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Cunme3zoeanuii Komniexc anzopummie o00Qyckauii
npozpamHux MooyJie, w0 eiopisHaemvcs 6i0 6idomux
ypaxyeannsm eapiamusrnocmi munie danux. Lle dozeonu-
J10 onucamu 0awi npouecu Ha 6ePXHLOMY CIMPAmMeiMHOMY
pisni popmanizauii. /Jocaiosicero moxcausocmi euxopu-
cmanns GERT-mo0eneii 3 Memoro 3acmocyeéanus piznux
eapianmie 3axKoHié po3nodiny i ix napamempie npu nepe-
x00i misnc cmanamu. Pospooneno ynidpixosany GERT-
Modesy npouecy 00Qycrauii npoepamuux mooynie. Jana
MoOenv 6i0pisnacmbCca 610 6idomux peanizauicio napa-
OQuzmu suxopucmanus mamemamuunozo anapamy lamma
PO3n0diny 6 AKOCmi KA10M06020 HA 6CIX emanax moole-
oeanns npovecy oogycrauii. Ile 0ozeoauno docsemu
yniixauii modeni 6 ymosax mooudpixauii GERT mepeci.
Pospaxosani mamemamuune ouikyeanus i oucnepcii
UACY GUKOHAHHA 6UNAOK060i eeauvunu uacy ooQycka-
uii i deooycrauii npoepamnux mooynis. Pezyavmamu
docnioxcenns noxkazaau, wo 0as po3pobrenoi mame-
mamuunoi modeni 000asanHs 000amK06020 npouecy
00¢ycrauii npuzeodumv do 36invuenns ducnepcii wacy
euxonanns na 12 %, a npu eudanenni 3 cucmemu —
amenmyemoca na 13 %. Mamemamuune ovikyeanns wacy
BUKOHAHHSL 3MIHIOEMbLC 6 2e0MempPUUHill npozpecii —
mak, npu eudaneHni 6ysna 6i00YeacmMvCs 3MEHULEHHS
Mamemamuunozo owikyeanns na 9 %, a npu 36invwenni
Ha 1 6y30a1 — 30INbUEHHA MAMEMAMUYHOZ0 OHIKYBAHHS
na 26 %. Ile noxasye nesnaumnicmo 3min 0ocnioxucyeanux
noxasnuxie 6 ymoeax mooupixauii modeni i niomeep-
oicye 2inomesy npo ynidixauio modeni 6 ymosax euxo-
pucmanns mamemamuunozo anapamy Iamma posnodiny
aK ocHo6Ho20. Jlani pesyavmamu Oaiomo po3pooHUKy
MOJCTUBICID CNPOZHO3YBAMU NOBEJIHKY CUCTEMU 3aXU-
Ccmy npopamHux Mooyie 3 MoUKU 30pY UACY 6UKOHAHHSL.
Ile dozsonse 3meHmumu 4ac Ha NPUIHAMMA PIULEHHS NPO
doyinvHicms 6UKOpUCMAnHs npoyecy obdycrauii

Kmouoei caosa: GERT modenv, o6pycxauis npo-
epamHux Mooynie, npozpamuuil K00, 2amma po3nooiu,
java
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1. Introduction

The widespread use of computer systems increases the
value and role of software. This determines the role of mali-
cious cyber attacks aimed at discrediting software products
and reducing the security of computer systems in general.

In accordance with the requirements of laws and reg-
ulations [1, 2], software (computer programs) is one of the
objects requiring protection at all stages of development
and operation. At the same time, software obfuscation at
the development stage can become one of the key processes
for providing security, privacy, authentication and integrity
services. This is primarily due to the feasibility of these algo-
rithms and procedures of obfuscation at the very early stages
of code development and implementation, as well as their
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advanced capabilities while providing a variety of security
services in general.

One of the methods of protecting the code of a software
product is the obfuscation process [3], which provides the
services of information security and privacy. Thus, obfus-
cation is an important component of providing practical
security services.

The software obfuscation process consists of subprocess-
es that may or may not be used depending on the business
process, total runtime, and level of protection provided.
Creating models for each particular case is a costly process
that requires unification.

In this regard, the urgent task is to develop an approach
based on the unification of the mathematical formalization
of the software protection process to assess the probabilistic



characteristics of the runtime of the programming modules
obfuscation procedures.

2. Literature review and problem statement

An increasing number of attacks aimed at reducing the
security of computer systems in some cases is associated
with the emerging gaps between the development of theory
and the practice of applying theoretical results, as well as im-
perfect mathematical models that do not provide increased
requirements for practitioners.

The review of the literature [4—12] showed that for a
number of special cases, the final results of the study taking
into account possible limitations are presented. So, in [4—6],
comprehensive results are obtained for the case when a
random process determining transitions from one state to
another is formalized by the exponential distribution law.
This allows simplifying the solution of problems, but in ad-
vance introduces an error in the descriptive part of the model
formalizing non-Markov systems.

More complex models based on the principles of decompo-
sition of complex algorithms and private-level architectures
are presented in [7—12]. However, the problem of obtaining
final relations for calculating probability-time characteristics
for cases when transitions between states are described by
more complex than exponential distribution laws, but lacking
signs of “markovianity” is studied insufficiently.

It should be noted that in addition to substantiating the
mathematical apparatus for solving the problem, the choice
of means of mathematical formalization is important.

Analysis of approaches to network stochastic modeling
showed their great diversity (based on Petri nets [13], finite
discrete automata [14], PERT networks [15], etc.). However,
the main drawback of this modeling approach is the limited
practical application due to the lack of predictability properties.

In [16, 17], GERT (Graphical Evaluation and Review
Technique) models of complex technical systems and pro-
cesses are presented. However, the introduction of the as-
sumption of an exponential distribution law as the main law
characterizing the process of transition from state to state
significantly reduces their theoretical and practical value.

In [17], a situation is proposed where the semi-Markov
process is the main iterative process of obfuscation. How-
ever, it is shown that the problem of finding the distribution
law for semi-Markov models of large dimension is solved
with an error of about 15 %, and the final distribution is
discrete. It is shown that these models are not suitable for
solving problems that require accurate knowledge of the
distribution function or density.

The review of the literature [13—17] showed that existing
modeling methods have both advantages and disadvantages.
It should be borne in mind that the obfuscation process by
these models was not described.

Thus, the review showed that a number of mathematical
models of complex algorithms and processes of software pro-
tection are formalized in terms of graph theory. It is often
assumed that the functioning of the system as a whole can be
described by one distribution law. In this case, possible op-
tions for applying the distribution laws and their parameters
during the transition from state to state are not taken into
account. The solution of this contradiction is possible by the
mathematical formalization of processes using GERT struc-

tures. At the same time, finding the probability distribution
of transitions from state to state in the process of software
protection, as well as the final result in the form of a distri-
bution law with the found parameters are of theoretical and
practical interest.

It should be noted that the study of complex GERT
networks is difficult due to the high computational require-
ments of stochastic modeling approaches. At the same time,
the problem of developing simplified unified GERT models
has not been studied enough. Thus, there is a need to develop
a unified model to formalize the programming modules ob-
fuscation process in order to eliminate this drawback.

3. The aim and objectives of the study

The aim of the study is to develop a unified GERT model
of programming modules obfuscation. This will make it pos-
sible to achieve the unification of the model in conditions of
modifying the GERT network.

To achieve the aim, the following objectives were set:

— synthesis of a set of algorithms of the programming
modules obfuscation/deobfuscation process;

— development of a GERT model of the programming
modules obfuscation process based on algorithms;

—study of a unified GERT model with a modified num-
ber of nodes.

4. Synthesis of a set of algorithms of the programming
modules obfuscation/deobfuscation process

The decompiled bytecode of existing software products us-
ing programming modules obfuscation processes for their pro-
tection is investigated. On the basis of the studies, algorithms
of programming modules obfuscation are developed (Fig. 1).

In accordance with the presented algorithms, the pro-
cess of the source code obfuscation can be described by the
following steps.

Step 1. Initial state. There is raw source code in a
high-level language written using a virtual machine (Java,
CLI, etc.). Due to the fact that the compiled code has a
number of problems with modification, the process of mod-
ification and obfuscation of the code takes place based on
the “raw” (source) code. Due to the fact that this work uses
a combined approach of two independent obfuscation meth-
ods, the first step can be either paragraph 2, or paragraph 4,
or paragraph 5.

Step 2. The source code runs through the obfuscation
method, based on the modification of string literals. The
modified source code will not make sense without the re-
verse algorithm of Step 3.

Step 3. Due to the fact that the algorithm of string liter-
als conversion is symmetric, the inverse conversion function
is added to the source code. The inverse conversion algo-
rithm of paragraph 2 is an integral complement, however, its
order of addition does not matter.

Step 4. The source code runs through the obfuscation
method, based on the “untangling” of structures contain-
ing Boolean operations (performs operations opposite to
simplification). This method has no dependencies and can
be executed at any step/not executed depending on the
combining rule.



Step 5. The source code runs through the obfuscation
method based on obfuscation of identifier names. This meth-
od has no dependencies and can be executed at any step/not
executed depending on the combining rule. This method has
a number of options, which allows obfuscating: local vari-
ables, global variables, functions, classes.

Step 6. As a result of Steps 2—5, the source code is ready
for the compilation process. At the same time, to eliminate
side effects, it is necessary to make sure that the compiler
does not perform premature code optimization. Also, to
reduce the readability of the code and complicate the de-
bugging process, debugging information must be disabled.
So, for example, for languages based on the Java virtual ma-
chine, compiling with the “-g:none” attribute disables debug-
ging information. And the “-Xint” compiler option disables
Just-In-Time and Ahead-Of-Time compilations, leading to
code optimization by the compiler.
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Fig. 1. Developed obfuscation algorithms: a — string literals obfuscation algorithm;
b — string literals deobfuscation algorithm; ¢ — identifier names obfuscation algorithm

In accordance with the above, a general algorithm of pro-
gramming module obfuscation is developed (Fig. 2), as well
as a GERT network of programming modules obfuscation
and deobfuscation processes (Fig. 2, 3).

In Fig. 3 and the corresponding Table 1, based on the
developed algorithms of Fig. 1, transitions between states
are formulated that characterize:

— (1, 2): processing the source code by modifying (en-
coding) string literals, embedding a function in the source
code that decodes the modified string literals into the initial
state “on the fly”;

— (2, 3): after successfully encoding string literals, we
perform the process of Boolean operations obfuscation,
verification of the conversion success of Boolean operations;

— (3, 4): after successful obfuscation of Boolean opera-
tions, we perform the process of identifier names obfuscation,
verification of the conversion success of identifier names;

— (4, 5): after successful obfuscation of identifier names,
we go to the final state, ready for compilation;

— (1, 3): depending on the business scenario, we skip the
source code processing by encoding string literals and per-
form the process of Boolean operations obfuscation;

— (1, 4): depending on the business scenario, we skip
the source code processing by encoding string literals and

obfuscation of Boolean opera-

tions. We perform the process
of identifier names obfuscation;

— (2, 4): depending on the

Getting all class business scenario, we skip the
identifiers. Forming ids source code processing by en-
coding Boolean operations
obfuscation. We perform the
process of identifier names ob-
fuscation;

- (3, 5): depending on the
business scenario, we skip the
source code processing by ob-
fuscation of identifier names;

— (2, 5): depending on the
business scenario, we skip the
¢ source code processing by ob-
fuscation of Boolean operations
and identifier names;

- (2, 1): an error occurred
in the process of encoding by
¢ modifying string literals and
adding a decoding function.
We return to the initial state
in order to repeat the obfusca-
tion attempt;

— (3, 1): an error occurred
in the process of verification
of the conversion success of
Boolean operations. We re-
turn to the initial state (since
the reason for the error is un-
known — the problem of Bool-
ean operations obfuscation
or the error is caused by the
c modification of string literals
in the previous steps) in or-
der to repeat the obfuscation
attempt;

— (4, 1): an error occurred in the process of verification
of the conversion success of identifier names. We return to
the initial state (since the reason for the error is unknown —
the problem of identifier names obfuscation, the problem of
Boolean operations obfuscation or the error is caused by the
modification of string literals in the previous steps) in order
to repeat the obfuscation attempt.
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of its mathematical formal-
ization. Therefore, it seems
appropriate to divide this
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Fig. 3. Developed GERT network of programming modules obfuscation and deobfuscation

processes

Thus, a set of algorithms of programming modules ob-
fuscation and deobfuscation is synthesized, which made it
possible to comprehensively describe these processes at the
upper strategic level of formalization.

5. Development of a GERT model of the programming
modules obfuscation process based on algorithms

The studies showed [18, 19] that the general algorithm
of programming modules obfuscation has a number of spe-
cific iterations that greatly complicate the overall process

A is shown in [17] that the
end probability density func-

tion of the transition time
of the GERT network is de-
termined by the following
expression:

= i;’i’e"”WE (s)ds, (1)

where Wg(s) is the equiva-
lent transfer function of the
GERT network, s is a real
variable.

From the topological
equation [17] follows:

Ty, A T, A,
ZH -1 ZHWJZ 5,

WE(I)Z = 12 B _ Ym:lx, 73, ) 2)
1—2}1% (t)+ +(—1)1;!‘[1WW

A
where H

yi-th loop of the i-th order, including the sink ¢, 1<i<m;

— the product of the W functions of arcs of the

HW]B — the product of the W functions of the arcs of
the a, th loop of the j-th order, not including the sink ¢, 1<i</;



I; — the number of loops of orders 7, including the net-
work sink;

A; — the number of loops of orders i, not including the
network sink.

In a number of practically important cases, distributions
must be obtained in the form of mathematical expressions.
Such problems include the study of algorithms of program-
ming code obfuscation and deobfuscation. This problem is
reduced to finding the random distribution density func-
tion of transition time formed on the basis of the developed
GERT network. Note that it must be assumed that in the
continuous probability density function of the transition
time of the GERT network, ¢(x) is determined by the ex-
pression (1).

The W function of the transition between states i, j is
determined by the formula:

W; (x)=F; T e"'g; (x)dx, ®

where {;j(x) is the probability density of transition between
states i, j; Py is the probability of transition from state i to
state j.

In the study, we adopt the hypothesis that the use of gam-
ma distribution during modeling as a key one when describing
probabilistic transitions from state to state will make it pos-
sible to achieve unification of the model of the programming
modules obfuscation process. The unification is that reducing
or increasing the number of obfuscation operations will slight-
ly change the modeling results. It is expected that a decrease
in the number of nodes will slightly decrease the variance
and expectation, and an increase — accordingly, increase.
However, there are restrictions on changing the model — the
structural architecture of the model (for example, the degree
of connectivity of the nodes) should remain unchanged.

Thus, in the considered GERT network of programming
modules obfuscation and deobfuscation processes, the prob-
ability density function of transitions are defined by the
gamma distribution with variable coefficients £ and 0:

xH! ~e%
g(x)= o) %)

The resulting W function has the following form:

WE(S):
u71*"172'”173'”"712‘*u713+u723‘*uZzs
1‘(“’1/'H’Vz/+W3/+u/12_/+u/13/'+“/23/+“/123/)

(6)

where:
W, — the product of W functions describing the successful
execution of only the string literals obfuscation algorithm:

W, =W, Wy, (6)

W,, — the product of W functions describing the unsuccess-
ful execution of only the string literals obfuscation algorithm:

u71 5= Wi Wy, @
W, — the product of W functions describing the suc-

cessful execution of only the Boolean functions obfuscation
algorithm:

“72 =W, Wy, (¥

W, s — the product of W functions describing the unsuc-
cessful execution of only the Boolean functions obfuscation
algorithm:

Wz 5= WisWy, ®)
W, — the product of W functions describing the successful
execution of only the identifier names obfuscation algorithm:

Wy =W, Wi, (10)

1/173/ — the product of W functions describing the unsuc-
cessful execution of only the identifier names obfuscation
algorithm:

“73/‘ =W, Wy, 1)

W,, — the product of W functions describing the success-
ful sequential execution of the string literals and Boolean
functions obfuscation algorithm:

"{712 =W, Wy, Wss, (12)

W,,, — the product of W functions describing the se-
quential execution of the string literals and Boolean func-
tions obfuscation algorithm:

“712/' =W,W,W,,, 13)

W,, — the product of W functions describing the success-
ful sequential execution of the string literals and identifier
names obfuscation algorithm:

"{713 =W,W, W, (14)

Wy, — the product of W functions describing the se-
quential execution of the string literals and identifier names
obfuscation algorithm:

“713f =W,W, W, 15)

W,, — the product of W functions describing the suc-
cessful sequential execution of the Boolean functions and
identifier names obfuscation algorithm:

Wy = Wi, Wy, W, (16)

W,,, — the product of W functions describing the se-
quential execution of the Boolean functions and identifier
names obfuscation algorithm:

“723/ =W,W, W, A7)

W,,, — the product of W functions describing the suc-
cessful sequential execution of the string literals, Boolean
functions, and identifier names obfuscation algorithm:

Wigy = W, W, Wy W, (18)

Wy, — the product of W functions describing the se-
quential execution of the string literals, Boolean functions
and identifier names obfuscation algorithm.



"Vusf =W,W,, W, W,,,

(19)

The formed table of characteristics of the branches con-
sidered in the GERT model of branches and distribution
parameters is presented in Table 1.

As can be seen from the expression (4), the mathematical
formalization of the resulting equivalent moment function
seems to be a cumbersome expression. In this regard, the
problem arises of a generalized mathematical formalization
of the resulting expressions for calculating equivalent trans-
fer functions.

Substituting the values of expressions (6)—(19) into the
resulting W function (5), the formula of impressive size is
obtained. For its “normalization”, we introduce the following
replacement:

-x

k-l 6,

pg(t)=Pa‘ Iem xh e

L)

-x

- k=1 oo

xP, _J;e’“ W(x)dxx

-
o k-1 6,

xp, [t ey

A

(20)

where p?(t) represents the product of W functions describ-
ing successful and unsuccessful execution of algorithms
described by variables of expressions (6)—(19);

a= (a1,a2,a3,..,an) — a list (array) of transition probabil-
ities (loop arcs),

b=(b,b,,b,,..b,) — a list (array) of coefficients of the
corresponding generating function of transition moments.

Thus, the resulting expression for calculating equivalent
transfer functions can be described as:

WE(t):

(PG5 (0)+ 62 (€) + PG (6)+ Pl (6) + p{TS) (0)+ (3 () + Pl (0))

W, (s)

=W.(0)=1, 23
() +(0) (23)

where Mg(s) is the generating function; and
My (s) = [ e fe(x)de| =] /i(x)dw=1 (24)

— s=0 ==
where f£(x) are the distribution densities.

Table 1

Characteristics of transitions between the states of the
GERT network of programming modules obfuscation and
deobfuscation processes

A e
1 1,2) Wi Py k=k{; 6=6,
2 (2,3) Wis Py k=ky; 6=0,
3 (1,4) Wi P3=1-P-P, k=k{; 6=6,
4 (2,4) Wy Py k=ky; =0,
5 (2,4) Was Ps k=ky; 6=0,
6 | (3,4) | Wi Py k=ky; -6,
7 (4, 5) Wys Py k=k{; 6=0,
8 (3,5) Wss Py k=Fky; 6=6,
9 | @5 | W Ps f—hy; 0,
0] an | wy Pi—1-Pyy [
1| 31y | Wy | Po=1-PePy k—ks; 6=0s
12 3, 2) W3y P;=1-P;—P5—Pg k=ks3; =03

Fig. 4 shows the density graph of the runtime of the
entire programming module obfuscation and deobfuscation
process taking into account variations in the values of &
and 0. Integrating the probability density function, we
obtain a distribution function, the
graph of which is shown in Fig. 5.

The expectation and variance of

1= (P (0)+ P33y (0)+ Pz () + Pz (6)+ (7 () + Y

Using the probability density function (4), we obtain the
probability density graph shown in Fig. 4. At the same time,
the probabilities were chosen as follows:

P1=P2=P3=1/3; P4=0.05; P5=0.8;
P6=P12=0.1; P7:P10:0.05; Pg:0.8;
P9=0.15; P11:0.9.

The network can be built so that if in some state i it is
possible to start one of several subsequent operations, then
the probabilities of the start p; of any of these operations
form a complete group of incompatible events:

Y p, =1Vi. (22)
j

In this case, the probability of running the entire net-
work from source to sink is 1.

To show that all nodes satisfy the condition (22), we
calculate the probability of completing the entire process,
which is calculated by the formula:

. (21) the obtained functions are calculated
58,
(0)+ Pty (t)) according to the formulas:
w=Ww,(¢)de|_,, (25)
o’ =W, (t)d%|_, —u*. (26)

The obtained calculation results are described in Table 2.

Thus, as part of the study, a unified GERT model of the
programming modules obfuscation process is developed.
This model differs from the known by the paradigm of using
the mathematical apparatus of the gamma distribution as
the key one at all stages of modeling the obfuscation process.
This made it possible to achieve model unification in condi-
tions of GERT network modification.

Table 2

Characteristics of the probability density function —
expectation and variance

No. k 0 u c?
1| 11,211 | 107,06, 15| 242 34
2 |11,2,1] [127,18,35] 88 39.51
3 | [24,3] |[27,1835]| 1819 133.54
4 1243 [107,06,15]] 507 13.34
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Fig. 5. Graphs of the distribution functions of the programming
modules obfuscation and deobfuscation process using the GERT
network, gamma distribution of transition probabilities with different

values of the coefficients kand 0

6. Study of the unified GERT model with a modified
number of nodes

The developed process of obfuscation and deobfusca-
tion of programming modules consists of 5 nodes. Consid-
er the behavior of the system when the number of nodes
changes.

The developed GERT networks of programming mod-
ules obfuscation and deobfuscation processes with a changed
number of nodes are presented in Fig. 6, 7.

When changing the number of nodes, the following fac-
tors were taken into account:

— the degree of connectivity of the nodes of the new pro-
cess is comparable to the original one;

— changing the process complexity leads to a change in
the number of elements of the array of coefficients k, while
the values of the first and last elements of the array k are
identical to the original ones;

— changing the process complexity leads to a change in
the number of elements in the array of coefficients 6, while
the values of the first and last elements of the array 0 are
identical to the original ones.

plementing the entire process pg, which is equal

and variance were

Table 5.

to 1, was calculated. The values of expectation

also calculated, presented in

Table 3

Characteristics of transitions between the states of the
GERT network of programming modules obfuscation and

deobfuscation processes with a reduced number of operating
obfuscation functions

No. | Branch | Wfunc-| Transition Probability density
tion probability coefficients (2)
1| a2 | wy P, k=hy; 6=0,
2 1 (2,3) Wis Py k=ky; 6=0,
3034 | wy P, ke=hy; 0=0,
4] @4 | Wy Py k=ks; =05
50 @0 | wy | Pet-Popy =k, 0-6;
6 | (31) | W Pe1-Ps =k, 065

Based on the obtained equivalent transfer functions,

the density graphs of the runtime of the entire process of
obfuscation and deobfuscation of the programming module
were constructed taking into account variations in the
variables k£ and 6. These graphs, as well as the correspond-
ing graphs of the distribution function, are presented in
Fig. 8, 9.



Table 4

Characteristics of transitions between the states of the GERT network of programming modules obfuscation and
deobfuscation processes with additional operating obfuscation function

No. Branch W function Transition probability Probability density coefficients (2)
1 (1, 2) W12 P1 k=k1; 9=91
2 (2,3) Wis Py k=Fky; 0=0,
3 (3, 4) W34 P3 k=k1; 9=91
4 (4, 5) Wis Py k=ky; 0=0,
5 (5, 6) W56 P5 k=k2; 9=92
6 (2, 6) Wae P k=ko; 0=0,
7 (3, 6) W36 P7 k=k2; 9=92
8 (4, 6) Wi Py k=ko; 0=0,
9 (1, 5) W15 Pg k=k3; 9=93
10 (2,5) Was Py k=ks; 0=03
11 @3,5) Wss Pyy k=ks; 6=03
12 (1, 4) Wi Py k=ks; 6=03
13 (2, 4) W24 P13 k=k3; 9=93
14 (1,3) Wis P1s-1-P1—P13—Py k=ks; 6=03
15 2,1) Way Py5-1-Pg—Py—Py3—Pyg k=ky; 0=0,
16 (3, 1) Wsy Pig-1-Ps—P;—Pyy k=k4; 6=0,
17 (4,1) Wiy Py7-1-P4—Pg k=ky; 0=0,
18 (5, 1) Wsy Pig-1-P5 k=ky; 0=0,
Table 5
Probability density characteristics — expectation and variance
No. Type u o?

1 Original 6=[2.7, 1.8, 3.5]; k=[1, 2, 1] 8.8 39.51

Added node 0=[2.7, 1.8, 1.8, 3.5]; k=[1, 2, 2, 1] 11.11 44.68

3 Removed node 0=[2.7, 3.5]; k=[1, 1] 8.08 34.88

W31
W21
W12 W23 W34
W24

Fig. 6. Developed GERT network of programming modules obfuscation and deobfuscation processes with a reduced number of
operating obfuscation functions

W51
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W14
_— W24
48
3 L w23 W34\W w45
25
w1 W56
W3l W26
W36

Fig. 7. Developed GERT network of programming modules obfuscation and deobfuscation processes with additional operating
obfuscation function
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Fig. 8. Density graphs of the runtime of the programming modules obfuscation and deobfuscation process when using the
GERT network, gamma distribution of transition probabilities
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GERT network, gamma distribution of transition probabilities

The results of the study showed that for the developed
mathematical model, when adding another obfuscation pro-
cess, the variance increases by 12 %, and when it is removed
from the system, it decreases to 13 %. The expectation
changes exponentially. So, when removing the node, the
expectation decreases by 9%, and when increasing by 1
node, the expectation increases by 26 %. This shows the
insignificance of changes in the studied characteristics un-
der the conditions of model modification and confirms the
hypothesis of model unification when using the mathemati-
cal apparatus of gamma distribution as the main one. These
results allow the developer to predict the behavior of the pro-
gramming modules protection system in terms of runtime.

7. Discussion of the results of the study of the developed
GERT model of the programming modules obfuscation
process

A set of algorithms of programming modules obfuscation
is synthesized (Fig. 1), which differs from the known ones
by taking into account the variability of data types. The
synthesis made it possible to present the obfuscation process
as a whole (Fig. 2), as well as to formalize the obfuscation
process in a convenient form for subsequent use in the devel-
oped GERT models (Fig. 3).

As part of the study, a unified GERT model of the pro-
gramming modules obfuscation process is developed. This
model differs from the known ones by the paradigm of using
the mathematical apparatus of gamma distribution (4) as a

key one at all stages of modeling the obfuscation process. This
made it possible to achieve model unification under the condi-
tions of GERT network modification (Fig. 4, 5). Unification
allows adapting the modeling process to a possible complica-
tion of the structure and algorithms of obfuscation processes.

The results of the study showed that for the developed
mathematical model, when adding another obfuscation pro-
cess, the runtime variance increases by 12 %, and when
removed from the system it decreases to 13 % (Fig.8,9).
The runtime expectation changes exponentially. So, when re-
moving the node, the expectation decreases by 9 %, and when
increasing by 1 node, the expectation increases by 26 %. This
shows the insignificance of changes in the studied characteris-
tics under the conditions of model modification and confirms
the hypothesis of model unification when using the math-
ematical apparatus of gamma distribution as the main one.
These results allow the developer to predict the behavior of
the programming modules protection system in terms of run-
time. This allows reducing the time to decide on the feasibility
of the obfuscation process when using flexible methodologies.

The studies show that the developed mathematical model
is appropriate for mathematical modeling of systems that are
formalized by at least four states. A decrease in the number of
states leads to linearization of the process, for which the use of
stochastic approaches to mathematical modeling leads to a de-
terioration in the accuracy of the results. Also, an additional de-
crease in the number of states leads to a decrease in the security
of programming modules (Fig. 8,9). So, Fig. 6 shows the four-
state model described by six transitions (Table 3). Reducing the
number of states by 1 will lead to a system having 3 transitions.



The recommended maximum number of states is 9
nodes. A further increase in the number of nodes leads to
an excessive complication of the mathematical model, while
the trends of varying the process runtime expectation and
variance remain.

At this stage, the coefficients &, 0 are selected empirically
using expert knowledge. So, the input data are obtained as
a result of an experiment conducted by a group of expert
developers of NixSolutions secure software. Further, this
limitation can be eliminated by calculating these coefficients
for specific data protection algorithms. The elimination of
these restrictions is associated with the direction of further
research, which should be focused on the development of the
procedure for adapting these coefficients to various business
processes of programming modules obfuscation.

The development of this study consists in the design of a
methodology for calculating the gamma distribution and its
adaptation for the practical implementation of data protection
algorithms. However, difficulties may arise associated with
the existing limitations of stochastic modeling approaches.

8. Conclusions

1. A set of algorithms of obfuscation and deobfuscation of
programming modules is synthesized, which differs from the

known ones by taking into account the variability of data
types. This made it possible to describe these processes at
the upper strategic level of formalization.

2. As part of the study, a unified GERT model of the
programming modules obfuscation process is developed.
This model differs from the known ones by the paradigm of
using the mathematical apparatus of gamma distribution as
the key one at all stages of modeling the obfuscation process.
This made it possible to achieve model unification in the
conditions of GERT network modification.

3. The results of the study showed that for the devel-
oped mathematical model, when adding another obfus-
cation process, the runtime variance increases by 12 %,
and when removed from the system it decreases to 13 %.
The runtime expectation changes exponentially. So, when
removing the node, the expectation decreases by 9 %, and
when increasing by 1 node, the expectation increases by
26 %. This shows the insignificance of changes in the stud-
ied characteristics under the conditions of model modifica-
tion and confirms the hypothesis of model unification when
using the mathematical apparatus of gamma distribution as
the main one. These results allow the developer to predict
the behavior of the programming modules protection sys-
tem in terms of runtime. This allows reducing the time to
decide on the feasibility of the obfuscation process when
using flexible methodologies.
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