
29

Information and controlling system

1. Introduction

There are many options to categorize software for micro-
controllers. We shall use one of the variants for the informal
classification of real-time operating systems (RTOS) for mi-
crocontrollers (MC). It was proposed by the Massachusetts
Institute of Technology (MIT). This classification takes
into consideration the software for real-time technical
systems (RTTS) based on microcontrollers and micro-
processors [1, 2]. According to this classification, there are
4 classes of hard-real time operating systems:

– the pattern template based on Polled Loop Systems;
– the pattern template of software based on the micro-

controller interruption system (Interrupt Driven);
– the simple patterns of real-time operating systems based

on a multi-tasking core, such as SafeRTOS, the IEC 61508
standard-certified, μC/OS-II, RTXC Quadr, and others;

– a full-featured operating system (Full Featured RTOS)
maintaining the POSIX standard (portable operating sys-
tem interface). For a given option, there are typical RTOS
standards such as POSIX 1003.1a, the POSIX 1003.1b stan-
dard, the POSIX 1003.1c standard. Aviation engineering
employs the RTOS of the DO-178B, ARINC-653 standards.

The European aviation standard ED-12B is analogous to
DO-178B.

Many modern real-time software and hardware technical
systems (RTTS) are built on the basis of a master controller.

More complex systems typically consist of a main con-
troller based on the Cortex-A (Cortex-M) architecture
microcontrollers and auxiliary controllers (based on the
Cortex-M MCs or simpler 8-, 16-bit MCs). In most cases,
the auxiliary controller in a circuit of actuator and sensor
controllers (ASCs) may be subject to higher requirements
for the speed of computation and the unification of MCs
from different manufacturers. The software solution is
subject to requirements for the ease of source code main-
tenance. In addition, the issue of mathematical modeling
is important.

At present, one of the acceptable solutions for the cre-
ation of ASC hardware is the Cortex-M architecture MCs
due to their relatively high power and low price. The price of
these 32-bit Cortex-M architecture microcontrollers is com-
parable to some 8-bit MCs for similar purposes while and
the speed of operation is much greater. Using the Cortex-M
architecture makes it possible to unify the source code for
the MCs from different manufacturers.

Received date 18.04.2020

Accepted date 16.06.2020

Published date 26.06.2020

Copyright © 2020, P. Katin, V. Chmelov, V. Shemaev

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

DEVELOPMENT OF
TYPICAL "STATE"

SOFTWARE PATTERNS
FOR CORTEX-M

MICROCONTROLLERS
IN REAL TIME

P . K a t i n
PhD, Associate Professor*

E-mail: p.katin@kpi.ua
V . C h m e l o v

PhD, Associate Professor**
E-mail: viacheslavchmelov@gmail.com

V . S h e m a e v
Doctor Military Sciences, Professor*

Е-mail: shemaev@niss.gov.ua
*Department of Automation and Control 	

in Technical Systems***
**Department of Radio Engineering Devices 	

and Systems***
***National Technical University of Ukraine 	

"Igor Sikorsky Kyiv Polytechnic Institute"
Peremohy ave., 37, Kyiv, Ukraine, 03056

Вiдомi технiчнi системи реального часу (real-time technical
systems RTTS), вимагають високої швидкостi програмних
рiшень. Крiм того, для них потрiбно забезпечити унiфiкацiю
вихiдного коду, якiсть супроводу програмного забезпечення
та математичне моделювання. Все це потрiбно реалiзува-
ти з вiдносно невисокою вартiстю програмного i апаратно-
го рiшення. Апаратну частину можна реалiзувати на основi
розповсюджених мiкроконтролерiв архiтектури Cortex-M.

Програмна частина даних мiкроконтролерiв може бути
реалiзована на основi операцiйної системи реального часу
(ОСРЧ) (real-time operation systems RTOS). В ходi дослiд-
жень було виявлено два недолiки. Першим є те, що викори-
стання ОСРЧ призводить до обмеження швидкостi. Другим
недолiком є труднощi унiфiкацiї, пiдтримки вихiдного коду
(Source)i математичного моделювання.

Для усунення недолiкiв розробленi типовi програмнi
патерни Стан для допомiжного контролера у колi виконав-
чих механiзмiв або датчикiв на основi мiкроконтролерiв архi-
тектури Сortex-М в режимi реального часу, в процедурнiй
парадигмi. Особливiстю таких патернiв є висока швидкiсть
програмного рiшення (software)у порiвняннi з рiшеннями на
основi ОСРЧ.

Розробленi патерни дозволяють унiфiкувати вихiдний
код (Source) для мiкроконтролерiв архiтектури Сortex-М
рiзних виробникiв, покращити супроводження програмного
забезпечення (software)i адаптувати його до математичної
моделi кiнцевого автомата (mathematical model finite state
machine).

Результати пройшли випробування на мiкрокон-
тролерi STM32F103 з використанням бiблiотеки Cortex
microcontroller software interface system (CMSIS). Це дозво-
ляє поширити отримане рiшення на МК iнших виробникiв,
що пiдтверджує практичну цiннiсть розроблених патернiв

Ключовi слова: реальний час, керуючий контролер, кiнце-
вий автомат, мiкроконтролер Cortex-M, шаблон Стан

UDC 004.451:004.354-022

DOI: 10.15587/1729-4061.2020.205377

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (105) 2020

30

The ASC software can be implemented on the basis of
the first three classes of RTOS, namely, based on the Polled
Loop Systems, based on the Interrupt Driven microcon-
troller system, or on the basis of simple real-time operating
systems based on a multi-tasking core [1, 2]. The use of a
full-featured RTOS [1, 2] for ASC is not acceptable due to
additional unreasonable costs.

We shall consider the pros and cons of using a multi-
tasking-core-based RTOS as a base for the ASC software
compared to other solutions [1, 2]. The advantage of a multi-
tasking-core-based RTOS is the relative simplicity of soft-
ware development and project support.

At the same time, we can note two drawbacks of the ASC
software based on the RTOS that maintains multi-tasking.
The first is the relative speed limit of the software compared
to solutions based on the Polled Loop Systems or based on
the Microcontroller Interrupt Driven system. The second
drawback is the need to study the source code of the RTOS
for the presence of hidden errors, to test the RTOS for sys-
tems requiring great reliability (aircraft, missile technology,
medicine, etc.). Relatively simple solutions based on the
Polled Loop Systems or the Interrupt Driven systems are
easier to find hidden programming errors.

One can achieve greater performance speed of the ASC
software, compared to a multi-tasking RTOS, by using the
Polled Loop Systems or on the basis of the microcontroller
Interrupt Driven system [1, 2]. However, developing the
software without patterns makes it difficult to unify, to
maintain the code, and to model mathematically. Therefore,
it is a relevant task to develop typical State design patterns
for the Cortex-M architecture MCs to address the above
shortcomings related to unification, maintenance, and math-
ematical modeling.

The Cortex-M architecture microcontrollers, for which
patterns are designed, are produced by many manufacturers
and are now widely used in equipment. Using the Universal
Cortex-Microcontroller Software Interface System (CMSIS)
libraries makes it possible to adapt the obtained patterns to
a large number of Cortex-M architecture microcontrollers
from many manufacturers. That makes it possible to apply
the resulting solution for a broad range of Cortex-M ar-
chitecture MCs and thus ensure unification. Therefore, it
seems expedient to explore a given field of research as the
developed patterns could be widely used in practice to cre-
ate the ASC software libraries based on a wide range of the
Cortex-M architecture MCs.

2. Literature review and problem statement

It is shown in [1, 2] that in most cases a real-time operat-
ing system from any of the 4 classes must be described along
with the hardware and cannot be considered separately
from the physical environment and the processes it manages.
The authors revealed the hardware and software problems
related to increasing the speed of software, standardizing,
maintaining, and mathematical modeling.

Paper [3] explores the possibility of increasing the speed of
the software by increasing the number of MC computational
cores. At the same time, the task of increasing the speed of
performance at minimal cost remains unresolved. This is due
to that the cost of multi-core MCs is much higher than the
cost of single-core MCs. An option to solve this problem is to
use a relatively inexpensive and universal MC architecture.

Study [4] reports the results of achieving the maximum
switching speed by using an 8-bit microcontroller. However,
such hardware implies the difficulty of unifying the source
code of the software. The reason for this is that the archi-
tecture of 8-bit MCs is typically not universal for several
manufacturing firms.

The general results of RTTS testing based on high-speed
controllers are described in [5]. At the same time, there are
no specific implementations of the software and hardware of
RTTS controllers.

The results of the development of a controller using the
Cortex-M architecture for scalable solutions are reported
in [6]. However, the issue of mathematical modeling remains
unresolved, which complicates the possibility of mathemati-
cal analysis of the ASC software.

A system of food production by evaporating the raw ma-
terials was implemented in [7]. The solution was obtained
on the basis of a Cortex-A MC. At the same time, the issue
of achieving an acceptable cost of the ASC prototype was
not resolved. This is due to the high cost of the Cortex-M
architecture MCs.

The infrastructure management solutions built on In-
ternet technology are outlined in [8]. The implementation
of high-speed software remains a problematic issue. This is
due to that Internet technologies are a limiting factor in a
hard-real-time mode.

The software that makes it possible to reach high speeds
for image processing is described in [9]. The authors do not
address the mathematical notation and software for for-
malizing and switching the RTTS states within the State
pattern. A solution to the problem is to develop typical State
templates (patterns) for the Cortex-M architecture MCs.

Work [10] reveals the implementation of the software
based on the State pattern in the object-oriented program-
ming (OOP) variant. The downside of this solution is the
redundant code and computational requirements, which is
not always acceptable for ASC. Therefore, the possibility of
eliminating the above flaw is to develop a pattern in a sim-
pler, procedural version.

A study of the software implementation of the State pat-
tern in OOP for low-power microcontrollers in a generalized
form was conducted in [11]. At the same time, the problem
of universalization of the received solutions for a wide range
of MCs was not solved. A solution to this problem at present
is the development of the State pattern for the universal
Cortex-M architecture MCs.

A study of the software implementation of the finite
state machine in OOP was carried out in [12]. The issues of
the mathematical modeling of the software remained unre-
solved. One solution is to bring the developed pattern to the
mathematical model of the finite state machine.

The most high-speed version of the State pattern hardware
implementation is offered in [13]. However, at the highest po-
tential speed, a given solution cannot be quickly reprogrammed
and reconfigured, which is its main drawback. The most ac-
ceptable option is to develop a software pattern for MC.

The mathematical theory of the description of the finite
state machine is set out in [14] but there are no software
examples, nor any connection to practical tasks.

The general descriptions of the finite state machine soft-
ware templates are outlined in [15]. However, there are no
examples of practical software solutions.

The State patterns designs and their software implemen-
tation were developed in [16]. In this case, the solutions are

31

Information and controlling system

given in the OOP version, which entails the shortcomings
specified for [11]. A solution to this problem is to develop a
universal State pattern for a wide range of MCs.

A solution using RTOS is proposed in [17]. At the same
time, there is a potential drawback ‒ reducing the software
speed by switching the RTOS context. To address this
shortcoming, one can use solutions based on the Polled Loop
Systems or based on the microcontroller Interrupt Driven
system.

One of the solutions to the above issues concerning the
hardware of the ASC prototype, outlined in [3‒8] is the use
of relatively inexpensive general-purpose Cortex-M archi-
tecture MCs.

A variant of solving the tasks related to the software of
the ASC prototype, outlined in [9‒17], concerning the issues
of increasing the software speed, unification, maintenance,
and mathematical modeling, is the development of typical
software State templates (patterns) for the Cortex-M ar-
chitecture MCs. These patterns can be implemented in the
Polled Loop System variant or through the microcontroller
Interrupt Driven system.

3. The aim and objectives of the study

The aim of this study is to develop a software solution to
increase the speed of the ASC prototype compared to RTOS.
At the same time, the result to be obtained should ensure
the unification of the source code, facilitate the maintenance
process, as well as the mathematical modeling of the software.

To accomplish the aim, the following tasks have been set:
– to develop and implement a typical State software pat-

tern for ASC based on Cortex-M in a procedural paradigm,
maximally adapted for the mathematical model of the finite
state machine;

– to analyze the shortcomings of a typical pattern; in or-
der to eliminate them, design a State pattern for ASC based

on Cortex-M in the form of a linked list (a typical construct
of the C language), to maximally adapt the pattern for the
mathematical model of the finite state machine;

– to objectively assess the speed of the software based on
the developed patterns compared to a multi-tasking-core-
based RTOS [1, 2].

4. Materials and methods for implementing the hardware
of an auxiliary high-speed controller

4. 1. The hardware of the Cortex-M-based high-speed
controller prototype

Chapter 2 shows that there are options for building the
RTTS prototypes based on a single MC. The generalized
diagram of such a system is shown in Fig. 1. It depicts the
software and hardware components of a real-time technical
system. It can be implemented on the basis of MC of any
architecture and power, depending on the tasks. This can
employ a complex control system that requires the power of
Cortex-A MC, for example, to control a video camera.

This system includes sensors, actuators, it enables com-
munication with a personal computer. The software shown
in Fig. 1 implies a procedural paradigm.

The more complex RTTSs include actuators, sensors,
information transfer systems, etc. The most generalized
scheme of such RTTSs is shown in Fig. 2. Unlike Fig. 1,
it has an auxiliary ASC (there may be several of them). It
manages auxiliary systems and can be built on the basis of
the Cortex-M architecture MCs, or the simpler ones, 8-,
16-bit MCs of other architecture. A given ASC is designed
to process sensor signals and control actuators and subsys-
tems. All these subsystems and elements imply the increased
performance speed, so there are higher requirements for
ASC in terms of the software speed. The ASC controller is
almost autonomous but can receive control signals from the
main controller.

RTOS System controller

Video
camera

Sensor 1 Sensor
adapter 1

Sensor 2 Sensor
adapter 2

Sensor N Sensor
adapter N

Microphone Personal computer

Control gear 1Control
adapter 1

Control
gear N

Control
adapter 1

Control adapter
 N

Control gear 2

Microcontroller
Operating system

Sensor OS functions

Control gear functions
Functions for personal computer

interaction

Feedback 1
Feedback 2

 Fig. 1. A generalized RTTS scheme based on a single controller

Fig. 2. RTTS scheme with the main and auxiliary ASC microcontroller

RTOS System controller

Video
camera

Sensor 1 Sensor
adapter 1

Sensor 2

Sensor N

Microphone Personal сomputer

Control gear
1Control gear 1

Control
gear N

Control gear 1

Control adapter
 N

Control gear 2

Microcontroller CORTEX - A
Soft real-time operating system

Sensor OS functions

Control gear functions

Functions for personal computer interaction

Microcontroller
CORTEX-M

Нard real-time
operating system

Feedback 1

Feedback 2
Feedback 3

Sensor
adapter 2

Sensor
adapter 1

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (105) 2020

32

The hardware (material part) of ASC can utilize low-cost
Cortex-M, such as the STM32F40x or STM32F10x series.
MCs from other manufacturers are also possible. These
MCs demonstrate the high performance speed and are less
costly even compared to 16- or 8-bit MCs. At the same
time, the practice of programming the Cortex-M microcon-
trollers in the C language is much easier than that of 16- or
8-bit MCs. The RTTS software in Fig. 2 includes the main
controller’s software and the high-speed ASC software.
The developed typical State software patterns are designed
exactly for ASC.

As previously stated, the cost of the Cortex-M MCs is ap-
proaching the cost of low-power microcontrollers. Therefore,
the ASC hardware can be built on the basis of the Cortex-M
architecture MCs. The software for ASC can be built on the
basis of the State template or based on a multitasking RTOS
according to the classification given in [1, 2]. The Full Fea-
tured RTOS operating systems [1, 2] based on the Cortex-M
MCs are not used to build ASC due to unreasonable cost
increases.

In the development of the patterns, the standard 32-bit
microcontroller STM32F103 was used as the ASC hardware.
The clock frequency of the microcontroller was 72 MHz.
Power voltage was 3.3 V. The indoor temperature during
testing was within 20‒25 °C. The more precise characteris-
tics of the microcontroller are given in [18].

The software development method is to use the Keil en-
vironment, the CMSIS typical libraries, and to evaluate the
resulting solutions at debugging.

Although STM32F103 is not the most powerful MC,
the software tested on STM32F103 can be easily adapted
to similar and improved MCs. The software can be stan-
dardized for the Cortex-M architecture MCs and for other
vendors through the CMSIS libraries.

4. 2. A mathematical model for formalizing the State
pattern

There are several options for describing the model of
the finite state machine. The basic description of the finite
state machine chosen for the development of a State design
pattern was the variant proposed in [19] in the form of sets
and recurrent formulae. This option is more appropriate to
describe nearly implemented software.

The finite state machine is set by the following recurrent
formulae:

()
()

+ +

+ +

= 


= φ 

1 1

1 1

, , ;

, , ,

i i i i

i i i i

z f x z y

y x z y
				 (1)

where the sequence х0, х1, х2,…, хn, using the
terminology from [19], forms the input word
and can be considered as a set X; the sequence
of values z0, z1, z2,…, zk, using the terminology
from [19], forms the word of states and can be
considered as a set of Z states; the sequence of
values y0, y1, y2,…, yl, using the terminology
from [19], forms an output word and can be con-
sidered as a set of outputs Y. The pair (х0, y0)
is termed the original state for the finite state
machine. If functions (1) are not dependent
on Y [19], (1) is transformed to the form

()
()

+ +

+ +

= 


= φ 

1 1

1 1

, ;

, .

i i i

i i i

z f x z

y x z
 	 	 (2)

To compare other variants of the finite state machines,
we shall write (1) and (2) in the form of a classic representa-
tion as a totality

() ()()1 1 0, , , , , , .i i i+ if x z x , z+ ϕX Y Z Z 	 	 (3)

Thus, (3) includes all the classic elements of the mathe-
matical model of a finite state machine. A given formula pro-
vides an opportunity to implement a mathematical model in
the form of a State software pattern for ASC in a procedural
paradigm in the classic version of the Polled Loop Systems
or based on the microcontroller Interrupt Driven system
according to the classification given in [1, 2].

5. Results of the development of State software pattern
for a controller

5. 1. Software implementation of the typical State
software pattern in the form of the software for ASC in
the procedural paradigm

The first step implies the software that represents a
typical State software pattern for the ACS based on Cortex-
M-based in the procedural paradigm of the classic variant
of the polled loop in real time. A special feature is that it is
maximally adapted to the mathematical model of a finite
state machine (3).

Next, we show the result of the development of a header
file for the software, which demonstrates the presence of all
three sets in formula (3). A given file demonstrates exclu-
sively the idea of the developed State software pattern in the
procedural paradigm, in the variant of Polled Loop Systems
in accordance with the classification of RTOS given in [1, 2].

The pattern can be implemented in the peripheral inter-
ruption function or a system timer of the Cortex-M series,
that is, in the microcontroller Interrupt Driven variant or in
a polled loop variant [1, 2]. A given solution makes it possible
to reach the maximum speed of computations for ASC as it
does not contain additional software delays, caused by the
operation of the RTOS core elements.

To improve the readability of the obtained results, the
typical formatting of the C programming language was slight-
ly modified. During the development, we identified a global
CurrentState variable. It stores the current value of the ASC
state. Thus, below is the classical software implementation of
mathematical model (3). It is implemented in the procedural
variant. The developed header file that demonstrates the
idea of a typical State software pattern for ASC based on
Cortex-M in the procedural paradigm is shown further.

#include “stm32f10x.h”
#include “stm32f10x_tim.h”
#include “stm32f10x_gpio.h”
#include “stm32f10x_rcc.h”
#define _KEYPAD_NO_PRESSED 0xFF

enum Z_States CurrentState;
enum X_InputSignal InputsSig;

enum Z_States
{// state from keyboard
STATE_S = '*',STATE_RES = '#',STATE_0 = '0',STATE_9 = '9',
STATE_8 = '8',STATE_7 = '7',STATE_6 = '6',STATE_5 = '5',
STATE_4 = '4', STATE_3 = '3', STATE_2 = '2',STATE_1 = '1'};

33

Information and controlling system

In the header file, we use the enumerator enum Z_State
to describe the set of states, forming the finite set of the
internal ASC states, which corresponds to (3). If necessary,
a developer can increase this number to the required value.

The enumerator enum X_InputSignal is also used to
describe the set of input signals, which corresponds to the
set of inputs (3).

To form the set of output signals, the structure struct
Y_OutSignal is used, whose elements are the indicators on the
function, which corresponds to the set of output signals (3).

The functions void FSM_simple(void) and void FSM_
switch(void) correspond to the transition functions of the
mathematical model of a finite state machine (3).

If necessary, a developer can increase the
number of functions and states to the required
value. Development practice has shown that the
use of enumerators is convenient for a relatively
small number of states. The implementation file
and the test run variant file can be built inde-
pendently using a well-known model solution.

Thus, a given header file demonstrates the
developed typical State software pattern for an
ASC based on Cortex-M in the procedural para-
digm in the variant of a polled loop system. The
solution is maximally close to the mathematical
model of the finite state machine.

5. 2. Software implementation of the typi-
cal State pattern for the Cortex-M microcon-
troller in the form of a linked list

Developed in chapter 5. 1, the typical State
software pattern for a Cortex-M-based ACS in
the procedural paradigm in the classic variant
of the polled loop systems has one drawback.
It can occur at a large number of states in the
form of a long polled cycle in a state-busting al-
gorithm, such as a switch operator. This makes
it more difficult to read the code at a large num-
ber of states and to maintain it. Next, a code is
offered that represents the result of the develop-
ment of the State pattern in the C programming

language. A special feature of the solution
is a link between the pattern and mathe-
matical model (3) and the elimination of
the specified flaw by using the mechanism
of a linked list (the typical construct of the
C language).

In the developed solution for Cortex-M,
a linked list is used that eliminates the long
polling cycle in a brute force algorithm and
implements the functions of transition and
output (2).

The source code demonstrates only the
very idea of using a linked list in the de-
velopment of a typical State pattern in the
form of software for ASC based on Cor-
tex-M. Therefore, the software is as simpli-
fied as possible. In the developed example,
the transition from state to state is carried
out in sync, without a random input signal.
This is done with the aim of explaining the
idea of a typical State pattern in the form of
software for ASC based on Cortex-M in the
form of a linked list (the typical construct of
the C language).

The example includes a modification of the model for-
matting of the C language to improve the readability of the
software solution. The software was tested for the microcon-
troller stm32f103.

As one can see from the header file below, the code
contains all the elements of the finite state machine (3). In
this variant, the sets are implemented as structures, which
slightly increases the volume of the source code. The rela-
tionship between the solution obtained in a given header file
and mathematical model (3) is detailed in chapter 5. 1, with
minor changes.

enum X_InputSignal
{// input signals from keyboard

SIG_STATE_S = '*',SIG_STATE_RES = '#',SIG_STATE_0 = '0',
SIG_STATE_9 = '9',SIG_STATE_8 = '8',SIG_STATE_7 = '7',
SIG_STATE_6 = '6',SIG_STATE_5 = '5',SIG_STATE_4 = '4',
SIG_STATE_3 = '3',SIG_STATE_2 = '2',SIG_STATE_1 = '1', };

struct Y_OutSignal
{// output signal

char (*ptr_state_0)(void);
char (*ptr_state_1)(void);
char (*ptr_state_2)(void);

} OutSignal= {handle_state_0,handle_state_1, handle_state_2};

char handle_state_0(void); char (*ptr_state_0)(void);
char handle_state_1(void); char (*ptr_state_1)(void);
char handle_state_2(void); char (*ptr_state_2)(void);

void init_state(enum Z_States INIT_STATE,enum X_InputSignal _0_INP);
uint32_t _FSM_simple(void);
void _FSM_switch(void);
enum X_InputSignal input_from_external(void);

#include “stm32f10x.h”
#include “stm32f10x_tim.h”
#include “stm32f10x_gpio.h”
#include “stm32f10x_rcc.h”

void init_state_structsPK(void);
void init_state_structsPK_better(void);
void init_state_structs(void);

void _FSM_linked(void);
void FSM_to_step_PK(void);

enum Z_State
{// state

STATE_S = ‘*’,STATE_RES = ‘#’,STATE_0 = ‘0’,STATE_9 = ‘9’,
STATE_8 = ‘8’,STATE_7 = ‘7’,STATE_6 = ‘6’,STATE_5 = ‘5’,
STATE_4 = ‘4’, STATE_3 = ‘3’, STATE_2 = ‘2’,STATE_1 = ‘1’

};

enum X_InputSignal
{// input signals from keyboard

SIG_STATE_S = ‘*’,SIG_STATE_RES = ‘#’,SIG_STATE_0 = ‘0’,
SIG_STATE_9 = ‘9’,SIG_STATE_8 = ‘8’,SIG_STATE_7 = ‘7’,
SIG_STATE_6 = ‘6’,SIG_STATE_5 = ‘5’,SIG_STATE_4 = ‘4’,
SIG_STATE_3 = ‘3’,SIG_STATE_2 = ‘2’,SIG_STATE_1 = ‘1’,

// add signals
SIG_NO_ST_0 = ‘/’,SIG_NO_ST_1 = ‘|’,SIG_NO_ST_2 = ‘+’,

};

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (105) 2020

34

The basic idea behind the de-
velopment of a model State pat-
tern in the form of software for
ASC based on Cortex-M in the
form of a linked list is shown later
in the implementation file. The
feature that distinguishes a given
solution from the classic pattern
with an infinite polling cycle is
that the structure state_infoPK
contains all the elements of (3)
and is part of a linked list. The
linked list makes it possible to
navigate it without the cumber-
some switch design.

Next, the source code includes
a function to initiate the entire
linked list init_state_structsPK,
which creates the sets of states
and all elements of the mathemat-
ical model of the finite state ma-
chine (3). A given solution is de-
monstrative and requires further
refinement for registration in the
form of a library for ASC.

Transfer and output functions
are designed as a FSM_to_step_
PK() function, which makes it pos-
sible to navigate the list without
using a simple busting algorithm,
which significantly reduces the
source code of the demo software.

The software example given
in the source code below shows
the State pattern testing using
a linked list and demonstrates
that one does not need a polling
cycle to switch the state. The file
contains an entry point to the
software. It is designed solely to
demonstrate the idea and the fea-
sibility of implementing a typical

State pattern for ASC based
on Cortex-M in the form of
a linked list (the typical con-
struct of the C programming
language). The overall imple-
mentation of the template
is maximally adapted to the
mathematical model of the fi-
nite state machine (3). Pat-
tern testing in a given ex-
ample is performed at launch
based on the polled loop sys-
tem in accordance with the
RTOS classification [1, 2].

The pattern can be tested
in the peripheral interruption
processing function or the
Cortex-M series MC system
timer based on the microcon-
troller Interrupt Driven archi-
tecture [1, 2].

typedef struct Z_State_struct
{// state from keyboard
int STATE_S; int STATE_RES; int STATE_0; int STATE_9;
int STATE_8; int STATE_7; int STATE_6; int STATE_5 ;
int STATE_4; int STATE_3; int STATE_2; int STATE_1 ;

}z_state;

typedef struct X_InputSignal_struct
{// input signals from keyboard
int SIG_STATE_S; int SIG_STATE_RES; int SIG_STATE_0; int SIG_STATE_9;
int SIG_STATE_8; int SIG_STATE_7; int SIG_STATE_6; int SIG_STATE_5 ;
int SIG_STATE_4; int SIG_STATE_3; int SIG_STATE_2; int SIG_STATE_1 ;

}x_state;

// Y_OutSignal
void handle_state_0(void); //void (*ptr_state_0)(void);
void handle_state_1(void); //void (*ptr_state_1)(void);
void handle_state_2(void); //void (*ptr_state_2)(void);
void handle_state_3(void); //void (*ptr_state_3)(void);
void handle_state_4(void); //void (*ptr_state_4)(void);
void handle_state_5(void); //void (*ptr_state_5)(void);

#include “FSM.h”
#include “tm1637.h”
#include “delay.h”
#include <stdio.h> /* printf, scanf, NULL */
#include <stdlib.h> /* malloc, free, rand */
uint32_t CurrentStateInit =’0’;

const struct Z_State_struct Z_States={‘*’,’#’, ‘0’, ‘9’, ‘8’, ‘7’,’6’,’5’, ‘4’,’3’, ‘2’, ‘1’};
const struct X_InputSignal_struct X_InputList={‘*’,’#’, ‘0’, ‘9’, ‘8’, ‘7’,’6’,’5’, ‘4’,’3’};

int Z_CurrentState;
int X_CurrentInput;
enum Z_State CurrentState;
enum X_InputSignal InputsSig;

void Y_handle_state_0(void)
{TM1637_clearDisplay(); TM1637_display(0,Z_States.STATE_0);}
void Y_handle_state_1(void)
{TM1637_clearDisplay(); TM1637_display(0,Z_States.STATE_1);}
void Y_handle_state_2(void) {TM1637_clearDisplay(); TM1637_display(0,2);}
void Y_handle_state_3(void) {TM1637_clearDisplay(); TM1637_display(1,3);}
void Y_handle_state_4(void) {TM1637_clearDisplay(); TM1637_display(1,4);}
void Y_handle_state_5(void) {TM1637_clearDisplay(); TM1637_display(2,5);}
void Y_handle_state_6(void) {TM1637_clearDisplay(); TM1637_display(2,6);}
void Y_handle_state_7(void) {TM1637_clearDisplay(); TM1637_display(2,7);}
void Y_handle_state_8(void) {TM1637_clearDisplay(); TM1637_display(3,8);}
void Y_handle_state_9(void) {TM1637_clearDisplay(); TM1637_display(3,9);}

…..

typedef struct state_infoPK
{ int val;
struct Z_State_struct z_state;// enums is not suitable there
struct X_InputSignal_struct x_state;
void (*Y_handle)(void);
struct state_infoPK *next;
} my_node_t;

my_node_t *head = NULL;

void FSM_to_step_PK(void)
{
my_node_t * current = head;

35

Information and controlling system

The STM32F10 microcontroller was used for testing.
The software was developed in the Keil environment.

#include “delay.h”
#include “FSM.h”
#include “tm1637.h”
int main()

{
TM1637_init();
TM1637_brightness(BRIGHTEST);
TM1637_clearDisplay();
init_state_structsPK();
FSM_to_step_PK();

while(1)
{
delay_ms(250);
FSM_to_step_PK();}}

5. 3. Results of estimating the speed of the developed
patterns compared to the real-time operating system

As previously stated, the typical State software pat-
terns for Cortex-M to implement the ASC software make
it possible to reach a faster software performance speed
compared to RTOS-based solutions. This is because the
patterns do not contain additional software delays, caused
by the work of the RTOS core elements. To confirm this,
the comparison was performed between the software speed

of the developed pattern and the RTOS-
based solutions.

For the purpose of comparison, a proce-
dure of speed estimation was devised based
on the calculation of clocks under the mode
of step-by-step debugging of MC in the Keil
programming environment.

The first feature of the procedure is the
units to estimate the time of the software
operation. The software operation time was
evaluated using the capabilities of the Keil
programming environment. In this case, we
measured not the time of operation between
the steps of the software but the number of
clocks recorded in the Cycle Count register
(DWT_CYCCNT) register. Hereafter, we
term this value the number of cycles. A given
value can be determined in a step-by-step
debugging in the Keil programming environ-
ment. Such a capability of the programming
environment is demonstrated in Fig. 3, where
the arrow shows the value of the States count-
er, which records the number of cycles during
step-by-step debugging.

This approach provides an opportunity to
summarize the results of the evaluation of the
software speed on the Cortex-M MCs from
other manufacturers. Since the Cortex-M
MCs may have different clock rates, the time
estimate obtained for a single MC cannot be
summarized on MCs from different manufac-
turers. And the estimate of the number of cy-
cles makes it possible to compare the speed for
different software solutions and summarize it
for the Cortex-M MCs by different manufac-
turers supporting the CMSIS libraries in the
Keil environment.

The next feature of the procedure is the choice of RTOS.
The real-time CMSIS-RTOS Variant 1.03 operating system
was chosen for comparison. It belongs to a multi-tasking-
core-based RTOS according to the classification given
in [1, 2]. For the ASC technical solution, the full-featured
RTOS, according to the classification given in [1, 2], is not
intended to be used. That is why we chose the CMSIS-RTOS
Variant 1.03. This choice is also due to the fact that the de-
veloper of a given RTOS is the Keil developer. This allows
us to argue that the RTOS works properly, it has optimal
characteristics and is adapted to the Cortex-M architecture
MC for most manufacturers. This makes it possible to extend
the results for other multi-tasking RTOS according to the
classification given in [1, 2].

The third feature of the procedure is to select the loca-
tion of the software’s stop points during the step-by-step
run and measure the number of cycles recorded in the Cycle
Count (DWT_CYCCNT) register to compare different
software solutions. The main element of the comparison
for RTOS-based software and that based on the developed
pattern is the estimate of the number of cycles. Moreover,
the RTOS measured the number of cycles between exiting
one function of one thread and entering another function of
another thread when switching threads.

In the developed pattern, we measured the number of
cycles between exiting one function of one state and enter-
ing another function of another state as one moves from one

while (current != NULL) {
current->Y_handle();
current = current->next;
delay_ms(250); }}

void init_state_structsPK(void)
{
head = (my_node_t*)malloc(sizeof(my_node_t));

if (head == NULL){while(1);}
head->val = 0;
head->Y_handle=Y_handle_state_0;

head->next = (my_node_t *) malloc(sizeof(my_node_t));
head->next->val = 1;
head->next->Y_handle=Y_handle_state_1;

head->next->next = (my_node_t *) malloc(sizeof(my_node_t));
head->next->next->val = 2;
head->next->next->Y_handle=Y_handle_state_2;

head->next->next->next = (my_node_t *) malloc(sizeof(my_node_t));
head->next->next->next->val = 3;
head->next->next->next->Y_handle=Y_handle_state_3;
}

void init_state_structsPK_better(void)
{
head = (my_node_t*)malloc(sizeof(my_node_t));
int size_str = sizeof(head);

if (head == NULL){while(1);}
(*head).val = 0;
(*head).Y_handle=Y_handle_state_0;

(*(head)).next = (my_node_t *) malloc(sizeof(my_node_t));
(*(head+size_str)).val = 1;
(*(head+size_str)).Y_handle=Y_handle_state_1; }

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (105) 2020

36

state to another. In both cases, an empty __NOP() operator
is employed to properly assess the function.

Such an approach makes it possible to most accurately
assess the difference in the operation time of practical soft-
ware solutions based on RTOS and that on the basis of the
developed pattern.

Fig. 3. States register in the Keil programming environment
(Registers work window)

There was no statistical estimate of the number of
cycles (States, Fig. 3) because in multiple experiments the
States’ value for the same stop points did not change. This is
the peculiarity of a hard time mode RTOS.

This is followed by an example of a procedure to deter-
mine the number of cycles between exiting one function
of one thread and entering another function of a different
thread when one switches threads for CMSIS-RTOS Vari-
ant 1.03.

At the initial stage, we selected the 32-bit microcontrol-
ler STM32F103 of the Cortex-M architecture. To implement
the procedure, we used a demo source code, shown below. It
represents the demonstration of the parallel execution of the
two threads.

In the first step, stop points were set in the function
void test_thread1(void const *argument) and in void test_
thread1(void const *argument).

The second step was to determine the number of States
in the step-by-step debugging. The number of States was
determined between the stop points in the first function

void test_thread1(void const *argument)

and in the second function

void test_thread1(void const *argument)

in the process of thread switching.
The third step summarized the results obtained, which

are given in Table 1. They are shown in relative cycles
(States). Statistical treatment of the results was not carried
out because during repeated repetitions of debugging, more
than 50 times, the same number of cycles were produced. A
given solution can be generalized for other Cortex-M archi-
tecture MCs by other manufacturers. The Sec field (Fig. 3)
was used for approximate time assessment.

The cycle counter value was similarly compared when
switching between the states of the developed patterns,
namely:

– software implementation of the typical State software
pattern for ASC based on Cortex-M in the procedural
paradigm in the classic variant of the polled loop systems,
line 2, Table 1;

– software implementation of the typical State pattern
for the Cortex-M microcontroller in the form of a linked list,
line 3, Table 1. Both patterns are brought to the mathemati-
cal model of the finite state machine in accordance with the
developed solution.

The results of comparing the relative speed of the soft-
ware based on RTOS and that based on the developed pat-
terns are summarized in Table 1.

The values given in column 3 are closer to development
practice because they show the actual number of cycles in
the course of exiting one function (state or thread) and en-
tering another function (state or thread). A given value in
RTOS is much higher than the value of switching between
the states. Because the periphery was set up the same in
all three cases at debugging, one of the main sources of

delay is the switch time between these func-
tions. Therefore, a given procedure makes it pos-
sible to correctly compare the software speed.

Table 1

The results of comparing the relative speed of
software solutions

No. Software solution
The number
of States at
debugging

Estimated
time of

delay (ap-
proximate)

1.
Real-time operating

system CMSIS-RTOS
Variant 1.03

564 7×10-5 s

2.

Software implementa-
tion of the typical State

pattern in the form of
software for ASC in the

procedural paradigm

42 5×10-6 s

3.

Software implementa-
tion of the typical State
pattern for a Cortex-M
microcontroller in the

form of a linked list

59 7×10-6 s

6. Discussion of the developed State software patterns

The reported solutions provide an opportunity to im-
plement the software for ASC based on a Cortex-M MC in

#include “STM32F10x.h”
#include <cmsis_os.h>
#include “STM32F10x_rcc.h”
osThreadId test_ID1; //Identifiers of threads 1 and 2
osThreadId test_ID2;

void test_thread1(void const *argument)
{__NOP(); }//Function that is implemented in thread 1

void test_thread2(void const *argument)
{__NOP();}//Function that is implemented in thread 2

osThreadDef(test_thread2, osPriorityNormal,1, 0); //Macros settings
osThreadDef(test_thread1, osPriorityNormal,1, 0);

int main(void) {
//MC periphery configuration (not shown)
osKernelInitialize(); //Initializing the CMSIS-RTOS Variant 1.03
// Creation of threads 1 and 2
test_ID2 = osThreadCreate(osThread(test_thread2), NULL);
test_ID1 = osThreadCreate(osThread(test_thread1), NULL);
osKernelStart(); //Launch the core CMSIS-RTOS Variant 1.03

while (1) { ; }
}

37

Information and controlling system

the procedural paradigm in the State pattern variant. As it
follows from Table 1, the number of cycles when switching
between the states of the obtained patterns is about 10 times
less than the number of switches between the RTOS threads
in CMSIS-RTOS Variant 1.03. The testing was carried
out at the same functionality and hardware base. Thus, the
switch rate between the states of the resulting patterns is
about 10 times greater than the switch rate between the
RTOS threads in CMSIS-RTOS Variant 1.03. The mea-
surements are given in relative units and make it possible to
generalize a given solution for Cortex-M MCs from different
manufacturers.

The peculiarity of the first solution of the State software
pattern for use in ASC is that the software template is max-
imally adapted to the mathematical model of the finite state
machine (3). This allows mathematical analysis.

The feature of the second solution is to use a linked list
when implementing the finite state machine. As one can see
from Table 1, the number of cycles (States) in the variant
with a linked list increases slightly, while the potential
readability of the code and its brevity significantly improves.

An additional focus of this study is to refine the State
patterns for the typical libraries and actual software solu-
tions as the proposed variant is a demonstration of the
technology. In addition, it is necessary to investigate other
potential possibilities to increase the speed of the software
related to the hardware features of Cortex-M MCs.

The resulting solutions should be used in the following
cases:

– the limitations of using the built-in memory of a mi-
crocontroller, for example, the core of an operating system
takes up Read-Only Memory (ROM) and Random-Access
Memory (RAM);

– the speed of patterns performance should be greater
than it is allowed by an RTOS;

– the patterns should be used with a relatively large
number of sensors and actuators under the ACS control in
the RTTS structure.

7. Conclusions

1. A State software pattern has been developed for use
in ASC. Unlike well-known solutions, it is built on the basis
of the libraries of the Cortex M architecture microcontrol-
lers and is maximally adapted to the mathematical model of
the finite state machine. This makes the resulting solution
easy to adapt to a wide range of Cortex-M MCs from differ-
ent manufacturers, ensuring code unification and simplify-
ing the maintenance process. The maximum adaptability to
a mathematical model allows using mathematical modeling

methods during development. Applying a given pattern pro-
vides faster speed of the software solution than the solutions
based on RTOS.

2. A drawback in the developed State software pattern
for use in ASC has been revealed. It can occur at a large
number of states in the software in the form of a long polling
cycle in the brute force algorithm, such as using a switch op-
erator. This requires a description of the entire functionality
of the software in the busting operator, increasing the length
of the programming code.

To address this shortcoming, a State pattern has been
developed for ACS based on Cortex-M in the form of a
linked list (the typical construct of the C language). A given
pattern also ensures a faster software performance compared
to those based on RTOS; it has been built on the basis of
the Cortex M architecture microcontroller libraries. In
this case, the pattern makes it possible to use the transition
over the elements of the linked list instead of busting states,
which significantly reduces the volume of the source code as
the number of states increases.

The pattern has been maximally adapted to the mathe-
matical model of the finite state machine. The adaptation to
the model of the finite state machine implies that the pattern
includes all elements of the mathematical model of the finite
state machine, namely: a set of internal states, the sets of
input signals, output signals, input functions and output
functions. These elements have appropriate designations in
the source code and can be used for mathematical analysis.

3. The developed State patterns for use in ASC provide a
higher speed compared to the RTOS-based software.

To objectively evaluate the developed patterns com-
pared to solutions based on RTOS, a procedure has been
developed and applied that makes it possible to assess the
performance speed of different software and is based on the
calculation of the number of cycles recorded in the Cycle
Count (DWT_CYCCNT) register in the programming en-
vironment. Our analysis has shown that the number of cycles
at switching between the state functions of the developed
patterns is about 10 times less than the number of cycles
when switching between the thread functions in RTOS.
Consequently, the developed patterns make it possible to in-
crease the speed of ASC operation by about 10 times, which
is a positive result of the current study. The increase in speed
is due to the lack of computational costs in the patterns that
occur in RTOS and are related to the operation of its core.

When developing the source code for patterns, we have
demonstrated solely the basic idea of using a linked list for
implementing the pattern of a finite state machine. There-
fore, it is necessary to develop a software implementation op-
tion in the form of software infrastructure and a full-fledged
library for practical use in ASC.

References

1.	 Real Time Operating Systems Lecture (2001). MIT. Available at: http://web.mit.edu/16.070/www/year2001/RTOS27.pdf

2.	 Real Time Operating Systems. Part II (2001). MIT. Available at: http://web.mit.edu/16.070/www/year2001/RTOS28.pdf

3.	 Saini, P., Bansal, A., Sharma, A. (2015). Time Critical Multitasking For Multicore Microcontroller Using Xmos® Kit. International

Journal of Embedded Systems and Applications, 5 (1), 01–18. doi: https://doi.org/10.5121/ijesa.2015.5101

4.	 Sadgrove, M. (2011). Microcontroller interrupts for flexible control of time critical tasks in experiments with laser cooled atoms.

Available at: https://arxiv.org/pdf/1104.0064.pdf

5.	 Execution time analysis. Rapita Systems. Available at: https://www.rapitasystems.com/products/features/execution-time-analysis

6.	 Chen, Z., Chen, J., Zhou, S. (2019). Embedded electronic scale measuring system based on STM32 single chip microcomputer. 2019

Chinese Automation Congress (CAC). doi: https://doi.org/10.1109/cac48633.2019.8997317

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (105) 2020

38

7.	 Bessmertnyy, R. S., Katin, P. Y. (2019). Use of high-performance microcontroller for improving economic efficiency of jem produc-

tion. Standartyzatsiya. Sertyfikatsiya. Yakist, 3 (115), 69–77.

8.	 Zhu, W., Wang, Z., Zhang, Z. (2020). Renovation of Automation System Based on Industrial Internet of Things: A Case Study of a

Sewage Treatment Plant. Sensors, 20 (8), 2175. doi: https://doi.org/10.3390/s20082175

9.	 Kasthuri Arachchi, S. P., Shih, T. K., Hakim, N. L. (2020). Modelling a Spatial-Motion Deep Learning Framework to Classify Dy-

namic Patterns of Videos. Applied Sciences, 10 (4), 1479. doi: https://doi.org/10.3390/app10041479

10.	 Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G. (1994). Design Patterns: Elements of Reusable Object-Oriented Software.

Published by Addison-Wesley Professional, 416. Available at: http://www.uml.org.cn/c++/pdf/DesignPatterns.pdf

11.	 Katin, P. (2017). Development of variant of software architecture implementation for low-power general purpose microcontrollers

by finite state machines. EUREKA: Physics and Engineering, 3, 49–54. doi: https://doi.org/10.21303/2461-4262.2017.00361

12.	 Solodovnikov, A. (2016). Developing method for assessing functional complexity of software information system. EUREKA: Phys-

ics and Engineering, 5, 3–9. doi: https://doi.org/10.21303/2461-4262.2016.00157

13.	 Dietrich, С., Hoffmann, M., Lohmann, D. (2015). Back to the Roots: Implementing the RTOS as a Specialized State Machine. The

11th Annual Workshop on Operating Systems Platforms for Embedded Real-Time Applications, 7–12. Available at: https://people.

mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p7.pdf

14.	 Beynon, W. M. (1980). On the structure of free finite state machines. Theoretical Computer Science, 11 (2), 167–180. doi: https://

doi.org/10.1016/0304-3975(80)90044-4

15.	 Adamczyk, P. The Anthology of the Finite State Machine Design Patterns. Available at: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.95.838&rep=rep1&type=pdf

16.	 Andresen, K., Møller-Pedersen, B., Runde, R. K. (2015). Combined Modelling and Programming Support for Composite States and

Extensible State Machines. Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Develop-

ment. doi: https://doi.org/10.5220/0005237302310238

17.	 Prasanna, Ch. S. L., Venkateswara Rao, M. (2012). Implementation of a Scalable µC/OS-II Based Multitasking Monitoring System.

International Journal of Computer Science And Technology, 3 (2), 86–89. Available at: http://ijcst.com/vol32/1/prasanna.pdf

18.	 RM0008 Reference manual STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx advanced Arm®-

based 32-bit MCUs. Available at: https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-

stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

19.	 Bloh, A. Sh. (1975). Graf shemy i ih primenenie. Minsk: Visheyshaya shkola, 294.

