluate the performance of
an object based on the available characteristics, the solution
of inverse problems provides an opportunity to determine
a set of characteristics to achieve a given performance. So,
for example, organizations have the problems of determining
a set of indicators for generating profit, revenue, sales, integral
characteristic of the enterprise activity [1]. The relationship
of indicators can form a tree, at each level of which a solution
to a separate inverse problem is required. In this case, the solu-
tion of inverse problems due to their instability requires the
determination of additional conditions (regularization), which
determines the variety of approaches to solving such problems,
the development of which modern research is also devoted to.

The relevance of this research area is associated with the
wide spread of inverse problems in various fields (economics,
physics, astronomy, etc.), as well as their high applied sig-
nificance. Thus, in the field of economics, the solution of in-
verse problems allows determining control actions to achieve
a given state of an economy object and thus forming optimal
management decisions.

In [2], as additional conditions for solving economic ana-
lysis problems, expert information is used: coefficients of the
relative priority of indicators, directions of changes in indica-
tors. The use of expert information requires the involvement
of a specialist, which leads to additional costs of time and
financial resources. In addition, the resulting decision will be
subjective and determined by the degree of the expert’s pro-
fessionalism. The most common types of regularization based
on the deviation of the obtained solution from the initial one
are Tikhonov regularization [3—5] and Manhattan distance
regularization [6, 7].

Let x; be the i-th performance indicator of an economic
object, y — the resulting performance indicator of the object,
h(x;) — the dependence function of the indicators x; and the
resulting indicator y (y=h(x)). The problem is to determine
changes in the initial characteristics Ax; to achieve the given
value of the resulting indicator y+Ay.

When applying Tikhonov regularization, the problem can
be represented as follows (u is the regularization parameter):

Q(Ax):(h(x+Ax)—y—Ay)2+uZn:Axf—>min. 6))

i=1



In the case of Manhattan distance regularization, instead
of the sum of squares of argument changes, in the formula (1)
the sum of modules of argument changes is used.

The solution of the problem (1) requires finding the regu-
larization parameter p, which is a separate problem that re-
quires choosing the method of searching for p [8], which deter-
mines the result. In this regard, consideration may be given to
representation as a constrained optimization problem. In this
case, the options of the objective function can be considered:
minimization of the sum of modules of argument changes,
minimization of the sum of squares of argument changes.

In the case of minimization of the sum of modules of argu-
ment changes, the problem has the following form [9]:

f(Ax):zn:\Axi‘%min, h(x+Ax)=y+Ay. 2

i=1

As a result of solving this problem, the values of some
argument changes are equal to zero, so the best features for
changes can be selected.

In the case of minimization of the sum of squares of argu-
ment changes, the problem has the following form:

f(M):iAxf%min, h(x+Ax)=y+Ay. 3

i=1

Representation of the problem in this form can be deter-
mined by the need to achieve the given value of the resulting
indicator so that changes in input parameters are as close to
zero as possible. This method of solution reflects the desire
to minimize the adjustment of input controlled indicators,
and, consequently, to reduce resource expenditures for ac-
tivities associated with changes in indicators compared to
their CUrrent state.

The problem (2) can be represented as a linear program-
ming problem, the solution of which is reduced to forming an
equation for the arguments with the largest absolute nume-
rical values in the constraint [9]. Solving the problem (3) is
a more complex problem. If, with a small number of elements,
the problem can be solved analytically using the Lagrange
multiplier method, then when increasing the dimension and
implementing software applications, it becomes necessary to
implement numerical solution algorithms.

The classical methods for solving the nonlinear optimi-
zation problem (3) are the penalty method and Lagrange
multiplier method. In the Lagrange multiplier method, the
modified function includes unknown parameters — Lagrange
multipliers A [12]:

Z(Ax,X):X(h(x+Ax)—y—Ay)+iAxf—>min. (4)

i=1

To optimize the function (4), a system of equations is
formed in which the partial derivatives are equal to zero,
and the conditions of complementary nonrigidity are also
included. Due to the definition of additional variables A, the
dimension of the problem increases, which is a drawback of
this method.

In the penalty method, there are multiple optimizations
of the modified function with a sequential change in the pe-
nalty parameter R:

L(AY)=R(h(x+Ax)-y-ag) + Y A > min.  (5)

i=1

This classical solution scheme can be modified taking into
account the specifics of the problem being solved. For exam-
ple [10] addresses the solution to the multicriteria optimi-
zation problem. The authors of [11] present a solution to the
two-level optimization problem using the penalty method.

The main disadvantage of the penalty method is the
need to perform multiple unconstrained optimizations of the
function. As the modified function (5) includes two compo-
nents (the sum of increment squares and the compliance of
the function 4 with the given value of the resulting indicator),
optimization may take a long time, and gradient methods
may be ineffective.

As a way to overcome this difficulty, the authors propose
algorithms for solving the problem without applying the
penalty parameter, based on the Kuhn-Tucker conditions. As
a result, the solution of the problem is reduced to solving sys-
tems of equations. So, in [13], three systems of linear equa-
tions are solved at each iteration to search for the direction
of argument changes, after which a linear search is performed
in the given direction. In [14], the solution of the nonlinear
programming problem is reduced to solving the linear pro-
gramming problem by the simplex method. However, the
proposed method can be used only with a linear constraint.
Also, the Zoutendijk method [15] is used to solve nonlinear
optimization problems with inequality constraints, which
includes solving a linear programming problem to determine
the search direction, followed by optimization of the function
by moving along the selected direction.

Another area of research in the field of solving non-
linear programming problems is the use of evolutionary
algorithms [16]. In particular, the use of recurrent neural
networks for solving the nonlinear optimization problem is
considered [17]. However, such algorithms require generat-
ing a large number of population agents, performing multiple
operations to select them and forming new individuals. The
use of neural networks requires the implementation of net-
work learning algorithms. Therefore, the development of the
algorithm, the implementation of multiple optimizations of
the function can also take a significant amount of time and
computing resources.

Some authors also consider a combination of two me-
thods, for example, in [18], the Zoutendijk method was used
in conjunction with the heuristic method.

To eliminate the indicated drawbacks of the methods,
a method for solving problems (3) using inverse calculations
was developed. Two approaches to problem solution were
identified [19, 20]:

1. Solving the problem by determining the minimum
distance to the line of the given level. The essence of this
method is to move from the starting point, the coordinates of
which are determined by the values of the variables x, to the
point on the line of the given level by the shortest path. The
length of this path is equal to the length of the perpendicu-
lar lowered from the starting point to the line of the given
level. So, point A in Fig. 1 corresponds to the initial values
of profit (equal to 2 CU) and cost (equal to 15 CU) (output
value is profit). Fig. 1 also presents the line of the given profit
level (0.2). Fig. 2 shows the options of argument changes,
providing a profit value of 0.2. The points forming a Pareto
effective set are connected by a line. The solution to the
problem is an element that provides the minimum sum of two
criteria. In Fig. 1, the solution to the problem is represented
by point B obtained by crossing the line of the given profit
level and the perpendicular lowered from point A to that line.
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Fig. 1. Solution of the problem by crossing the perpendicular
and the level line
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Fig. 2. Options of argument changes

The algorithm for problem solution includes expressing
one of the arguments of the constraint function and equating
the value of the partial derivative of the dependence func-
tion of the arguments to the relation of argument changes.
As a result, a system that includes equations for argument
relations and the resulting indicator using the dependence
function A(x) are formed. So, for the problem in Fig. 1, the
system of equations has the following form (the expression of
the Profit:Profit=0.2-Cost variable is satisfied):

ACost
AProfit
2+ AProfit
15+ACost

]

The solution of the system: ACost=-0.192, AProfit=0.962.

In the case the dependence function of the arguments is
nonlinear, the problem is solved iteratively, the obtained solu-
tion is used to calculate the new value of the partial derivative.

The main disadvantage of this algorithm is the need to
form a dependence function of the arguments, which is not
possible for some problems. In addition, when solving a prob-
lem, it is necessary to take into account the range of admis-
sible values of the arguments of the generated function (for
example, the radicand cannot be negative).

2. Solving the problem by moving along the gradient of
a function (gradient method). The main idea is to change the
arguments of the function according to the values of the ele-
ments of the gradient vector of the constraint function until
the specified value is reached (Fig. 3).

The system of equations in this case is as follows:

2

ACost 152
AProfit 1
15

2+ AProfit _ 0.2

15+ACost
The solution of the system: ACost=—-0.13, AProfit=0.974.
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Fig. 3. Solution of the problem by moving
along the gradient

With a linear constraint function, analytical formulas
can be obtained that will be identical for the two approaches
considered. At the same time, high compliance of the solution
obtained using the given methods with that using mathema-
tical packages is achieved [9, 19]. However, under nonlinear
constraints, the following disadvantages of the methods
were revealed:

1. For some functions, there was a significant difference
between the obtained solution and the optimal one, or the
solution was not found (for example, the direction of the gra-
dient vector in the initial point allows reaching the specified
value of the constraint function).

2. Multiple solutions of the system of equations, and,
accordingly, implementation of the corresponding numerical
methods (for example, the Newton method) are required,
which complicates the solution process and also increases
the solution time.

An example is the formation of the total marginal profit y
with a quadratic dependence function of the marginal profit
of the ith products and the set price x;. The dependence func-
tion has the following form (initial price values: x;=4 CU,
x9=2.7 CU, x3=1.5 CU):

y=(120~(x,~9)") #(140~ (x, - 10)’)+
+ (150 (2, -11)"). (6)

It is necessary to determine the changes Ax that ensure
the total marginal profit value of 400 CU.

The results of applying the gradient method, as well as
the standard function of the mathematical package, are pre-
sented in Table 1. We can note the difference in the values of
the objective function by more than two times.

Table 1
Solution of the problem of marginal profit generation
Method Axy Axy Axs | f(Ax)
Gradient 6.218 | 9.078 | 11.814 | 260.647
Using the MathCad function | 3.782 | 5.522 | 7.186 | 96.433

Thus, the identified shortcomings indicate the feasibility
of conducting a study on the development of algorithms dif-
ferent from the known ones in simpler computer implemen-
tation and faster problem solution. This paper discusses the
development of iterative algorithms for solving the optimiza-
tion problem based on existing algorithms using the inverse
calculation apparatus. This will simplify the implementation
of the methods, increase the solution accuracy and expand
the range of problems to be solved.



3. The aim and objectives of the study

The aim of this work is to investigate the possibility of
using iterative algorithms to solve inverse problems while
minimizing the sum of squares of argument changes, as well
as optimization problems of a more general kind. This will
allow determining the values of arguments with less compu-
tational resources and higher accuracy compared to existing
methods based on inverse calculations.

To achieve the aim, the following objectives were set:

— to develop iterative algorithms for solving inverse prob-
lems while minimizing the sum of squares of argument changes;

— to solve inverse problems using iterative algorithms and
compare the results with solutions to problems in the Math-
Cad package;

—to modify the algorithm to solve nonlinear program-
ming problems of a more general kind,;

—to solve optimization problems using iterative algo-
rithms and compare the results with solutions of problems in
the MathCad package.

4. Development of iterative algorithms
for solving inverse problems

The initial data of the algorithms: the initial values of the
arguments x, the given value of the resulting indicator y+Ay,
o is a small positive number that provides movement towards
the given value of the constraint y+Ay.

An iterative search based on the gradient method can be
represented as follows:

Step 1. Using the initial data, calculate the value of the con-
straint function /(x) and compare with the given value y+Ay:

— if h(x) <y+Ay, the arguments must be changed towards
increasing the value of the constraint function (gradient vec-
tor direction): t=1;

—if A(x) >y+Ay, the arguments must be changed towards
decreasing the value of the constraint function (antigradient
vector direction): t=—1.

Step 2. Determine the absolute difference between the
value of the constraint function and the given value y+Ay:

d,= ‘h(x)—y—Ay‘.

Step 3. Determine new argument values by moving to-
wards the gradient/antigradient:

o)

ox,

i

)

X, =x,+t-0-

where i=1...n, n is the number of arguments.

Step 4. Calculate the value of the constraint function
h(x7) and the deviation d; from the given value y+Ay.

Check: if dy>d,, the algorithm ends. Otherwise, dy=dj,
x=x", go to step 3.

The solution to the problem is x.

The algorithm based on the formation of the line of the
given level includes the following steps (k is the number of
the expressed variable, € is the given accuracy, s is the imple-
mentation number):

Step 1. Set the initial values of the variables: s=0, x = x.

From the constraint function /(x) express the k-th variable:

x,=g(x), [#k.

Using the initial data, calculate the constraint value 4(x)
and compare with the given value y+Ay:

— if A(x) <y+Ay, the arguments must be changed towards
increasing the value of the constraint function (gradient vec-
tor direction): t=1;

—if A(x) >y+Ay, the arguments must be changed towards
decreasing the value of the constraint function (antigradient
vector direction): t=—1.

Step 2. Determine the absolute difference between the
value of the constraint function and the given value y+Ay:

d,= ‘h(x)—y—Ay‘.

Step 3. Determine the value of the partial derivatives of
the function g:

—8g(x,.)

! ox;

i

Step 4. Determine new argument values:
X=X, 400, X, =x,+l-007, i£k (6)

Step 5. Calculate the value of the constraint function
h(xl ) and the deviation d; from the given value y+Ay.

Check: if di>dy, go to step 6. Otherwise, dy=d;, x=x",
go to step 4.

Step 6. Calculation of the objective function value:
s=st1, f=/(x).

If s>1, the algorithm is checked for completion;
if | fi—/s-1|<eg, the algorithm ends.

Step 7. Calculation of new values of partial derivatives:

~9g(x)

V=, X=

! ox; ’

i

g0 to step 4. The solution to the problem is x.

5. Results of solving inverse problems
using iterative algorithms

Consider the use of iterative algorithms to solve inverse
problems while minimizing the sum of squares of argument
changes. The dependence of production volume on produc-
tion factors (labor and capital costs) is described by the
Cobb-Douglas function [21]:

y=A-K*L,

where y is production volume; K is capital costs; L is labor
costs; A, o, B are parameters.

The initial values of K, L are equal to 2 and 1.15, the
parameters A, o, B are equal to 7, 0.5, 0.3, respectively. It is
necessary to identify changes in these arguments in order to
achieve a production volume of 17.

For an algorithm based on constructing the line
of the given contour level, the first iterative formula is

k(17 ) 9K _-3539)
- 7L0.3 ) aL - Li.G .

K=K+aq, L=L+a@.

1.6



For the gradient algorithm, the first iterative formula

. (dy 35" 9y 21K*
1S | === —, == :
oK K™ oL I

0.3
}'<=K+oc3'5£5 ,

0.5
Lo

Tables 2 and 3 show changes in the arguments in the
process of solving the problem for a=0.01 (the algorithm is
implemented in Excel using VBA).

Table 2
Results of iterations using the gradient method
Tteration number K L d J(x)
1 2.026 1.177 6.537 0.001
2 2.052 1.204 6.399 0.006
3 2.077 1.231 6.263 0.012
57 3.449 2.468 0.046 3.835
Table 3

Results of implementations using the method based on
forming the line of the given level (€=0.02)

Mmbers | R K ||
1 2.83 2.810 3.442 0.002 5.910
2 0.489 3.840 2.051 0.016 4.198
3 1.121 3.310 2.619 | 0.0003 | 3.873
4 0.758 3.550 2.326 0.011 3.784
5 0.917 3.430 2.461 0.014 3.765

According to the results obtained, it can be concluded
that using the method based on forming the line of the given
level, a smaller difference from the given constraint value
and a smaller value of the objective function were achieved.
However, the number of iterative calculations was higher and
amounted to 699. Greater compliance with the specified con-
straint value can be achieved by decreasing the parameter o.
So, Table 4 presents the results of solving the problem us-
ing two algorithms for =108 (¢=0.001). The last column
shows the value u — the difference between the value of the
objective function f(x), obtained using this method and the
value of the objective function using the standard MathCad
function. Also Table 4 shows the results of applying classical
methods of problem solution (penalty and Lagrange multi-
plier methods), the gradient method, and the method based
on forming the line of the given level (description is given in
Section 2). In the penalty method, the step of changing the
penalty parameter is 10, and the accuracy is 10~8. The great-
est value of the difference u was obtained using the gradient
method, and the difference d — the penalty method. Consid-
ering the parameters d and « as minimized values, it can be
noted that the Pareto effective results will be those obtained
using the Lagrange multiplier method, penalty method, and
the standard MathCad function. In this case, the best result
among the algorithms based on inverse calculations was ob-
tained using the iterative algorithm based on forming the line
of the given level.

Table 4
Solution of the problem of production volume
formation (o.=1078)

Method K L d f(x) u
Iterative 3441 | 2455 |4.1-107 | 3779 |3.4-10°
gradient
Iterative
based on
forming the | 3.463 2429 |56-10°| 3776 | 28-107*
line of the
given level
Gradient 3.412 2.562 5107 3.827 0.051
Based on
formingthe | 5 63 | 9499 | 24-107 | 3776 |28-10°
line of the
given level
Lagrange | 3 179 | 9418 0 3776 | 2.8:10°
multiplier
Penalty 3.472 2.418 3.9-10" 3775 |-4.6-107"
Using the
MathCad 3.472 2418 | 23-10° | 3.776 -
function

The gradient method was also used to solve the problem (6).
The obtained values of argument increments: Ax;=3.782,
Axy=5.522, Ax3=7.186.The value of the objective function
is 96.433, the values of d and u are equal to 1.3-10° and
—4.8-10"". Thus, the iterative algorithm made it possible to
obtain a solution with a significantly lower value of the ob-
jective function (Table 1).

As an example of a problem for which the method based
on constructing the line of the given level cannot be applied,
the formation of storage costs can be considered (according
to the classical inventory management model [22]). The
cost-volume function of the first, second and third kind of
products is presented as follows:

w S . S. w. S.
S0 g (O Sy s Sy

v x 2 x, 2 x, 27

(7

where x is the order size; s is the cost of storing a unit of
products per unit of time; w is the cost per order; ¢ is the
intensity of demand.

The values of the variables are presented in Table 5. It is
necessary to determine the order size of each type of products
so that the total cost is 10 CU. The results of solving the
problem are presented in Table 6.

Table 5
Input data of the cost formation problem

Product number

1 2 3

Indicator

Cost of storing a unit of products per

unit of time, s 0.3 0.1 0.1

Cost per order, w 10 5 5
Demand intensity, g 2 4 5
Initial order size, x 7 5 4




Table 6
Solution of the cost formation problem for o.=1072
Method xq k%) X3 d J(x)
Iterative gradient | 8.347 | 7.986 | 8.233 | 1.2:107 28.649
Gradient 7.854 | 7.48 | 9.001 | 9.28-10° | 31.888
Using thestandard| 555 8,102 | 8.069 | 37510 | 28508

The results obtained also suggest that the use of the ite-
rative algorithm made it possible to obtain a solution with
a lower value of the objective function.

6. Modification of iterative algorithms for solving
nonlinear programming problems

The inverse calculation approach can be used to solve
a wider class of optimization problems, in particular, non-
linear programming problems with one constraint in the
form of equality [19]. The partial derivatives of the objective
function must be one-dimensional functions. In this case, the
gradient method can be used. For the iterative algorithm, it is
necessary to perform the following modification:

1. To carry out unconstrained optimization of the objec-
tive function f(x), subsequent use of iterative algorithms ad-
justs the obtained values of the arguments x. That is, instead
of the initial values of x used in the inverse problem, the
values obtained from the unconstrained optimization of the
objective function f(x) are used.

2. In iterative calculation formulas, it is necessary to
make an adjustment that reflects the effect of argument
changes on the objective function (if the second partial de-
rivatives are neither constant nor equal). This operation is
performed by dividing the first-order partial derivatives of
the constraint function by the second-order partial deriva-
tives of the objective function:

oh(x,)
S,
BT )

ox?

6. 1. Results of solving optimization problems using
iterative algorithms

Consider solving two classical
problems of operations research using

where o is the risk indicator; m is the profit indicator; M is
the profit margin.

The values of risk and profit indicators: 61=0.0165,
02=0.0032, 63=0.0008, 6,=0.0002, m;=0.291, my=0.121,
m3=0.481, m;=0.381. The given value of profit M is 0.37.

The problem (8) has two constraints. To use the iterative
algorithm, it is necessary to convert them into a single con-
straint. There are two ways to do this:

1) replacement of variables: expression of a variable
from one constraint and substitution of it into the second
constraint and objective function (the main advantage is the
reduction of the dimension of the problem being solved);

2) formation of the constraint as the sum of squares of the
difference between the constraint function and its given value.

Using the second method provided a solution with a lower
value of the objective function. The optimization problem in
this case is:

f(x)=0x{ +0,x; +0,x; +0,x; — min,
2
(mpc1 +myx, +myx, +mx, —M) +
2
+ (2, +a,+x,+x,-1) =0.

The first iterative formula for the first variable is (the
initial values of the variables x are zero):

9f(x,)

T o

i

oh
ﬂzbﬁ +2x,+2x,+2x, +
ox,

+2m, (m2x, + myx, + myx, + myx, —0.37) -2,

-2.215
0.033

x,=0-a

We also consider the problem of minimizing the function
of purchase and storage costs (7) for the given volume of
purchases, which should be equal to 28:

X +x,+x,=28.

The initial data are presented in Table 5, while the ini-
tial values of the arguments x being the values obtained by
unconstrained optimization of the function (7): x1=11.547,
29=19.999, x3=22.358.

Table 7 shows the results of solving two optimization
problems.

iterative algorithms: optimization of ) . s Table 7
the securities portfolio and cost for- Results of solving optimization problems for o.=10
mation for a given total order. Optimization
The problem of optimization of problem Method " = o M d /@)
the securities portfolio in the absence Iterative gradient | 0.011 | 0.086 | 0.12 | 0782 | 6102 |1.5-10"
of their mutual influence and mini-
mizing the risk is as follows [23]: Securfltll_es Gradient 0.008 | 004 | 0.186 | 076 | 310" [1.4-10"
porttolio -
f(x)=0a? +o,0i+ Using the MathCad 0,011 | 0086 | 012 | 0782 | 107 |1510°
2 2 .
+ 05y +0,X; —> min, Iterative gradient 7884 | 9497 | 10.618 - 4-10° | 9.185
Xy + Moy + My Xy + storage | Gradient 9389 | 8786 | 9.825 — 4107 | 929
+mx, =M, costs -
}Jsmts the MathCad | 7 g0r | 9497 | 10618 | — | 610" | 9.185
X+ Xy + X+ x, =1, (8) unction




According to the results obtained, the iterative gradient
method provided greater compliance with the solution ob-
tained using the mathematical package. In the cost optimi-
zation problem, it provided a lower value of the objective
function, and in the portfolio optimization problem, a smaller
difference between the value of the constraint function and
the given value.

7. Discussion of the results of the development
of iterative algorithms

Iterative algorithms for solving inverse problems of eco-
nomic analysis are proposed. The first algorithm is based on
determining the shortest distance to the line of the given
level, determined by the constraint value. The second al-
gorithm (gradient) is based on moving along the gradient
until the constraint best complies with the given value. The
algorithms are developed on the basis of the approaches
discussed in [9, 19], however, their application does not re-
quire solving a system of equations. In addition, the results
of the calculations show that in the gradient approach, the
use of the iterative algorithm can provide greater compli-
ance with the solution obtained using the mathematical
package (Tables 1, 4, 6, 7). The highest degree of compliance
with the solution obtained using the mathematical package
was achieved using the algorithm based on the expression of
a variable (Table 4). However, the algorithm based on mov-
ing along the gradient is more universal, since the expression
of a variable can be performed not for all problems. The paper
considers the solution of problems with a nonlinear con-
straint function: formation of production volume and cost of
delivery and storage of products while minimizing the sum of
squares of argument changes.

Modification of iterative algorithms, reflecting the effect
of argument changes on the objective function, made it possi-
ble to obtain the solution of optimization problems (optimi-
zation of the securities portfolio and storage costs), consistent
with the results of using the mathematical package (Table 7).

When using iterative algorithms, the choice of the argu-
ment change parameter plays an essential role. With the large
value, there may be a significant difference from the specified
value of the constraint (Tables 2, 3); if the value is too small,
a large number of iterations will be required for the solution.

Compared to classical methods for solving nonlinear pro-
gramming problems (Lagrange multiplier method, penalty
method), the advantage of the proposed algorithms is that
there is no need for repeated optimization of the modified func-
tion (including the objective function and constraint). Also,
using these methods, no additional variables that increase the
problem dimension are determined. In addition, the proposed
iterative algorithms are simpler in terms of computer imple-
mentation, since they include iterative formulas for changing
arguments using partial derivatives of the constraint function
and second partial derivatives of the objective function.

The restriction of the algorithms is related to the type of
optimization problems they can be used for. So, if the opti-
mization problem has several constraints, they must have an
equal sign. Also, partial derivatives of the objective function
must be one-dimensional functions. In addition, the use of
the algorithm based on constructing the line of the given
level, which provided the best results, is limited due to the
impossibility of expressing variables in some problems. The
directions of further research will be related to the study of
the possibility of modifying algorithms to solve optimization
problems with constraints in the form of inequalities and
multidimensional partial derivatives of the objective function.

8. Conclusions

1. Tterative algorithms for solving the inverse prob-
lem, presented as a quadratic programming problem with
a single constraint are proposed. A feature of the proposed
approach is the use of iterative formulas for changing ar-
guments based on the inverse calculation apparatus. This
apparatus allows a transition from the original argument
values to those that satisfy the problem constraint. The ap-
proach used simplifies the implementation of algorithms as
there is no need to implement methods for solving systems
of equations. Compared to multiple optimizations of the
modified function, the use of the proposed approach reduces
the time of problem solution.

2. Using the developed algorithms, solution of two in-
verse problems with a nonlinear dependence of the resulting
indicator on input variables is made. In the gradient ap-
proach, iterative change of arguments provided greater com-
pliance with the solution of the problem using the standard
function of the mathematical package compared to problem
solution using the system of equations. Thus, iterative algo-
rithms can provide a solution for a wider range of problems.

3. Modification of algorithms for solving nonlinear pro-
gramming optimization problems of the presented type is
performed. In this case, unconstrained optimization of the
objective function is performed, and iterative formulas are
adjusted to take into account the effect of arguments on the
objective function.

4. The solution of two optimization problems using ite-
rative algorithms is considered. The results of the numerical
solution of problems are consistent with the results of using
standard functions of mathematical packages and classical
nonlinear optimization methods. With the argument change
parameter o of 1078, the maximum absolute difference bet-
ween the values of the objective function obtained using the
iterative algorithm and mathematical package was 7-1077.
When solving inverse problems, the maximum value of such
a difference was obtained using the iterative gradient algo-
rithm and amounted to 0.141. The presented algorithms can
be used to create decision support systems for solving inverse
and optimization problems.
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